
3D Visibility and Partial Visibility Complex

Mojtaba NouriBygi 1, Mohammad Ghodsi 1 2

1 Department of Computer Engineering, Sharif University of Technology

P.O. Box 11365-9517, Tehran, Iran

2 IPM School of Computer Science

P.O. Box 19395-5746, Tehran, Iran

nouribaygi@ce.sharif.edu, ghodsi@sharif.edu

Abstract

Visibility is an important topic in computer graphics,
motion planning, and computational geometry. To deal with
the increasing complexity of the scenes considered, some
research has been performed in visibility processing in or-
der to accelerate the visibility determination. Two of the
most studied such structures are visibility graph and visibil-
ity complex.

Visibility graph is a fundamental geometric structure
which is used in many applications, including illumination
and rendering, motion planning, pattern recognition, and
sensor networks. While the concept of visibility graph is
widely studied for 2D scenes, there is no acceptable equiva-
lence of visibility graph for 3D space. Similarly, 3D visibil-
ity complex, proposed as an extension of visibility complex
to 3D, is very complicated and cannot be used for visibility
computations.

In this paper, we propose a new model for defining the
visibility relations in 3D. The main idea is to replace the
role of lines and segments in 2D with planes and planar
polygons in 3D. Moreover, we define two new structures,
namely 3D visibility graph and partial visibility complex,
which we believe is the natural way to extend the earlier
models. We show how to compute these structures in accept-
able times. We also use partial visibility complex to com-
pute the view around a point in 3D in O((|V (q)|+n2) log n)
time, where |V (q)| is the size of the view.

1 Introduction

Problems involving the visibility of objects have arisen
in several areas of computer science, like graphics, VLSI
layout, motion planning, and computational geometry. Vis-
ibility computation requires an efficient method for deter-

mining the objects seen from a point in a scene or from an
object in the scene. To deal with the increasing complex-
ity of the scenes considered in computer graphics, some re-
search has been performed in visibility processing in order
to accelerate visibility determination. Frequently, the un-
derlying structure of the visibility is critical and a graph can
be created that condenses this structure information into a
more usable form.

One of these structures is visibility graph. visibility
graph is a fundamental geometric structure useful in many
applications, including illumination and rendering, motion
planning, pattern recognition, and sensor networks.

Consider the path planning problem in a 2D polygonal
scene. The visibility graph is defined as follows: The nodes
are the vertices of the scene, and an arc joins two vertices A
and B if they are mutually visible, i.e., if the segment [AB]
intersects no obstacle. It is possible to go in straight line
from A to B only if B is visible from A. The start and goal
points are added to the set of initial vertices, and so are the
corresponding arcs. Only arcs which are tangent to a pair of
polygons are necessary.

This method can be extended to non-polygonal scenes
by considering bitangents and portions of curved objects.
In the latter case, we will have a tangent visibility graph
(TVG). The set of vertices in this graph is O, the convex ob-
jects of the scene. Furthermore, any common tangent of two
objects O1, O2 ∈ O whose endpoints can see each other
corresponds to an edge {O1, O2} of the TVG. Both visibil-
ity graph of polygonal scene and tangent visibility graph of
smooth objects can be computed in optimal O(k + n logn)
time. Here n in the number of polygons or objects and k is
the size of the visibility graph.

While the concept of visibility graph is widely studied
for 2D scenes, there is no acceptable equivalence of it for
3D space. The reason is the intricate visibility relations in
3D which makes it impossible to express them as easily as

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.82

208

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.82

208

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.82

208

was done in 2D.
Another important structure for visibility computations

is visibility complex. Pocchiola and Vegter [7] have devel-
oped 2D visibility complex which is a topological structure
encoding all the visibility relations of a 2D scene. The idea
is to group rays which “see” the same objects. The central
concept is that of maximal free segments. These are seg-
ments of maximal length that do not intersect the interior of
the objects of the scene. More intuitively, a maximal free
segment has its extremities on the boundary of objects, it
may be tangent to objects but does not cross them. A line is
divided in many maximal free segment by the objects it in-
tersects. A maximal free segment represents a group of co-
linear rays which see the same objects. The visibility com-
plex is the partition of maximal free segments according to
the objects at their extremities.

