
Weak Visibility Counting in Simple Polygons

Mojtaba Nouri Bygia, Shervin Daneshpajouha, Sharareh Alipoura, Mohammad Ghodsia,b

aComputer Engineering Department, Sharif University of Technology, Iran
bSchool of Computer Science, Institute for Research in Fundamental Sciences (IPM), Iran

Abstract

For a simple polygon P of size n, we define weak visibility counting problem (WVCP) as finding the number of visible
segments of P from a query line segment pq. We present different algorithms to compute WVCP in sub-linear time. In
our first algorithm, we spend O(n7) time to preprocess the polygon and build a data structure of size O(n6), so that we
can optimally answer WVCP in O(log n) time. Then, we reduce the preprocessing costs to O(n4+ε) time and space at
the expense of more query time of O(log5 n). We also obtain a trade-off between preprocessing and query time costs.
Finally, we propose an approximation method to reduce the preprocessing costs to O(n2) time and space and O(n1/2+ε)
query time.
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1. Introduction

Two points inside a polygon are visible to each other
if their connecting segment remains completely inside the
polygon. Visibility polygon of a point p in a simple polygon
P is the set of points in P that are visible from p.

In many problems, it is good to have a sense of the size
of visible area before computing it. The visibility counting
problem (VCP) in a polygonal domain is to find the num-
ber of objects (segments, edges, etc) that are visible from
a point p. An inefficient solution would be to compute the
visibility polygon of p and then report its size.

For a simple polygon, Bose et al. showed that by pre-
processing the polygon in O(n3 log n) time and building
a data structure of size O(n3), one can answer VCP for
a query point in O(log n) time [2]. For a set of n dis-
joint line segments, Suri and O’Rourke introduced the first
3-approximation algorithm for VCP, by representing the
visibility polygon of the segments as a set of convex (tri-
angular) regions [16]. Gudmundsson and Morin improved
this result to a 2-approximation algorithm by using an im-
proved covering scheme [11]. The same result achived by
[1] and [13]. Alipour and Zarei proved that the number of
visible end-points of the segments is a 2-approximation of
VCP [1].

There are two other approximation algorithms for VCP
by Fischer et al. [8, 9]. The first algorithm uses a data
structure of size O((m/r)2) by which the queries are an-
swered in O(log n) time, with an absolute error of r (1 ≤
r ≤ n). Here, m is the size of Visibility Graph, which is
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O(n2) [10]. The second algorithm uses a random sampling

method to build a data structure of sizeO((m2 logO(1) n)/l)

to answer any query in O(l logO(1) n) time, where 1 ≤ l ≤
n.

The visibility problem has also been considered for line
segments. A point v is said to be weakly visible from a line
segment pq if there exists a point w ∈ pq such that w and
v are visible to each other. The problem of computing the
weak visibility polygon (or WVP) of pq inside a polygon P
is to compute all points of P that are weakly visible from
pq. If P is a simple polygon, WVP(pq) can be computed
in linear time [12]. Also, Nouri Bygi and Ghodsi showed
that WVP(pq) can be computed in output sensitive query
time of O(log n+|WVP(pq)|), by building a data structure
of size O(n3) in O(n3 log n) time [14, 15].

1.1. Our Contributions

In this paper we consider the weak visibility counting
problem (WVCP) for line segments in simple polygons.
We define the weak visibility count of a line segment inside
a simple polygon as the size of the weak visibility polygon
of the line segment.

Prep. Time Size Query Time
Naive - O(n) O(n)
Exact O(n7) O(n6) O(log n)

Exact O(n4+ε) O(n4+ε) O(log5 n)
Exact O(n3+ε) O(n3) O(n1/2+ε)

Approx O(n2) O(n2) O(n1/2+ε)

Table 1: A summary of our results on WVCP. The first part shows
exact algorithms, and the second part shows the approximation re-
sult.
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Our approaches are divided into two categories: exact
counting and approximate counting. In the first part of
the paper, we present two algorithms that compute the
exact size of the weak visibility polygon in sub-linear time,
after preprocessing the polygon. In the second part, we
show how to reduce the preprocessing costs of the exact
algorithms, by approximating the counting problem. A
summary of our results is given in Table 1.

The rest of this paper is organized as follows. In Section
2, we review some definitions and structures that will be
used throughout the paper. In Section 3, we present three
algorithms for computing WVCP. We also give an approx-
imation algorithm based on random sampling in Section
4. Section 5 concludes the paper.

