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Abstract

We consider a market in which two competing sellers offer sivoilar products on a social network. In this market, eactnag
chooses iteratively between the products based on herbwigheactions and prices. This introduces two games; otecba
the agents and one between the sellers. We show the first gaanfelli potential game and provide an algorithm to compute it
convergence point. We also study various properties oféhersd game such as its equilibrium points and convergence.
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1. Introduction To make the setting more realistic, we consider a repeated
game in which agents repeatedly revise their decisions. For
How can a seller make profit out of a social network? Oneis we consider the noisy best-response, logit-respahse
reasonable policy for monetizing social networks is to agre namics for the evolution of the market. In this setting, dgee-
the product in a population through the network of individua yjise their strategies asynchronously. Each agent plageits
interactions. Because of the rapid growth and popularigmef  response strategy with some probability closd tdence, al-
line social networks, the topic has attracted interest ajmen lowing a slight probability of making mistakes. This may hap
searchers seeking clever policies. For example, seveparpa pen in reality when agents’ information about the environtme
have studied agents’ behaviors in social markets [1, 2, B)B,  are incomplete, when they may make mistakes in their compu-
In this paper, we study a new model for the market; tWotations, or when agents are not fully rational. The noisytbes
competing companies sell two comparable products with netresponse dynamics have been suggested as a method for refin-
works externalities. Like the classic approach, the sauéd ing Nash equilibrium in games [6, 9, 4, 5, 10].
work is modelled by a graph whose edges represent the inter- oyr results. We consider two separate games in our
action between people. The main difference, however, s thanodel. The first one is between agents (buyers) who choose
the nodes of the graph represent communities in the sociefetween the two products and the second one is between the
rather than individuals. Each community consists of a eenti 4,0 companies that announce their prices and sell their-prod
uum of potential small agents which interact anonymously. S cts. For the first game, we show that with the logit-response
the market is modeled based on population games [12]. Thigynamics, the market always converges to an equilibriumtpoi
work studies various related questions such as the behakior \we show, in Section 3, that the game will bdudl potential
buyers, the strategies of two sellers, price changes, and.so gameand its equilibrium point is the global maximum of some
In our model, the two companies (sellers) announce theipgtential function. We also prove that agents within the sam
prices first and then, agents within communities choose 'Whiccommunity buy the same product in the equilibrium. Using thi
company to buy from. An agent's utility depends basically ongpservation, we propose a polynomial-time algorithm faneo
the fraction of neighbors that are buying the same product aSuting the unique equilibrium.
that agent and prices. In our model, agents behave coopera- ag for the game between the two companies, we study the
tively in a sense that they tend to buy the same product as mogghavior of the two companies and obtain several results. We
of their friends do. Our aim is to study the behavior of bOthShOW, in Section 4, that the game has either no pure Nash equi-
agents (as consumers) and two competing companies in thigyjum or has a unique one. Then, we consider the best-respo
game. dynamics between companies and present a polynomial-time
algorithm for computing the best response strategy for dine-c
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fully aware of others. Evolutionary dynamics, on the other A| B
hand, are introduced for relaxing these assumptions. Slever Ala|c
works (e.g., [6, 9, 4, 5, 10]) have extensively studied thigse B|d|b

namics and pointed out that introducing perturbations terde
ministic processes would create distinctive differencebe-
havior of dynamics. In a seminal work, Kandori et al. [9] in-
vestigate evolutionary noisy best-response dynamics emap
that the dynamics convergesto an equilibriumin which alireg Y. Note thatX andY may have non-empty intersection. We
adopt the same strategy. will also used (X)) for §(X, X) for simplicity.

Ellison [5] studied the effect of the underlying graph struc Assume there are two products and B offered by two
ture on the game; he specifically discussed convergence timm®mpeting companies with priceg andp g, respectively. Each
for certain graph classes. Following this work, Montanari e agent chooses eithet or B; so, its strategy space is the set
al. [10] studied the logit-response dynamics and made a gerf = {A, B}. Letz?, wheres € S, be the fraction of peo-
eral and precise connection between the convergence tiche aple in the community that buy producs. Thus,z% + 2% =
the structure of the graph. Our model is inspired by thes&svor m® andz = () is a vector of2 x n elements representing
with one major difference. Unlike the previous models inethi the strategy profile of the game. We defimg(z) = >, «*
each vertex in these models represents a single agenteserti to be the mass of population who use prodsice S. Let
in our model correspond to communities. This means that wd®: (z) = ZjEN(i) xJ be the mass of neighbors of community
are not dealing with individuals, rather considering thiedbgor ¢ that use product, for s € S. Also, for everys € S, define
of a large groups each containing several individuals. Ds(z) = > ey i Di(z). The utility of every person is ob-