The size of the complex is characterized by the number k
of vertices which is Ω(n) and O(n2) (n being the number of
convex objects). Pocchiola and Vegter [7] proposed an opti-
mal algorithm for its construction, which runs in O(k log n)
time. With this structure, the view around a point can be
computed in O(m log n), where m is the size of view [7].

Durand et al. [2] have proposed a generalization of the
visibility complex for 3D scenes of smooth objects and
polygons. The space of maximal free segments is then
a 4D manifold embedded in 5D because of the branch-
ings. Faces of the complex are bounded by tangent seg-
ments (which have three dimensions), bitangent segments
(with two dimensions), tri-tangent segments (with one di-
mensions) and finally vertices are segments tangent to four
objects. The size k of 3D visibility complex is Ω(n) and
O(n4). Although this structure encodes all visibility rela-
tions of scene, its complication prevents it to be a useful
tool for visibility computations.

In this paper, we propose a new way to express the visi-
bility relations in 3D which is both simple and intuitive and
contains enough information to be used in visibility algo-
rithms. Using our new definitions, we define a structure
called 3D visibility graph, which we believe is the natural
way to extend of visibility graph in 3D. The size of this
structure is O(n3) and we give an O(n3 log n) algorithm
for its construction. Based on visibility graph, we also intro-
duce a structure called partial visibility complex that is com-
parable with visibility complex in 3D. This structure does
not encodes all the visibility relations. The size of partial
complex is corresponds to the size of 3D visibility graph of
scene and dominated by Ω(n) and O(n3). We give an algo-
rithm for its construction which runs in O(n3 log n). An ex-
ample of application of this structure is computing the view
|V (q)| form a viewpoint q in time O((|V (q)| + n2) log n).

The rest of the paper is organized as follows. In section 2
we specify some of the reasons that lead to complexities of
visibility relations in 3D. In section 3 we define some new

definitions for visibility in 3D. In section 4 we introduce a
new structure called 3D visibility graph that plays the role
of visibility graph in 3D scenes. In section 4.1 we give an
algorithm for construction of 3D visibility graph that runs in
O(n3 log n) time. Following our new method, in section 6
we introduce the partial visibility complex which we believe
is the natural way to extend the visibility complex in 3D.
We propose an algorithm for its construction that runs in
O(n3 log n) time. In section 7 we present an application for
partial visibility complex.

2 2D Visibility versus 3D Visibility

The visibility problems have been vastly studied and
different algorithms have been proposed for various situ-
ations. Unfortunately, things are very different when we
turn to 3D scenes. Consider the path planning method
described above. This problem does not generalize sim-
ply to 3D where the problem has been shown to be NP-
complete [1, 5]. Furthermore, in 3D, the term “visibility
graph” often refers to the abstract graph where each object
is a node, and arcs join mutually visible objects. This is
however not the direct equivalent of the 2D visibility graph.

We enumerate here some points explaining that the dif-
ference between 2D and 3D visibility cannot be summa-
rized by a simple increment to the dimension of the prob-
lem. This can be more easily envisioned in line space [3].
Recall that the atomic queries in visibility are expressed in
line-space (i.e., first point seen along a ray; are two points
mutually visible?).

• Increase in dimension of line-space is two, not one (in
2D line-space is 2D, while in 3D it is 4D). This makes
things much more intricate and hard to apprehend.

• A line in 2D is a hyperplane, which is not the case any
more in 3D. Thus, the separability property is lost; a
3D line does not separate two half-spaces as in 2D.

• A 4D parameterizations of 3D lines is not possible
without singularities [3].