2. Preliminaries

Let P be a polygon with total vertices of n. Also, let
p be a point inside P. The visibility sequence of a point p
is the sequence of vertices and edges of P that are visible
from p. A visibility decomposition of P is to partition P into
a set of visibility regions, such that any point inside each
region has the same visibility sequence (see Figure 1). This
partition is induced by critical constraint edges (or critical
edges), which are the lines in the polygon, each induced
by two vertices of P, such that the visibility sequences of
the points on its two sides are different.

The visibility sequences of two neighboring visibility re-
gions which are separated by an edge, differ only in one
vertex. This fact is used to reduce the space complexity
of maintaining the visibility sequences of the regions [2].
By constructing a directed dual graph over the visibility
regions, one can maintain the difference between the visi-
bility sequences of the neighboring regions [2].

Figure 1: The visibility decomposition induced by critical con-
straints.

In a simple polygon with n vertices, the number of
critical edges and visibility regions are O(n2) and O(n3),
respectively [2].

2.1. Range Searching

Assume that there is a set P of n points in d-dimensional
space. In range searching problems, one can report or
count the points lying in a region R in this space. In this
paper, we use the results of this problem when P is a set
of points in the plane and R is a half-plane.

Chazelle et al. [4] introduced a simplex range search-
ing method that answers queries in O(n1−1/d+ε) time by
using O(n1+ε) preprocessing time and O(n) space, for any
arbitrary small positive constant ε. They also obtained a
trade-off between storage and query time. They showed
that one can build a data structure of size O(m) in time
O(m1+ε), where n ≤ m ≤ nd, so that the query can be

answered in O( n
1+ε

m1/d ) time.
In another work [5], Chazelle showed that by using

cuttings, a data structure of size O(nd+ε) can be used to
answer the queries in O(log n) time. This structure can be
constructed in O(nd+ε) time.

The results of range searchings are given as disjoint
union of some canonical subsets. One can further pre-
process these canonical subsets, so that a series of range
searchings can be answered on the original point set [7].
Using a range searching data structure in a multilevel fash-
ion does not increase the required space, and the query
time increases only by a logarithmic factor.

3. Exact Weak Visibility Counting

A naive approach to solve the weak visibility counting
problem is to compute the weak visibility polygon of the
query line segment and then, enumerate the size of the
resulted polygon. As the computation of the WVP can
cost O(n) time, this approach costs O(n) time.

In this section, we show how to preprocess a simple
polygon P such that, given a query line segment pq in the
query time, we can compute the size of WVP(pq) in sub-
linear time. Our approaches are based on the visibility
decomposition of the polygon.

First, we show that it is sufficient to consider the visi-
bility regions of the endpoints of the query line segment.

Lemma 1. Suppose that the points p and p′ are in the
visibility region R, and q and q′ are in the visibility region
R′. We have WVC(pq) = WVC(p′q′).

Proof. As p and p′ are in the same visibility region, they
see the same sequence of points and edges of P , and we
have SPT(p) = SPT(p′) (see Figure 2). Here, SPT(p) is
the shortest path tree in P rooted at p. The same argu-
ment is valid for q and q′. We know that the algorithm of
Guibas et al. [12] for computing the weak visibility poly-
gon of a segment pq in a polygon P , is based on SPT(p)
and SPT(q). Therefore, we can conclude that Guibas’s
algorithm returns the same result as the WVP(pq) and
WVP(p′q′).
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1 Introduction

Visibility of a point observer has been studied widely in
computational geometry. In visibility computations, the ob-
ject which is seen along rays is determined. As recomputing
visibility of moving
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Figure 1. A line segment observer among
convex objects.

References

[1] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. InProc. 8th ACM-SIAM Sym-
pos. Discrete Algorithms, pages 747–756, 1997.

[2] J. Bittner and P. Wonka. Visibility in computer graph-
ics. Journal of Environmental Planning, page 5, 2002.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In In Proc. 43rd IEEE Sympos. Found. Comput.
Sci, pages 617–626, 2002.

[4] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of
geometric duality. InProc. 24th Annu. IEEE Sympos.
Found. Comput. Sci., pages 217–225, 1983.

[5] S. Ghali and A. J. Stewart. Incremental update of
the visibility map as seen by a moving viewpoint in
two dimensions. InSeventh International Eurograph-
ics Workshop on Computer Animation and Simulation,
pages 1–11, Aug. 1996.

[6] S. Ghali and A. J. Stewart. Maintenance of the set of
segments visible from a moving viewpoint in two di-
mensions. InProc. 12th Annu. ACM Sympos. Comput.
Geom., pages V3–V4, 1996.

[7] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Technical

Figure 2: The weak visibility polygon of a query line segment is
recognized by the regions of its endpoints.