The problem of designing a pricing strategy for a companytained by aggregating its utility against every single dgeat
on a social network is extensively studied in literatureg(Se he interacts with. LeU (illustrated in Table 1) be the payoff
e.g., [8, 1, 2, 3]). All these works consider a monopolistic s matrix for two players. Then, the utility of a person in commu
uation in which one single company sells its product andstrie nity 7 that playss in a game with strategy profile would be:
to maximize its profit by employing a clever strategy. Hastli
et al. [8] and Akhlaghpour et al. [2] assume naive behavior fo Fi(z) = U(s, A)DY(z) + U(s, B)Dy(x) —ps (1)
consumers. In fact, they study the market with consumers who We assume in our model th&f is symmetric, i.e.c = d

act myopically and buy the product as soon as they can afford t, 4 {he game defined by matfiX is a coordination game, i.e.

buy_ it. They dont make_any reasoning_about future ree_lcti‘on Othe players obtain a higher payoff by adopting same strategy
their neighbors and their long-term utility. In order to saer |, oiher words. we have ~ dandb > ¢ Without loss of
more intelligent agents, Ahamdipour et al. [1] and Bi.mpidxis enerality and throughout the paper, det> b. Also, for the
al. [3] model the market as a game. In these studies, agen?@st of this paper, we assume that d — 0; we will prove, in

are assumed to be fully rational and do not make mistakes. Hpaorem 1, that this assumption does not hurt the genecdlity
seems that the correct model of agents’ behavior probadgy li - rasyits

somewhere between these two extremes of myopic agents and Our game is in category gfopulation gamesvhich pro-
fully rational agents.

Table 1: The payoff matritU

vide a general framework for studying the strategic inteoas

in which society consists of several populations. The behav

2. Model of agents in each population are the same. In these games, the

number of agents is large, impact of each individual agent is

In our model, we study a society that consists of severaémall, and agents interact anonymously, i.e., each ageay's

large mutually influencingommunities Letn be the number  off depends solely on the distribution of opponents’ chsice

of communities andn' be the mass of people in thi€ com-  Consider a classic finite game wiffi players with mass of-

munity. For a subsel’ of communities, lein” = >, ., m’  for each agent, we model a game with continuum of potential

be the mass of people iii. Letm = ) .m' be the total small agents by a finite game whé&h — oco. For more details

mass of the society. We normalize the total mass and assung@ population games see [12].

m = 1 through the paper. This assumption does not hurt our

result. We model the interaction between different communi2.1. Market Dynamics

ties by an undirected grapii = (V, £’) whose nodes corre- As mentioned before, two competing companies are offer-

spond to communities and an edfgj} represents an inter- ing productsA and B with pricesp4 andpp respectively. In

action between communitieésand j. We call this graph the a normal situation, agents update their strategies by igpéat

market graph We also allow loops, i.e. eddg, i}, in G toem-  their neighbors and buy a product that maximizes their bene-

phasize that agents in a same community influence each othes In our model, we consideroisy best-response dynamios

as well. LetN (i) be the set of neighbors of communityn-  which agents adopt their best response with probabilityecto

cluding itself. For two subset¥ andY” of communities we de-  one. Therefore, there is a slight possibility of making aists

fine 6(X,Y) = > ,cx Xjev.i.jer m'm’ Which represents by agents. More specifically, we stuthgit-response dynam-

the amount of interaction between the communitieimand ics. For specific treatment of these dynamics in the context of

evolutionary game theory, one can refer to [12].



PB i. e.,bra(ps) = argmax,Ua(p,pp). Similarly, brg(pa) =
argmaz,Up(pa,p). In theMarket Pricing Gamewe study

the game between the two companies and its properties such as
its best response behavior and existence of equilibria. [8¢e a
consider the convergence of the best response dynamics of th
game.