• Visual events are simple in 2D: bitangents lines or tan-
gent to inflection points. In 3D, their locus are sur-
faces which are rarely planar (IEEE or visual events
for curved objects) [3].

All these arguments make the sentence “the generaliza-
tion to 3D is straightforward” a doubtful statement in any
visibility paper.

3 3D Visibility Concepts

As stated in section 2, we cannot simply extend the con-
cept of visibility graph from 2D to 3D. The problem is that

209209209

the traditional definitions of visibility cannot be used for
defining a meaningful and applicable structure such as visi-
bility graph. For one thing, the number of rays between two
objects might be countless. For another, it seems impossible
to represent the visibility relations of a 3D scene in a planar
graph.

These problems lead us to reconsider the basic concepts
of visibility in 3D space. In 2D space, we say that two
points are mutually visible or see each other if there is a
straight line, not intersecting any other part of the configu-
ration, from one object to the other. If we want to use this
concept in 3D, instead of using the line, we must use the
plane. The reason is that the main property which explains
why 3D visibility is much harder than in 2D, is the sepa-
rability property: In 2D, a line separates the plane into two
half-planes. No such property holds in 3D because lines are
no longer hyperplanes. A good idea is to consider planes:
in 3D, planes have this property, i.e., each plane separates
the space into two half-spaces.

3.1 Some Definitions

Now we replace the role of the plane in 3D with that of
line in 2D and change some basic definitions in visibility.
First, we review these definitions in 2D scenes:

• A ray is a half-line starting from a point.

• A segment is a part of line bounded by two points in
that line.

• The view from a point in some direction is the first
object intersecting the line starting from the point in
the given direction.

• We say two points are mutually visible if the line seg-
ment defining by them does not intersected with any
objects except possibly at the end points.

We now give what we think is a suitable definition for visi-
bility in 3D. As we said, we try to replace the role of line in
2D with plane in 3D:

Definition 1 A pseudo-ray from point p in the direction of
plane A is an angle surrounded by two half-line in A start-
ing from p. Notice that this pseudo-ray is no longer unique.

Definition 2 We say that a pseudo-ray can see an object
if the plane of the pseudo-ray intersects the object and the
intersecting section lies within the angle of the pseudo-ray.

Definition 3 A pseudo-segment in a plane is a simple poly-
gon in that plane. We can imagine this pseudo-segment as
the region surrounded by some pseudo-rays (angles). In the
simplest form, a pseudo-segment is a triangle in the plane,
consisting of three pseudo-rays with mutual common edges.

In this case, another way to distinguish a pseudo-segment is
by giving its ordered vertices. Notice that a line is a special
pseudo-segment consisting of two pseudo-rays (angles) that
lie on each other.

Definition 4 We say that some points are mutually visible
if they are all lie in a same plane and the pseudo-segment
defined by them does not intersect with any object except
possibly at these points.

We will use the above definitions for building our new
data structure.

3.2 Pseudo-graph

As mentioned, because of the intricate relations, it is not
possible to represent the visibility relations of a 3D scene
with an ordinary graph. We need a 3D structure comparable
to the ordinary graph in 2D. Note that our defined visibility
is hold between at least three objects.

We introduce a new structure, called the pseudo-graph
in which each edge connects three vertices of the graph. We
can think of these edges as pseudo-segments connecting its
vertices. It is easy to see that the complexity of this structure
for a set of n objects is O(n3).

4 3D Visibility Graph

We now define 3D tangent visibility graph as follows.
Consider a collection O of pairwise disjoint smooth convex
objects in a 3D scene. For our structure we use pseudo-
graph, the structure defined in section 3.2 in which each
edge connects three vertices of the pseudo-graph. The set of
vertices in this graph is O, the convex objects of the scene.
Any common tangent plane of two objects O1, O2, O3 ∈ O
whose tangent points are mutually visible correspond to an
edge {O1, O2, O3} of the pseudo-graph. Note that there are
at most 8 edges between each three vertices.)