Having Lemma 1, we focus on the visibility regions of
the endpoints of the line segment. In the following subsec-
tions, we present two algorithms for computing the exact
value of WVCP, which differ on preprocessing and query
costs.

3.1. Optimal Query Time Algorithm

Consider the visibility decomposition of polygon P. We
say that two visibility regions Si and Sj are visible to each
other if there is a point si ∈ Si and a point sj ∈ Sj such
that si and sj are visible. We can determine if two visibil-
ity regions are visible to each other and, if so, find a pair
of (si, sj) in O(n) time.

As the weak visibility polygon can be identified by the
visibility regions of the query line segment endpoints, the
idea is to compute WVP(sisj) for each pair of regions
(Si, Sj) in O(n) time and store its size. We also build
a point location data structure for the visibility decompo-
sition to find the corresponding regions of the query line
segment.

As there are O(n6) pairs of regions, we need O(n7) time
and O(n6) space to consider all the possible pairs. In the
query time and upon receiving the query line segment pq,
we find the regions of p and q and report the corresponding
weak visibility size in O(log n) time.

Theorem 2. Using O(n7) time to preprocess a simple poly-
gon P and memory size of O(n6), it is possible to report
the size of WVP for a query line segment in O(log n) time.

3.2. Reducing Preprocessing Costs

Although Theorem 2 finds the output efficiently, its
high preprocessing costs motivates us to find more efficient
algorithms. In this section, we show how to use multi-
level range searching to reduce the preprocessing costs, in
expense of more query time.

To compute the weak visibility count of a query line
segment pq, we start from the endpoint p and compute

the initial visibility count of the viewpoint. Then, we move
toward q, and maintain the visibility count as we proceed.
When we arrive at q, we can report the maintained count
as weak visibility count of pq.

The first issue is to compute the initial visibility count
of the viewpoint at p. To do this, we use the following
lemma:

Lemma 3. [2] A simple polygon P can be preprocessed
in O(n3 log n) time and O(n3) space such that, given an
arbitrary query point inside the polygon, it takes O(log n)
time to give the number of visible vertices.

As we move from p toward q, we may cross some of the
critical constraints of the polygon. Crossing each critical
constraint corresponds to a gain of visibility in one direc-
tion, and a loss in the opposite direction. We label the two
sides of a critical constraint as + or −, according to this
gain or loss (see Figure 3). If we cross a critical constraint
from its + side, we call it a pos-cross, otherwise it is a
neg-cross. As loosing a visibility does not affect our de-
sired visibility count, we only need to consider pos-crosses.
More precisely, each pos-cross corresponds to an additive
value in the visibility count of pq.
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Figure 3: We can solve WVCP by adding the visibility count of p to
the number of pos-crosses from p to q.

Lemma 4. [2] Given a line segment ab in P, if a point z
sees a and b, then z sees every point on the line segment
ab.

Lemma 5. Assume that the line segment pq can see a
vertex v of the polygon. Let X = {x ∈ pq|x can see v},
then, X is a sub-segment ab of pq, and a is either p or an
intersection of pq at a pos-cross (in −→pq direction), and b
is either q or an intersection of pq at a neg-cross (in −→pq
direction).

Proof. This can be proved by using Lemma 4, and the
fact that each critical constraint corresponds to a unique
visibility change in its crossing sides.
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According to Lemma 5, to compute the visibility count
of a segment pq, we can add the initial visibility count of
p to the number of pos-crosses in the path from p to q.
We can compute the visibility count of the initial point p,
using Lemma 3. Therefore, we have to count the number
of critical constraints that intersect with pq and have p on
their + sides. To solve this problem, we combine a series
of half-plane range searching.

Assume that each critical constraint s is defined by its
two endpoint sright and sleft, and l is the supporting line
of the query line segment pq. First, we find those critical
constraints that intersect with l. To do this, we use half-
plane range searching to find those segments whose left
endpoint lies above l. In the result set, we should select
those segments whose right endpoint lies below l. This can
be done by running the half-plane range searching on the
results of the first range searching. In the third level, we
filter the result set by those segments that have p on their
+ sides.

Next, we select those segments of the result set which
supporting lines intersect with pq. This can be mapped
to two additional range searchings in dual space. Remem-
ber that in dual space, the supporting lines of the critical
constraints will map to points, and pq will map to a dou-
ble wedge (see Figure 4). Therefore, we must answer two
range searchings in the dual space. More precisely, we find
those dual points that lie between the dual lines of p and
q.