3. Market Behavior

pa
In this section, we analyze the behavior of communities
_ when the two companies set pricesptg andpg. This will
Figure 1: A game with four region®f,, Ry, Ry, andR ', where0 < j < |ater help us study the market pricing game. First, we shaiv th
k< m. . . . .
our game is dull potential gameas defined in [11], and has
various nice properties. So, the maximizer of potentiatfiom
In our model, the logit-response dynamics is specified by avill characterize the market stationary state witen> co. We
paramete3 ¢ Rt representing how noisy the system is. Inthen use this property to find the market stationary state. We
fact, 3 = oo represents the noise-free or best-response dynanshow that the stationary state is very simple whan< pg.
ics, andg = 0 represents the full noisy dynamics in which In this case, in the stationary state all agents playingesiya
agents play with no preference. We assume that each agentih But the problem is not trivial wheps > pp. In this case,
a community revises its strategy by arrival of Poisson clotk we design a polynomial time algorithm that characterizes th
rate 1. We consider logit-response as revision protocqltt®o  stationary state of the market.
probability that an agent in communityakes actiors is:
3.1. Full Potential Games
) Our main result of this section is that our game is a full
S ege @ potential game. We use the following definition from [11].rFo
more details and useful intuitions, refer to the main agticl

PFi (@)
Pip(slz) =

As we see later, this game i@l potential gamewith some

potential functionf. We have shown that when agents use theDefinition 1. Let ' : R} — R™ represent a population game.

logit-response protocol, and wheh — oo the market con- We call F' a full potential game if there exist a continuously

verges to the global maximum ¢f In other words, the dynam- differentiable functiory : R — R satisfying

ics spends most of its time on the global maximumfofWe

name this point thetationary statef the market. Vf(z) = F(z), Vo € R} ®)
We now prove that when agents use logit-response as revi-

sion protocol, then assuming= d = 0 does not make any

difference in our results.

In potential games we can capture all information about
agents incentives in a scalar valued function, cafletential
function Existence of such function provides us with many
Theorem 1. Supposas < min(a,b,c,d). Agents’ decisions Nice properties and enables us to derive various resultstabo
in game defined on matri is equivalent to agents’ decisions Our model. In our model, the functiafi takes a vector: of 2n
in game with matrixU — w, in whichU — w is computed by Vvalues ’s) and output the utilities, i.e., the vector bf's. We
subtractingw from all the entries olJ. prove that our game is full potential by simply finding Athat
satisfies equation (3).

Givenp4 andpg, we represent the stationary state of the
market byz(pa,pp) meaning that the game will eventually Theorem 2. The functionf defined below is the potential func-
converge to the strategy profilp, ps). We will later see tion for the game defined on grapltZ = (V, E) with payoff
thatxz(pa, ps) depends solely on the differencemf andpg; matrix U:
i. e, ifpa—pp = ply — P thenz(pa,pp) = z(ply, Pp). 1
We say that profilép, pp) falls in the regionRY, = Ry Y, f(a) = 5 (aDa(z) + bDp(2)) — pama(z) — ppms(z) (4)
if ma(x(pa,pp)) =y andmp((pa,pp)) = m —y; i.e., the
massy of the society is using technology at the stationary 3.2. Market Stationary State

statez(pa, pp). Itis easy to see thatincreasipg decreases In this section, we study the stationary state of the market.
(as depicted in Fig. 1) and sinee> b, 2(0,0) € Ry First, we provide a lemma that relates the global maximum of

potential function to the stationary state of the markeeive
2.2. Market Pricing Game characterize the global maximum of potential functjofor the

Our model introduces a game/competition between the twease thap4 < pp. Finally, we will study the casps > pp
companiesA and B. If z(pa,pp) € RY = R% Y thenthe which is more complicated.

utility (profit) of companiesA and B areU4(pa,pB) = ypa As stated before, we consider logit-response dynamics. In
andUg(pa,ps) = (m—1y)ps, respectively. The best response this case, our game has a nice property described in thevollo
for the companw is the pricep which maximized/4(p, ps); ing lemma. In fact, for the case of a continuum of agents ilneac



population this lemma needs an elaborate explanation viich DB
done in Appendix A.

Lemma 3. In our model, wher$ — oo, the stationary state of
the market is the global maximum of potential function.

So, in order to estimate the outcome of the game we only need
to characterize the global maximum ¢f First, we show in
Proposition 4 that the stationary state is the state of ahtg

playing strategy4, whenp, < pp. iy QO (Ot

bA

Proposition 4. The logit-response dynamics will converge to
the state of all agents playing strategy if p4 < pp andg —
0.

Figure 2: The action of compamy (B) has been shown by green(red) line.