The size of 3D visibility graph of n objects, is propor-
tional to the number of edges of it and is limited by O(n3)
and Ω(n).

4.1 Construction

Here, we present a construction algorithm for 3D visi-
bility graph which runs in O(n3 log n) time. It is mainly
an extension of the Lee’s algorithm for building visibility
graphs to 3D scenes. To clear our proof, we first review the
Lee’s algorithm.

4.1.1 Lee’s Algorithm

The algorithm attributed to D. T. Lee represents the first
nontrivial solution for constructing the visibility graph, run-
ning in O(n2 log n) time [4]. The basic idea is simple: for

210210210

each vertex, sort the other points in angular order around
it, then visit each one keeping track of the order of inter-
sected edges made by the scan-line. If the visited point is
associated with the first edge in this ordered list, then it can
be reported. Otherwise, it must be obscured by some other
edge appearing before it (with respect to the center) and so
would not be reported. Of course, the edge list must han-
dle inserts and deletes in O(log n) time which means using
optimal sorting (of which many are available).

Figure 1 shows the intuitive idea. The edge-list here
would be {5, 2, 1, 4, 3} – the order of intersecting edges
from the center along the scan-line. Of course, in reality, the
scan-line only stops at vertices (not in the middle of edges).

5

2
1

4
3

Scan Line

Direction of angular scancenter

Figure 1. Example of Lee Scan with Edge-
List.

5

A

9 10
3

B

8
7

6

C

2

1

center

Figure 2. Basic Cases in the Lee Scan.

What happens at each vertex visit depends on the polyg-
onal edges associated with that vertex. There may be two
inserts, two deletes, or one insert and one delete. Figure 2
shows these situations with vertices marked a, b, and c and
edges marked 1-10. Collinear points are handled as fol-
lows: if several points lie along the same scan-line, the
order is determined by the distance from the center. In
figure 2, vertex a would be visited, followed by vertex b,
and then c. Before a is visited, the edge-list would be
{5, 9, 10, 3, 6, 2}. When a is handled, both its edges are
deleted, so the edge-list would be {5, 3, 6, 2} afterwards.
When b is handled, both its edges are inserted, so the edge-
list becomes {5, 3, 8, 7, 6, 2}. When c is handled, one edge
is deleted and the other is inserted. The edge-list at the end
would be {5, 3, 8, 7, 6, 1}.

Time analysis: there are (n−1) vertices to be visited for
each of n centers. At each of these steps, it takes O(log n)
for the search/insert/delete, thus making the time for one

scan (n − 1)O(log n) = O(n log n). The time for all n
scans would then be nO(n log n) = O(n2 log n).

Space analysis: in the worst case, there may be O(n)
edges in the edge-list at any one given time, but no more.
The angularly sorted list also requires O(n) storage during
one scan, but can be freed after the particular center has
completed. Of course, in order to store the visibility graph,
it takes O(|e|) space.

4.1.2 Construction of the 3D Visibility Graph

Theorem 1 The 3D visibility graph defined above can be
constructed in O(n3 log n) where n is the number of objects
of the scene.

Proof 1 For each pair of objects O1 and O2, sort all the
planes which are tangent O1 and O2 and one other object
in angular order with respect to a fixed plane tangent to O1

and O2. This is equivalent to sweeping the space with a ro-
tating plane while remaining tangent to O1 and O2 and vis-
iting each of the objects when the sweep-plane becomes tan-
gent to it. We keep track of the order of intersected objects
made by the sweep-plane. Like Lee’s algorithm, we main-
tain an ordered list which has current tri-tangents. When
a new tri-tangent plane appears, we check it with other tri-
tangents in the list and we insert or remove it from the list.

The time needed for sorting the tangent planes is
O(n log n), as there are O(n) of these planes. Each of
O(n) inserting and removing operations takes O(log n)
time. So, each sweeping process takes O(n log n) time. As
there are O(n2) pairs of objects, the total algorithms takes
O(n3 log n) time.