Visibility of a Moving Segment Observer

Mojtaba Nouri Bygi1 2, Mohammad Ghodsi1 2

1 Department of Computer Engineering, Sharif University of Technology

P.O. Box 11365-9517, Tehran, Iran

2 IPM School of Computer Science

P.O. Box 19395-5746, Tehran, Iran

nouribaygi@ce.sharif.edu, ghodsi@sharif.edu

Abstract

In this paper we study combinatorial segment visibility, and show how to compute and maintain it as the observer moves
in the plane. There aren non-overlapping convex objects in the plane, and we have a segment observer among them. We
first consider static case of the problem, in which the observer and objects are static, and then we study dynamic case of the
problem, in which the observer can move among obstacles.
keywords: segment visibility, discontinuity lines, visibility complex, duality, dynamic convex hull.

1 Introduction

Visibility of a point observer has been studied widely in
computational geometry. In visibility computations, the ob-
ject which is seen along rays is determined. As recomputing
visibility of moving

p

q

p′

q′

Figure 1. A line segment observer among
convex objects.

p′

q′

Figure 2. A line segment observer among
convex objects.

References

[1] J. Basch, L. J. Guibas, and J. Hershberger. Data struc-
tures for mobile data. InProc. 8th ACM-SIAM Sym-
pos. Discrete Algorithms, pages 747–756, 1997.

[2] J. Bittner and P. Wonka. Visibility in computer graph-
ics. Journal of Environmental Planning, page 5, 2002.

[3] G. S. Brodal and R. Jacob. Dynamic planar convex
hull. In In Proc. 43rd IEEE Sympos. Found. Comput.

Figure 4: In dual space, the lines that intersects pq are mapped to
points inside the double wedge p′q′. These points are those below p′

and above q′, or above p′ and below q′.

Notice that we must repeat the same procedure for
those critical constraints whose right endpoint lies above l
and left endpoint lies below l.

As discussed in Section 2.1, this 5-level searching can be
solved in O(log5 k) time, using O(k2+ε) preprocessing time
and space, where k is the number of critical constraints.
As the number of critical constraints in a simple polygon of
size n isO(n2), the preprocessing time and space needed by
the multi-level range searching are O(n4+ε). We also need
to use the algorithm of Lemma 3 to compute the visibility
count of p. The preprocessing time and space needed by
this algorithm are O(n3 log n) and O(n3), respectively.

In the query time, we need O(log n) time to retrieve the

visibility count of p, and O(log5 n) time to compute the
number of pos-crossings of pq with the critical constraints.
In general we have:

Theorem 6. Using O(n4+ε) time and space to preprocess
a simple polygon P, it is possible to report the size of WVP
for a query line segment in O(log5 n) time.

3.3. Trade-off between Preprocessing and Query Time Costs

Using the trade-off in range searching data structures
[4] (see Section 2.1), we can obtain a trade-off between
preprocessing costs and query time in our problem. If there
are k points in the plane, one can spend storage of size
O(m), where k ≤ m ≤ k2, to build a range searching data

structure, such that the query can be answered in O(k
1+ε
√
m

)

time. Also, performing a multi-level range searching can
be done with the same bounds [4].

In our scenario, k is the number of critical constraints
and is O(n2). We also need to use Lemma 3. Therefore,
we have the following result:

Theorem 7. Using O(n3 log n+m1+ε) time and O(n3 +
m) space to preprocess a simple polygon P, it is possible to

report the size of WVP for a query line segment in O(n
2+ε
√
m

)

time, where n2 ≤ m ≤ n4.

As a result, the minimum preprocessing costs achieve
when we select m = n3. In this case, the preprocessing
time and space are O(n3+ε) and O(n3), respectively, and
the query time is O(n1/2+ε).

4. Approximation of Weak Visibility Counting

Although the query time of the algorithms presented
in Section 3 satisfy our requirements, preprocessing costs
of these algorithms are hight. Therefore, in this section,
we seek for approximate solutions.

For computing the approximate value of WVCP, we
need to be sure that the weak visibility polygon is large
enough, so that the random sampling approach is actually
working. For this, we need to compute WVP in an output
sensitive way such that, as soon as we find out that it is
large enough, we stop the algorithm.

Lemma 8. [6] A simple polygon P can be preprocessed in
O(n) time and space such that, given an arbitrary query
line segment inside the polygon, WVP(pq) can be computed
in O(k log n) time, where k is the size of the output that is
to be reported.

Using this lemma, we can check whether the size of
WVP(pq) is larger than n1/2+ε in O(

√
n log n) time. This

result will be used in Section 4.2, when we take a sample
set of size n1/2+ε from the edges of the polygon.
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4.1. Weak Visibility Testing

To approximate the value of WVCP, we also need to
quickly check whether the query line segment pq can see
an arbitrary edge of the polygon. The following theorem
shows how to do this.