Computing the stationary state is more cc_)mplicated V\{heqvho buyA andSz = V —S4 be those who bugg. The utilities
pa > pp. In order to solve the problem in this case, we first o the two communities argam S+ andpmSe, respectively.

show in Lemma 5 that in the long run each community will | homogeneous state of the market, we can wfies fol-
be homogeneoys.e. all people within same community buy |ows.

same product. This fact helps us to predict the stationaitg st 1

of the market in polynomial time in Theorem 6. The idea is f(x) = =(ad(Sa)+b3(Sp)) — pam®* — ppm"?
to build a weighted graph whose minimum cut characterizes 2

the stationary state. The proof is omitted here and appears i = fi-f-C
Section 5.1. wherefs = 3(ad(Sa) +b3(Sp)), fo = (pa — pp)m>* and

C = ppm. SinceC is a constant independent 6f;, maxi-
mizing f is equivalent to maximizings — f,. Note thatfs is
independent op 4 andpp, and solely depends on the structure

Theorem 6. We can predict the stationary state of the market©f the graph. Letfy = max,,s._, f5. Assumef; = 0, if

in polynomial time in the logit-response dynamics, whiers  there is no sef 4 with m®4 = y. Therefore, whem 4 andp;
0. is fixed, maximizingf is equivalent to finding that maximizes

f{ —ya,inwhicha =pa — p5.
Let(pa, pp) be a strategy profile of the pricing game. When
a = 0 then by Proposition 4 all communities adagtand,

In this section we consider the game between two compefl€NC&54 = m. As a increases, less communities by Let
ing companies. First, We show that the game has either no pufé:: b€ the first point that when = o, then the mass of com-
Nash equilibrium or has a unique one in whigh = 0 in Sec- munities buy_A changes to some new valug. Let the s_et of
tion 4.1. Then, we consider the best-response dynamicgin Sethreshold pointbea,,, < ay, <--- < an,. For convenience
tion 4.2. We show that each player's best response could b€ @dda,, = 0. Itis clear thain = ng > 7y > -+ > ny = 0.
computed in reasonable amount of time. In fact, we introduce S0 Whepa —pg € [an;, a'ru+1)_thenmsf4 = n; and the util-
polynomial time algorithm in number of communities in which 1t of companyAis n;p. See Fig. 2 for illustration. Now, we
each company, knowing its opponent’s price, can compute th@"® ready to prove Theorem 7.

most profitable response. We also prove that if the game h"_"ﬁweorem 7. The market pricing game has a unique Nash equi-
a pure Nash equilibrium then the best-response dynami€s wikp i - is bra(0) < a,,. Otherwise, it has no Nash equilib-
converge to it. At last in Section 4.3, we try to show that ia th fiu ! '

real world, the market pricing game have a unique Nash equi-

librium and the best-response dynamics will convergetoit.  Proof. Let (p4, ps) be a Nash equilibrium and = p4 — p3s.
It is worth mentioning that, in this setting, we can model First, we proveifip4, ps) be a Nash equilibrium then, is less

monopolistic markets by just settirbgand the price of product thana,, .

B to zero. So itis just one company in the market who should  If a,,, < & < a,,,, for somej > 1 then B increases his

Lemma 5. Inthe logit-response dynamics each community will
be homogeneous in the long run, whgn- oo.

4. Market Pricing Game

decide the best price for its product. price untila = «,,, (See Fig. 2). This increaséss payoff as
o it will not affect the communities that bui. If a = a,; for
4.1. Pure Nash Equilibrium somel < j < n; thenA increases his price until it is slightly

In this section, we study equilibrium aspects of our pricingless tham,, ;. ,. This increasesl’s payoff as it will not affect
game. Given the results of previous sections, the game batwethe communities that buyl. If « = «,,, , i.e. no one buysi,
the companies could be simplified as follows. Two companieshenA can decrease his price until at least one community buys
announce two prices4 andpp. The maximum off is com- A and brings more utility tod. So, we must have < a.,, .
puted. As stated in Lemma 5, every community would be ho- Considera < a,,. In this situation, company is in-
mogeneous in the long run. L&Y be the set of communities terested to increase his price until it is slightly less than.

4



Let this value bey,, . This increasesl’s payoff as it will not  at each state he moves to the right most boundary of the re-

change the amount of population that bdy We argue that gion R’} which the profit of companys is 0. So companys

pp = 0 as if not B can decrease its price tband the newy decreases his price and moves out of redidh. They will de-

would be at leastv,, which means some communities by ~ crease prices iteratively, until the price of compdhpecomes

andB gets more utility. So, the only possible Nash equilibrium0. Note thatbr(0) = o, , and companyd changes the pro-

is (a,,,,0). At this point, B is obviously playing best response file to («;, ,0). We have proved in Theorem 7 that this point

as he does not get any utility no matter how he plays. Howevers a pure Nash equilibrium point and no one like to change his

A necessarily is not playing best response as he may gain mosérategy at the equilibrium point.

