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Abstract We study permutation betting markets, introduced by Chen et al. (Proceed-
ings of the ACM Conference on Electronic Commerce, 2007). For these markets, we
consider subset bettings in which each trader can bet on a subset of candidates ending
up in a subset of positions. We consider the revenue maximization problem for the
auctioneer in two main frameworks: the risk-free revenue maximization (studied in
Chen et al., Proceedings of the ACM Conference on Electronic Commerce, 2007),
and the probabilistic revenue maximization. We also explore the use of some cer-
tain knowledge or extra information about the possible outcomes of the market. We
first show that finding the optimal revenue in the risk-free model for the subset bet-
ting problem is inapproximable. This resolves an open question posed by Chen et al.
(Proceedings of the ACM Conference on Electronic Commerce, 2007). In order to
identify solvable variants of the problem, we propose the singleton betting language
which allows traders to bet an arbitrary value on one candidate for one position. For
singleton bettings, we first provide a linear-time implementable necessary and suffi-
cient condition for existence of a solution with positive revenue for any possible out-
come. Furthermore, we develop an LP-based polynomial-time algorithm to find the
optimum solution of this problem. In addition, we show how to extend this LP-based
method to handle some extra information about the possible outcomes. Finally, we
consider the revenue maximization problem in a probabilistic setting. For this variant,

M. Ghodsi · H. Mahini (�) · M. Zadimoghaddam
Department of Computer Engineering, Sharif University of Technology, Azadi St., Tehren, Iran
e-mail: mahini@ce.sharif.edu

M. Ghodsi
e-mail: ghodsi@sharif.edu

M. Zadimoghaddam
e-mail: zadimoghaddam@ce.sharif.edu

V.S. Mirrokni
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
e-mail: mirrokni@microsoft.com

mailto:mahini@ce.sharif.edu
mailto:ghodsi@sharif.edu
mailto:zadimoghaddam@ce.sharif.edu
mailto:mirrokni@microsoft.com


854 Algorithmica (2011) 60: 853–876

we observe that the problem of maximizing the expected revenue is polynomial-time
solvable, but we show that maximizing the probability of achieving a pre-specified
revenue is #P -Complete.

Keywords Prediction markets · Revenue maximization · Betting markets · Linear
programming · Combinatorial algorithms · Matching markets

1 Introduction

Aggregating users’ prediction of the outcome of a market has proved very useful in
predicting the future. An effective way of extracting users’ prediction of the market
is observing users’ investment on securities. Investment on financial securities such
as investment in stock markets is one of the examples of such phenomena. These in-
vestments are analogous to betting in a financial security. Recently, betting markets
have been investigated as a tool to effectively collect the wisdom of the crowd in
the market. It has been observed that predictions based on such betting markets are
more accurate than other forecasts based on other alternatives such as voting [2–6].
The key reason behind such increase in accuracy is that betting markets incentivize
traders to investigate various aspects of the future events, and make precise deci-
sions.

A central problem in betting markets is the problem of matching traders’ bets
without incurring risk to the auctioneer. The goal in this problem is to find a set of
bets such that for any outcome, there is a surplus in the investment of the traders. This
problem can be formalized as the revenue maximization problem for the auctioneer
in the risk-free setting. Moreover, matching traders’ orders as described above helps
understanding their use in prediction markets. A set of bets that incurs a risk-free
positive revenue for the auctioneer indicates cyclic structures or contradictory bets in
these markets. On the other hand, non-existence of such set of bets that guarantees
a positive revenue for the auctioneer, may indicate that the users have similar opin-
ions about the outcome of the market, thus it may result in more accurate prediction
of the outcome. This analogy shows a relation between the revenue maximization
problem for the auctioneer and the quality of the market prediction based on a set
of bets. Therefore, the revenue maximization problem in these settings could have
applications in evaluating the accuracy of the such predictions.

In this paper, we study the revenue maximization problem in special betting mar-
kets known as permutation markets, studied first by Chen et al. [1]. In these markets,
the outcome is a permutation of a set of candidates V . Traders invest or bet on various
securities. The auctioneer collects these bets and either accepts or rejects them. The
goal of the auctioneer is to find a subset of bets that incurs a positive surplus, or to
find a subset of bets that maximizes his positive surplus, a.k.a. the revenue.

1.1 Our Contribution

We study the following two main frameworks in the context of permutation betting
markets:



Algorithmica (2011) 60: 853–876 855

1. The risk-free setting: This framework is defined based on the framework of Chen
et al. [1], and on the idea of robust optimization under uncertainty [7, 9, 10].

2. The probabilistic setting: This framework is defined based on the idea of stochastic
multi-stage optimization [11–13].

In the risk-free setting, the goal is to find a subset of traders’ bets that guarantees
a maximum revenue for the auctioneer in any outcome. This follows the exact setting
studied by Chen et al. [1]. This framework is similar to the robust optimization in
which the goal is to find a strategy that tends to maximize the objective function
in the worst scenario [4, 7, 9, 10]. We study the subset betting language in which
a trader with a bet i ∈ I pays $bi and bets on one of the two following types of
scenarios: (1) one of the candidates ends up in a subset of positions T , or (2) one of
the positions is occupied by a subset of candidates S. If the trader’s bet is accepted,
and the prediction is true, he gets $1, and nothing if the prediction is false.