Although the above algorithm is not naive, it is not opti-
mum. We note that it might be possible to improve the run-
ning time to O(k + n2 log n), where k, O(n3), is the num-
ber of visibility edges of pseudo-graph, by using pseudo-
triangulation based on the work of [8].

4.2 Application of 3D visibility Graph

We believe that this pseudo-graph has most of the prop-
erties that visibility graph is reputed for. For example, con-
sider the convex hull of a set of 3D objects. As we know, in
2D, the convex hull of a set of objects lies on the visibility
graph of these objects. It can be easily shown that the same
property holds for the 3D visibility graph as well.

5 Parameterization

We use a parameterization which maps a plane in 3D
space to a point in R3.

211211211

Note that this parameterization will be used mainly for
illustration purposes. The relations we study could be ex-
pressed using only topological notions, although we believe
that visualizing in R3 greatly helps their understanding.

6

-

	

�
~u

x

y

z

θ

ϕ

Figure 3. Plane parameterization using two
spherical angles for the direction and the dis-
tance of plane from origin.

We map a plane p of the scene to a point p⋆ in dual space.
As every plane in 3D space has three degree of freedom to
move in the space, the dual space is 3D. Consider the line
perpendicular to p that passes throw origin (Figure 3). Let
(θ, ϕ) be the spherical coordinates of the direction vector of
this line, and u be the distant of the plane from origin. We
map the plane p to the point (θ, ϕ, u) in dual space. Our
mapping is thus into [0, 2π] × [−π/2, π/2]× R2.

6 Partial Visibility Complex

Base on our definitions of visibility, we introduce a struc-
ture which can be thought as the extension of visibility com-
plex for 3D scenes. We define this structure, which we call
partial visibility complex, for basic states, then we present
a complete definition for it and propose an algorithm for its
construction.

Consider a sphere and a plane in space and assume that
the plane can move continously in space. In this case the
boundary between times that the plane intersects with the
sphere and times that it does not, is when the plane is tan-
gent to the sphere. This gives the idea that we can compute
the boundary in dual space and partition the planes of space
according to their intersection status with the sphere.

In what follows, we set the direction of a plane to be the
direction of line perpendicular to it and we show it by its
spherical coordinates (θ, ϕ).

For each direction (θ, ϕ) in 3D space, there are two
planes (θ, ϕ, λ(θ, ϕ)) and (θ, ϕ, µ(θ, ϕ)) which are tangent
to the object.

If we represent the planes in a dual space, for each
(θ, ϕ), a given object has two tangents (θ, ϕ, λ(θ, ϕ)) and

(θ, ϕ, µ(θ, ϕ)). λ(θ, ϕ) and µ(θ, ϕ) describe two surfaces
in the dual space. Each plane (θ, ϕ, u) such that λ(θ, ϕ) <
u < µ(θ, ϕ) crosses the object. For a scene of objects, these
surfaces partition the dual space into connected components
corresponding to planes intersecting the same objects. we
call this partition the dual arrangement.

As we mentioned, the set of planes tangent to one ob-
ject is a 2-D set in the three-dimensional plane space. This
means, more intuitively, that a plane has 2 degrees of free-
dom while staying tangent to one object. We will call the
set of planes tangent to an object the tangency surfaces of
that object.

Visualizing 3D space is hard. One approach is to use
slices or cross sections. In this paper we will fix ϕ =
ct. Such a slice will be called a ϕ-slice. We will obtain
a 2D slice where only θ and u vary, composed of all the
planes that have ϕ as their second parameter of their di-
rection. Such a slice will be called a ϕ-slice. These two-
dimensional ϕ-slices are easier to visualize. They justify in
part the choice of the parameterization because they can be
interpreted as orthographic projections of the scene.