profit by increasing his price. So, we conclude the theorem.
Note that if the strategy domain of companies is continuou

then there is not any Nash equilibrium as compahyants _ ' o )

to makea as close ton,, as possible which gives no Nash In this sect_lon we show that pure Nash equmbrlun_w exists

equilibrium. But, if we discrete the strategy domain thee th for some special graphs such as regular and preferenaahait

only possible is the largest value (in the discrete domain) lessMent graphs. We first obtain the following sufficient corufiti
thana for having a Nash equilibrium and then prove it for the above
mny -

class of graphs. Recall thff = max,,s,_, fs-

2.3. Market equilibrium on special graphs

4.2. Best-response Dynamics Lemma 10. If mfy < yfi* + (m —y)f for everyy < m,
In this section, we explore the best-response dynamics dpentra(0) = a; andthe market has a unique equilibrium

market pricing game. An interesting and important question  \e conclude this section by showing that several real world
that we can resolve is computing the best response strategy gyarket graphs satisfy the condition of Lemma 10 and have pure
companies in the market pricing game. Given the price of comyash equilibrium. For the theorem below we considieiform
panyB, pp, what pricep, should the companyl set so asto  mgarkets in which we assume the that all populations masses
benefit most? We propose an polynomial time algorithm to anyye similar i.e. we have a uniform distribution of agents agio
swer this question in Theorem 8. The proof of Theorem 8 Wi"populations. In fact, we assume there areommunities in the
appear in Section 5.2. market withm; = 1. So the total mass of societyis = n.

Then, we study the convergence of best-response dynamicghis game is important when we want to focus on the structure
We show in Theorem 9 that under some conditions the beskf the market graph.

response dynamics converges to an equilibrium. Note tleat th

condition of Theorem 7 and 9 are the same which results alfheorem 11. For the uniform markets, if market graph is a
interesting property of the game. In fact, we show that if theregular or preferential attachment then it has a Nash edpili
game has an equilibrium, then it is unique and the best regponrium.

dynamics will converge to it.

Theorem 8. In the market pricing game each company, know-2- Algorithmic Aspects
ing its opponent product price, can determine the best grice

A . In this section we propose polynomial time algorithms for
polynomial time in number of communities. brop POly g

two problems. First, we consider the problem of computing

Theorem 9. The best-response dynamics converge to the unquée stationary state. The main r_esu_lt is the p_roof of Thecﬁem

Nash equilibrium if and only i 4(0) < ay, . Second, we propose a pon_nonjlaI time algorlthr_n_for computin
best response for companies in the market pricing game. The

Proof. First, we have shown in Theorem 7 thabif,(0) >  Main resultis the proof of Theorem 8.

oy, the game has no Nash equilibrium. So, we consider the . )

casebr4(0) < an, . 5.1. Computing the Stationary State

Let bra(0) = a;, < ay,. First, we provebra(pp) = Let po andpp be fixed. As we know from Lemma 3, the

a, + pp. Assumebrs(pp) = p # o, + pp. Letthe market converges to the maximum of the potential funciion

profile (p,ps) € RY. i.e. the population of agents who buy Note that, we have shown in Proposition 4 that in the statipna

from companyA is exactlyy at the profile(p, pp). Note that  state, all agents will play strategy, whenps < pp. So, we

points (o, ,0) and (o, + pp,pp) are in the same region. focus on the casps > pp and propose a polynomial-time

And (o,,,0) € R}. So the(o,,, + pp,pB) € RY. Note algorithm to compute such a maximum. Our solution is based

bra(pa) = p. Thereforem(a,,, + pp) < yp. On the other on an algorithm for thélaximum Weighted Set Problefhis

hand, pointsp, pp) and(p — pp,0) are in the same region. So problem has been defined below.

(p — pB,0) € RY. We knowbr4(0) = «,, . It means that the

pricea,,, is better that the price—pp in this case. Sena,,, >

y(p — pp), which contracts the faet(7,, + pg) < yp.

We have shown thdt-4 (pg) = a;,, + pp. In other words,
the best response of compadyis to get all the market. So

Definition 2. Maximum Weighted Set Problem (MWSP):we
are given a directed graplx = (V, E) with (possibly nega-
tive) weights/; on vertices, and non-negative weightg; on
edges. The aim is to find a subsetC V to maximizelVs =

Yies Li + 26, )er wij.
i,jES



Lemma 12. The MWSP can be solved in polynomial time.