Lemma 9. A simple polygon P can be processed in time
O(n2) into a data structure of size O(n2) so that, for any
query line segment pq, and an arbitrary edge e of P , we
can detect whether pq and e are weakly visible in O(log n)
time.

Proof. Consider WVP(e), the weak visibility polygon of
an edge e in P , i.e., the points of P that are weakly visi-
ble from e. This polygon has size O(n) and can be com-
puted in time O(n). In the preprocessing time, we com-
pute WVP(e) for all the edges of the polygon. For each of
these weak visibility polygons, we construct the ray shoot-
ing data structure [3] in O(n) time and space, so that we
can answer the ray shooting queries in O(log n) times. In
query time, we perform two ray shooting queries from p
and q to find out whether pq intersects with WVP(e).

Computing WVP(e) for all the edges of P and prepar-
ing a ray shooting data structure for each one of them can
be done in O(n2) time and space. Also, the query time
needed by the algorithm is O(log n).

4.2. Random Sampling

Using the algorithm of Section 4.1, we propose an algo-
rithm to approximate the answer of WVCP. Our approach
consists of two phases. In the first phase, we run the algo-
rithm of Lemma 8 until we find O(

√
n) edges of the WVP.

If the algorithm is finished, we have the exact value of mp

where mp is the answer of WVCP. Otherwise, k > O(
√
n)

and we choose a random subset Ri ⊂ S, such that each
segment is chosen with the probability of 1/

√
n. Next, for

each segment s ∈ R1, we check whether it is weakly visible
from pq or not, using the algorithm of Section 4.1.

We choose t random subsets like R1. Let Xi be the
number of visible segments from pq in Ri. We report m′p =∑t

i=1

√
nXi

t as the approximated value of mp.

Lemma 10. (Chebyshev’s Lemma) Let X1, X2, . . . , Xt be
any random variable with E(Xi) = µ, and let ε > 0 be any
positive real number. Then

P ((|X1 +X2 + . . .+Xt

t
− µ|) > ε) ≤ V ar(X)

tε2

Using lemma 10, we have

Lemma 11. With a probability close to 1 we have

(1− δ)mp ≤
√
n
X1 +X2 + . . .+Xt

t
≤ (1 + δ)mp

Proof. In Lemma 10, we choose ε = δmp, where δ is a
constant number which can be made arbitrarily small in
the preprocessing time, and t = 1/δ. We have E(

√
nXi) =

mp, and V ar(
√
nXi) = nmp(1− 1√

n
) 1√

n
. Therefore,

P = P (|
√
n
X1 +X2 + . . .+Xt

t
−mp| > δmp) ≤

√
nmp

δ2m2
p

Since mp > O(n1/2+ε), then P ∼ 0. This means that
with the probability of at least 1− P, we have

(1− δ)mp ≤ m′p ≤ (1 + δ)mp

Theorem 12. WVCP can be approximated in O(1/δn1/2+ε)
time, using O(n2) preprocessing time and space. The al-
gorithm returns a value m′p such that, if mp >

√
n, with a

high probability, (1−δ)mp ≤ m′p ≤ (1+δ)mp. If mp ≤
√
n,

the algorithm returns the exact value of WVCP.

Proof. In the first phase of the algorithm we use the
Lemma 8, which needs preprocessing time and space of
O(n) and query time of O(n1/2+ε). In the second phase,
according to the Lemma 9, by using O(n2) preprocess-
ing time and building a data structure of size O(n2), we
can check whether pq and a random selected segment are
weakly visible or not in O(log n) time. Since for each Ri
we choose O(

√
n) random segments, and t = 1/δ is a con-

stant value, the query time is O(1/δn1/2+ε + log n
√
n) =

O(1/δn1/2+ε) Therefore, the query time for both phases
is O(n1/2+ε) and the preprocessing time and space are
O(n2+ε).

5. Conclusion

In this paper, we studied the problem of computing the
size of weak visibility polygon in simple polygons. We ob-
tain two different exact solutions that solve the problem in
sub-linear time. We also obtained a trade-off between pre-
processing costs and query time costs, which can be used
to reduce the preprocessing cost even more. Finally, we
showed how to reduce the preprocessing time even more,
by approximately computing the desired value via random
sampling.

One can investigate WVCP in polygonal domains. In
this case, WVP have O(n4) complexity [16]. Therefore,
extending our results for polygonal domains would be chal-
lenging.
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