D1 D2

D3

Oi

Oj

D1

D2

D3

u

θ

λi

µi

x

y

λj
µj

Scene Dual space

Figure 4. A slice form scene and dual space
[6].

Figure 4 shows a z-slice of the scene and a ϕ-slice of
the dual space. The scene is composed of two objects Oi

and Oj and three planes D1, D2 and D3. We assumed that
that the dual of these planes lies in our slice (they have the
same ϕ direction parameter). As we can see, the dual of D1

that intersects both objects lies in the tangency surfaces of
both of them, and D3 that does not intersect the objects, is
outside the tangency surfaces. We remind that the domain
of θ is [0, 2π] and the domain of ϕ is [−π/2, π/2]. In this
case, the intersection of the tangency surfaces of two objects
form a one-dimensional curve that represents the planes that
are tangents to both objects.

If there are three objects in the scene, there will be a
partition similar to above, in which the tangency surfaces of
the objects have intersection in some points (at most eight
points). Each of these points corresponds a plane tangent to

212212212

the three objects.
We can see from above cases that the tangency surfaces

of objects, partition the dual space to continuous sections.
For a plane, belonging to such a section determines the ob-
jects that it crosses.

Now we give a formal definition of partial visibility com-
plex. Consider a collection O of pairwise disjoint objects in
the space. We limit ourselves to convex objects and add
an infinite “blue sky” object to the scene for the sake of
coherence. We consider the set of maximal free pseudo-
segments, which are pseudo-segments that do not intersect
with any objects except at there vertices. We define the par-
tial visibility complex as partition of these pseudo-segments
according to the objects they touch.

Like visibility complex, partial visibility complex is
composed of several elements. These elements are 0 to 4
dimensional, and in the increasing order of dimension are:
vertex, 0-D elements that correspond to planes tangent to
three objects; edge, 1-D elements that correspond to a set
of planes that are tangent to two objects and touch another
object; face, 2-D elements that correspond to a set of planes
that are tangent to a plane and touch two other planes; and
volume, 3-D elements, that correspond to a set of planes
that cross three objects.

In dual space, each type of elements is incident to, or
delimited by a number of other elements:

• A vertex is incident to six edges and twelve faces.

• An edge is delimited by two vertices.

• A face is delimited by four vertices and incident to four
edges.

• A volume is delimited by two chains of vertices, edges
and faces.

For example, for the first statement, consider three ob-
jects A, B, and C, and their mutual tangent plane p. We
can see the number of incident edges to this vertex in dual
space (the plane p) by the following argument: If p remains
tangent to A and B and move it, we get two edges, one is
the set of planes that are tangent to A and B and intersect
with C, and another one is the set of planes that are tangent
to A and B and do not intersect with C. With similar argu-
ment for remaining tangent to B and C, and to A and C, we
can see that there are six edges incident to p. For the third
statement, As a face is the set of planes that are tangent to
an object and cross two other objects, for each of the two
objects, there can be two type of tangent planes (above and
below the objects), and each of them gives an edge.

6.1 Structure

The size of the partial visibility complex is characterized
by the number k of vertices which is Ω(n) and O(n3) (with

n the number of convex objects). As we can see, the size of
partial complex is equal to the size of 3D visibility graph of
the scene.

As said, partial visibility complex is composed of ver-
tices, edges, faces, and volumes. Each vertex have pointers
to objects (at least three) that is tangent to them. Also it has
six pointers to its incident edges and two pointers to its inci-
dent volumes. Each edge has two pointers to objects that is
tangent to them, one pointer to its crossing object, and some
pointers to its incident elements. We can similarly obtain
the structure of faces and volumes. We ought to mention
that partial visibility complex, like visibility complex is a
topological structure.

The construction of the partial complex can be achieved
by a sweep of its vertices. When a vertex is swept, the
relations between the edges and the faces have to be up-
dated. We can use the construction algorithm for 3D vis-
ibility graph and sweep the vertices of partial complex in
O(n3 log n). As the relation between different element
types are O(1), we can build the partial visibility complex
in O(n3 log n).