Proof. The idea is to build a weighted graph whose minimum

cut is the solution to the MWSP. For every noddet h; =
Ii+zj€N(i) w;;. We build a graplé’ out of G as follows. Add
two new nodes andt. For every: with h; < 0 add an edge
with weight —h; from i to t. For every vertex with h; > 0
add an edge from to i of weight h;. The value of the out-
cut from any sefS which containss is: 97(S) = > p, >0 hi +

€T
Zh-7’<so —hi+3" (i.j)er wij, wherel' = V(G') - S. LetW =
1€

i€S,jeT
S his0hi = Yns0hi + Yon, 50 hi. We rewriteW — 97 (S)
as: i€S €T
W—07(S) = > hi+ > hi— Y wy
h;>0 h; <0 (1,7)€EE
€S €S i€S,j€T
= The Y ow
€S (i,5)EE
i€S,jET
= Tl 3w 3w
icS JEN (4) (i,7)€E
i€S,jET
- i Y ow
€S (i,5)€E
i,j€ES

SincelV is a constant independent8fwe conclude that max-

imizing > .. g Ii + 3 (i,j)er wij is equivalent to minimizing
i€S,jeT

0% (S) which could be done in polynomial time.

mize the following statement:

% ((a — b)5(Sa) — b8(Sa,V — Sa)
—b8(V — S4,54)) + (pB — pa)m (6)

We show that the above value is the solution to the MWSP
on some graph&yy that is constructed fror@ as follows. The
vertex set of7yy is that of G. The weightZ; of every vertex is
(pB —pa)ym' —bm’ 32,y m’ andw;, for every edgéi, )
is 1(a + bym'm7. For every sef C V we have:

Ws = > | (s —pa)m' —bm' Y  m’
icS JEN(D)
1 S
o 2 (gerom)
(i,5)€EE
i,jES

= (pp —pa)ym® —b3(S,V) + %(a +0)5(5)
_ %((a —B)3(S) — b5(S,V — )
— bV =S, 9))+ (pB — pa)ym®

It is clear that finding a maximum weighted setGhy is
equivalent to finding a set4 that maximizes (6) and, hence,
maximizes the potential functiof. ]

5.2. Best-response Pricing
In this section, we propose an algorithm for finding the best-

Lemma 5 helps us to find a connection between MWSP andesponse pricing of companies in the market pricing game. Le

computing the stationary state. Using this lemma and the aMs fix pp. We first obtain lower and upper bounds for the best
gorithm for MWSP we can compute the stationary state of theesponse ofA and then compute it by using binary search. We
market and prove Theorem 6. know from Proposition 4 that ip4 < pp then all populations

Proof of Theorem 6: We know from Lemma 5 that each will play A. So the minimum op, is obviouslyps. Also
the maximum ofp,4 is the point where no one play. The

population is homogeneous, so it is suffices to find each POPY | wina lemma characterizes this point
lation’s strategy. We reduce this problem to the MWSP as fol- 9 point.

lows. As proven before, the dynamics of the game converges 0 mma 13. Global maximum of potential functighis the state

the global maximum of the potential functignLet.S 4 andSp
be the set of communities (@ that playA and B, respectively.
We can write potential function (4) for this state of the gaase
below:

f = 5(@0(S4) + 03(S5)) — pam* — pp®  (§)

By replacingn®z by m—m>4 and§(Sg) by §(V)—6(Sp, Sa)—
0(Sa,Sp) —8(Sa) we have:

%(a5(5A> +b0(V) — b3(SB,Sa)
—b6(Sa,SB) — b6(S4))

—pAmSA +mSB — pm

By omitting constant terms that do not affect the maximati
the problem reduces to the problem of finding Sgtto maxi-

of all agents playing strategys, if for all ¢ € V we have
pa > pp + 3(a— b)Y, c ™. So the maximum ofs
is at mostpy™* = pp + max; (3 (a — b) 2jeNG) m7).

In order to find the best price fod, all we should do, is
to search between maximum and minimum values mentioned
above. Algorithm 1 finds the best response of company
Note that we should search in a continous search space fer find
ing best price. Therefore, we discrete the search space-by pa
rametere and accept devition. We describe this algorithm in
the proof of Theorem 8.

Proof of Theorem 8 we know from Lemma 5 that each
community is homogeneous. So there are certain points atwhi
if we decrease 4 a little more, at least one population will
change its strategy. We call these pointglaeshold points
For more precise definition of threshold points look at Sercti
4.1. So, one can fiy, as the total mass of populations who buy
A and compute the maximum possible valuepgffor which



Algorithm 1 Algorithm for finding best response of company would become much harder. This seems like a challenging

Ato pricepp of companyB.
1. 4+ 1,ng <~ m.
2: while n; #0do
3. Letpy be the maximum possible price of compatjor

which at least mass; of people buyA. Find this value

by binary search and using Theorem 6.
4. Letay, «— pfA —pB + €.
5 1«1+ 1.

but very interesting question. Also in this work we assumed
all the communities to be similar in all aspects, exceptrthei
masses, but other cases like allowing different behavialifof
ferent communities could be considered. Also, a similabpro
lem is to different treatments of sellers. For example, &sel
be able to offer different prices to different communities.

We have proved a necessary and sufficient condition of hav-
ing unigue Nash equilibrium in market pricing game and try to

6. Letn, be the mass of people at profil¢, +¢, pp). Find
this value by using Theorem 6.

7: end while _ '

8: return Pricep’, which maximizep’, x n;, for0 < j <.

show that some markets has this condition. It seems iniegest
to study real world markets and see whenever they have this
condition.
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Appendix A. Stationary State of Infinite Population Game

In this section, we justify the difference between defimitid finite and infinite population games. Also, we fill the gagtvizeen
these two definition by stating an important theorem fronj.[U&ing this theorem, we prove Lemma 3.
We call finite population gamé&™, with total population sizeV, a finite full potentialgame if there exist a full potential

function fV such that
1
FN(@:fN(x)*fN(x*N@i) (A1)
The vectore; is thei'" standard vector, and the difference- +¢; means one agent decides not to play strategife have the
following important theorem, which relates asymptotic &&br of potential games with agent using exponential updale, when

both total population size and noise level go to infinity.

Theorem 15. Let {F]\’}?\,O:N0 be a sequence of finite population potential games with dgadéential functions{%fN}?VozNo

which converge to the the functighn If agents use the exponential update rule, then the seguefrstationary distributiong-?
satisfy

1

i, Jim, max |75 og () = M@ =0
1

lim lim max|— logu™?(z) — Af(z)] = 0

pB—oo N—oo Nﬂ
InwhichAf(z) = f(z) — max, f(y) <0[12].

Theorem above means that@and N go to infinity, regardless of their order, the stationaryritistion 1./¥+?(x) decreases to
zero with the exponential rate & f (), which is the difference of every poimtwith the global maximum of . As a result we can
deduce that the dynamics spends most of its time around dbalghaximum off.

Now, we are ready to prove Lemma 3. For this we need to redegiatefinition of our model for finite population case. Assim
we haveN individual of size% in our game. There is no difference in definition of payoffdtian for finite and infinite case, so

we haveF YN (z) = F(z) as defined in (1). Also, one can verify that the potential fismcdefined below satisfies the definition in
(A.L):

PN@) = N (5 @Dale) +1Dm(0)) ~ pama(e) ~ pam(s)) + plama(e) + ()
= NJ(@)+ glama(a) + bm(e))

Now, one can easily see that the seque[nﬁg"N} converges tg (x). Putting this together with Theorem 15, we can conclude
Lemma 3.

Appendix B. Missing Proofs

Proof of Theorem 1 By equation (1), an agent’s payoff in communitior strategys using the payoff matrisU — w is

Fi(x) = (U(s,4) —w)Di(2) + (U(s, B) — w)Dis (x) — ps
= Fi(z) —w(Dy(x) + Dp(x))
Itis obvious that both and F' result in identical behavior i.e. give the same probabifity; (s|x) in (2). [ |

Proof of Theorem 2 We have

flz) = %(Z Z axi‘xilJrZ Z bx%x%)

i€V FEN (i) i€V jEN(4)
- pAE x%—pBE Th
eV eV

Note that, as mentioned befor¥(i) includesi itself. The partial derivative of with respect to arbitrary?, is

af(l') :% (2 Z aa:i‘) —pa :a’DfA(l‘) —PbA :Fi(x)

0 JEN(i)

8



Comparing with (1) the proof is complete. ]
Proof of Proposition 4: Let y be the state of all agents playing strate@iyandx be any other state. By equation (4), we can
rewrite f(y) as

£(y) = 3aDa(y) — pamaly) = —az Z m'm? —pam

2
i€V jEN (i

We boundf (x) as follows:

/()

% (aDa(x) +bDp(x)) — pama(x) — ppmp(x)
1

3 (aDa(z) +aDp(x)) — pama(z) — pamp(z)

—az Z xAxA—i-mBmB) pam

i€V jEN (2)