7 Applications in Visibility Computations

Computing the view around a viewpoint amounts to
computing changes of visibility occurring along a ray pivot-
ing around the viewpoint. Because of its applications, com-
puting the view has been widely studied for various scenes.
In 3D space, the proposed algorithms are mainly for graph-
ical computation of view and are designed to fulfill special
needs. A overview of these algorithms is given in [3]. In [2]
a method for computing the view with 3D visibility com-
plex is given, which is unpractical due to its complications.

In this section, we present an algorithm for computing
the view form a viewpoint with partial visibility complex.
Unless otherwise stated, by visibility relations we mean
classical definition of them.

We assume that the viewpoint is outside the convex hull
of the objects. Consider a plane p passing throw the view-
point that do not cross any objects. We call this plane the
sweeping plane. If we rotate this plane around a line pass-
ing throw the viewpoint, their corresponding points in dual
space form a curve pv. This curve will cross with the par-
tial visibility complex of the scene at some points. Crossing
the partial complex with a face corresponds to a plane tan-
gent to an object, crossing with an edge (intersection of two
faces) mean its tangent to two objects, and finally, crossing
with a vertex (intersection of three faces) corresponding to
tri-tangent plane.

While p is rotating, the cross sections of objects with it
form a dynamic shape in it. Having the 2D visibility com-
plex of this cross sections we can compute the view around
viewpoint in the plane (remember that the viewpoint is al-

213213213

ways inside p). On the other hand, while sweeping, if the
topological structure of cross sections do not change, its
visibility complex and view will not change too. We can
conclude that to compute the view around the viewpoint,
we just have to maintain the visibility complex inside the
sweeping plane, and upon each change in it, update the view
as well.

As we said, while the sweeping do not cross any face
(similarly, edge and vertex) of partial complex, the number
of crossing objects with it remains constant and maintaining
the view while sweeping is equal to maintaining the view in
a plane with moving objects. This can be done in each visi-
bility event at O(log m), which m is the number of crossing
objects with the sweeping plane [9]

Continuing the rotation of the sweeping plane, the curve
pv will cross the partial complex in some point. If pv crosses
i faces (i = 1, 2, 3, corresponding to face, edge, and ver-
tex, respectively), it means that k objects start crossing the
sweep plane and l objects stop their crossing (k + l = i).
Starting crossing of an object means that we must put a
new object in 2D visibility complex. We can do this in
O(v log v) time where v is the view size [9]. When an ob-
jects finishes its crossing with the sweeping plane, its cor-
responding faces in 2D visibility complex must be deleted.
This deletion can be done in O(v), where v is, again, the
view size in visibility complex.

The time complexity of the described algorithm is as fol-
lows. We assume that the partial visibility complex of the
scene is computed in preprocessing time. The initial 2D vis-
ibility complex can be built in O(k + n log n) [7], where k
is O(n2).

Firstly, we consider the changes in crossing points of pv

with partial complex. The number of these events are O(n)
which we can store them in a queue with O(n log n) cost.
Each object starts and stops intersecting with the sweeping
plane exactly once, and the size of view in cross sections is
determined by the number of objects intersecting the plane
at that moment. So, the time needed to process these events
in O(n2 log n) in total.

We now analyze the time needed for maintaining the 2D
visibility complex and its view when the number of inter-
secting objects with the sweeping plane is constant. Con-
sider a segment of pv that does not cross the partial com-
plex except at its endpoints, and assume that the number
of crossing object in this part of pv is m. The visibility
complex of cross sections of objects in sweeping plane or
the view in it only changes when a bitangent (a line that is
tangent to two objects) becomes tangent to another object
(changing in the 2D visibility complex), or the tangent line
from viewpoint to an object becomes tangent to another ob-
ject (changing in the view). The number of bitangents in the
sweeping plane is O(m2) and the number of tangents from
the viewpoint is O(m). As the sweep plane rotates, the