IN

Now by knowing that’ya”, + 2zl < (2% + x%)(2), + 2%) = m*m/, we can conclud¢(z) < f(y). So, the maximum of
happens ay and, therefore, the dynamics converges to the state ofafitaglayingd by Lemma 3. ]

Proof of Lemma 5: Fix communityi. As we saw in the proof of Lemma 3, whéh— oo, the dynamics converges to the global

maximum off. The part off that depends on populatidrfi.e. involvesry, andzy,) is:

g(zy) = 3 (az'yxy + ba'lzaly) + 2y Z ar’y + 2’ Z b’y
JEN(3) JEN(3)
i) i)

7 7
—PAT, —PBTp

Sincexz = m; — 2, g(«4) will be quadratic inz’; and the coefficient of:‘ isC' = Z(a+b) > 0. Thereforegy(z?,) takes its
maximum on extreme points, i.e’, = 0 or 2z, = m’. Sincez'’s are mdependent the maximum phappens when for every
zy =0orz’y =m'. ]

Proof of Lemma 10 We prove that under the above conditions there is only amgesithreshold point, i.e., as increases the

situation changes froml playing Ato all playing B. Leta be a point at whichS 4| = y in the maximum off. At this point we have
m Y y_ 0 )

f—ya>f)—0xa=f)andf! —ya > fi*—ma. So, we havét‘jn%f <a< f‘in‘s which meansnf{ > yfi*+(m—y)f9

this contradicts the lemma condition. Therefore, eithbeoraho communities buyl. Obviously,A’s best response at this situation

is to playa; . So we have a unique Nash equilibrium by Theorem 7. ]

Proof of Theorem 11 It suffices to prove the condition of Lemma 10.

Regular graphsAssume we have a regular graph of degtedth e = nd/2 = md/2 edges. Note thaf* = ae, f§ = be and
f3 < (ady + bd(m — y)/2. Som[f{ < md/2(ay +b(m —y)) = e(ay + b(m — y)) = yf" + (m — y) f§

Preferential Attachment Graph&ssume we have a preferential attachment graph with paesah@ith e = nd = md edges.
In this model each new node creates exadtBdges to the previous nodes. Note tffigt = amd and f§ = bmd. On the other
hands, consider an induced sub-graphwith y vertices. Not&s’ is connected to th& — G’ with at least one edge. S6! has
less tharyd edges. Thereforg! < ayd + b(m — y)d, which impliesmf{ < yfi* + (m — y) f?. [

Proof of Lemma 13: Lety be the state of all agents playing stratdgyyandz be an arbitrary state. We have:

1
flz) = 5 (aDa(x) +bDp(2)) — pama(e) — ppmp (@)
1
< g(aDA(m)—i—bDB(m)) me——aZ Z mAmJ—i— bz Z Yy L m?
’LGVzeN('L ZEV’LGN
- 5“2 Z (wpxly — aym’) + §bz Z (xpay +aam’) — ppm
i€V jEN (i) i€V jEN (i)
< —bz Z m'm? —ppm = f(y)
1€V jEN (1)



Proof of Lemma 14: AssumeS’; Z Sa. Note that the set of communiti€ play A in the the stationary state of the market

with pricesp4 andpg. Using proof arguments of Theorem 6, we can concludeShas the maximum weighted set of graphy
with I; = (pp — pa)m’ —bm' 3"y m’ andwy; = 3(a +b)m'm?. So the weight of se$ 4 is greater than or equal to the
weight of setS4 U S, which means:

EE: I; + j{: Wi > j{: I + j{: Wyj

i€Sa (i,j)EE i€84US, (4,J)EE

1,j€SA 1,jESAUS)
i€S’, —Sa (i,5)eE

i€S) —Sa,j€ESAUS)

Similarly, we can show tha’, is the maximum weighted set of graphy with I = I, — (py — pa)m’ andng = w;j. SO
the weight of set’; is greater than or equal to the weight of sgtn S’;, which means:

SNoon+ > wh < Y I+ > wy

i€SaNS’, (i,)€E i€S’, (i,5)€E
i,j€SANS’ i,j€S%
=0 < > I+ > wj; (B.2)
i€S! —Sa (i,j)€E

i€S)y —Sa,jeSs)
Becausey/, > pa, we havel! < I, for everyq < i < n. On the other hands, we assumg&g ¢ S4, which means
1S4 —Sal > 0. S0} e g, 1i < Xieg:, s, li- Now using inequalities (B.1, B.2) and the facf; = w;;, we conclude

> (i,j)€E wy; is less than zero. This is a contradiction because we kngw 0, for every0 < i, j < n. [ ]
i€5),—Sa,j€SA—5)
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