cross section of an object makes at most O(n) bitangents
with other cross sections in the plane. As we assumed that
objects are convex and disjoint, these bitangents can cross
other objects at most O(n) times. For all objects, the num-
ber of these events is O(n2). At each such event, the topo-
logical structure of visibility complex changes and must be
updated. The cost of each update is O(log m) [9] and the
total cost will be O(n2 log n). As said, another event type is
when a tangent line from view point to a cross section of an
object becomes tangent to cross section of another object.
In this case the visibility of crossing object from viewpoint
is changed. Because in each of these events, the view will
change, the number of these events is in the order of view
size. The cost of updating the view in visibility complex in
these events is O(log m) [9].

Overall, we conclude that, if we denote the size of view
from a viewpoint q by |V (q)|, the output sensitive cost of
our proposed algorithm is O((|V (q)| + n2) log n).

8 Conclusion

In this paper, we proposed a new model for defining vis-
ibility relations in 3D. This model is a new step towards
obtaining a generalized model for visibility graphs in three
(or even higher) dimensions. One of the properties that is
checked to be satisfied in the new model is that the convex
hull of the 3D objects lie on the 3D visibility graph of the
objects, as in the 2D case. We presented an algorithm for its
construction in time O(n3 log n). We believe that 3D visi-
bility graph can be used in many 3D geometric problems.

We also defined an extension of visibility complex for
3D space, that, while reserving the definitions of visibility
in 2D, reduce the computation times and makes it appli-
cable to visibility computations. Unlike the 2D visibility
complex, the partial visibility complex is based on tangent
planes and the concept of visibility based on to them. The
size of this structure for n convex objects in 3D space is
O(n3) and can be built in O(n3 log n). We proposed an
algorithm for its construction.

The proposed structures can be used in visibility com-
putations. As an example, we showed that the view around
a viewpoint q can be computed in O((|V (q)| + n2) log n)
time.

As mentioned in section 4.1, it may be possible to
improve the running time of computing the 3D visibility
graph, and as a result, the partial visibility complex, to
O(k+n2 log n), where k is the number of visibility edges of
pseudo-graph, by using pseudo-triangulation based on the
work of [8].

214214214

References

[1] J. Canny and J. Reif. New lower bound techniques for robot
motion planning problems. In Proc. IEEE Symp. on Founda-
tions of Computer Science, 1987.

[2] D. G. Durand, F. and C. Puech. The 3d visibility complex.
In ACM Transactions on Graphicss, pages 176–206. ACM
Press, April 2002.

[3] F. Durand. 3D Visibility: Analytical Study and Applications.
PhD thesis, University of Joseph Fourier, 1997.

[4] D. T. Lee. Proximity and reachability in the plane. Technical
report, University of Illinois at Urbana-Champaign, 1978.

[5] J. S. B. Mitchell and M. Sharir. New results on shortest paths
in three dimensions. In Annual Symposium on Computational
Geometry, pages 124 – 133, 2004.

[6] R. Orti, F. Durand, S. Rivière, and C. Puech. Using the visibil-
ity complex for radiosity computation. In Applied Computa-
tional Geometry (ACM Workshop on Applied Computational
Geometry, Philadelphia), pages 177–190, May 1996.

[7] M. Pocchiola and G. Vegter. The visibility complex. In Pro-
ceedings of the Ninth Annual Symposium on Computational
Geometry), pages 328 – 337, 1993.

[8] M. Pocchiola and G. Vegter. Computing the visibility graph
via pseudo-triangulation. In Proceedings of the 11th An-
nual ACM Symposium on Computation Geometry, Vancou-
ver), pages 248 – 257, May 1995.

[9] S. Rivière. Dynamic visibility in polygonal scenes with the
visibility complex. In 13th Annual ACM Symposium on Com-
putational Geometry, 1997. http://www.

215215215