Assuming that the surplus money of the traders go to the auctioneer, the revenue
maximization problem for the auctioneer is to find a subset of bets that maximizes
the revenue of the auctioneer in the worst possible outcome. This problem for subset
betting has been posed as a question by Chen et al. [1]. We answer this question by
proving that the revenue maximization problem is inapproximable within any factor.

We identify a special case of the problem, called singleton betting, that can be
solved in polynomial time. In this betting, each trader can bet $bi on the security that
pays off if a given candidate xi ends up in a given position yi . We first provide a
necessary and sufficient condition for the existence of a solution with a positive profit
in any possible outcome. Next, we present a polynomial-time algorithm for finding
the optimal solution of this problem. For this, we first characterize an LP whose
optimal integer solution is equal to our optimal solution in the betting problem. Then,
we prove that we can change any optimal fractional solution of our LP to an integer
solution with the same objective function in polynomial time.

Furthermore, we consider the revenue maximization problem in settings where
the auctioneer has some extra information about the set of possible outcomes of the
market. We show how to use this extra information to find the optimal solution to
maximize revenue. It is important to study this extension, since in realistic settings,
the auctioneer may have some prior knowledge about the possible outcomes, and
he/she should be able to use this information to find a better set of bets to accept.
This observation is crucial in some realistic scenarios as it can increase the revenue
of the auctioneer by a large amount.

In the probabilistic setting, we assume that the auctioneer has a probability dis-
tribution over the possible outcomes. In this case, instead of finding a subset of bets
that guarantees some revenue, the auctioneer can try to guarantee a revenue of x with
high probability. This means that we are willing to take some risk and choose a set
of bets that brings us revenue with high probability. This setting follows the idea of
stochastic optimization [11–13] in which we have a probability distribution over the
possible scenarios, and need to find strategies that optimize in expectation, or with
high probability. There are two types of objective functions in these settings. In the
first type, the goal is to find a subset of bets that maximizes the expected revenue,
given a probability distribution over the possible outcomes. In the second case, the
goal is to maximize the probability of achieving at a revenue of at least x (for a given
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parameter x). We first observe that the problem of maximizing the expected revenue
in this model can be solved easily in polynomial time. However, we will show that
maximizing the probability of achieving a pre-specified revenue x is #P -Complete.

A preliminary version of this paper appeared in EC’2008 conference [8].

1.2 Related Work

Permutation markets have been introduced by Chen, Fortnow, Nikolova, and Pen-
nock [1]. They study two betting languages for this problem: the pair betting and the
subset betting language. In a pair betting language, a trader with bet i ∈ I pays $bi on
pairs (a, b) of candidates. If candidate a ends up before candidate b in the outcome,
the trader gets $1, and otherwise he/she gets nothing. The authors consider two types
of problems: divisible, and indivisible. In the indivisible problems, the auctioneer can
accept or reject each bet. In the divisible version, the auctioneer can accept the bet to
an extent yi where yi is a real number between 0 to 1. In the divisible setting, the au-
thors show that the problem of maximizing revenue is polynomial-time solvable for
subset betting, and is NP-complete for pair betting. They also consider the indivis-
ible betting problem, and pose the approximability of the subset betting problem as
an open question. After the first draft of this writeup, it was brought to our attention
that Conitzer independently found an inapproximability result for this problem [14].
However, his proof is different from ours, and will appear in the journal version of
the paper by Chen et al. [1].

Prior to permutation markets, boolean-style markets were studied by Fortnow
et al. [15]. In these markets, a possible outcome is one of the 2n possible 0-1 as-
signments to a set of n variables. Each trader is allowed to bet on an arbitrary subset
of these variables. Traders describe their bets in boolean formulas. The authors show
that the matching problem in this setting is co-NP-Complete for the divisible variant
and

∑P
2 -Complete for the indivisible variant.

Another related work to betting markets is the market scoring rule mechanism
defined in [16]. In this setting, a joint probability distribution across all outcomes is
given, and traders bet on a combinatorial number of outcomes. One main difference
between this setting and the framework considered in this paper is that the traders
arrive sequentially, and the market maker pays to the last trader. In this setting, he may
incur some loss. This is similar to our probabilistic setting in which the auctioneer
may also incur loss with some probability. However, in the risk-free setting, when the
trader accepts some bets, he/she does not bear any risk.

The risk-free setting considered in this paper is related to robust combinatorial
optimization [7, 9, 10] in which given a set of possible scenarios that can happen in
the future, the goal is to find a strategy that optimizes the objective function in the
worst scenario. A challenging and interesting aspect of permutation betting markets
is that the number of possible outcomes is n! which is exponential on the size of the
input. This is similar to the robust optimization framework with exponential number
of scenarios. It has been proved that such robust optimization problems with expo-
nential number of scenarios are harder to approximate [10]. The probabilistic setting
considered in this paper is similar to stochastic optimization [11–13] in which given a
probability distribution over the possible scenarios that can happen in future, the goal
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is to find a strategy that optimizes the expected objective function. However, the lit-
eratures on both robust and stochastic optimization consider combinatorial optimiza-
tion problems like network design and covering problems, and not the permutation
problems considered in this paper.

The problem of allocating items to bidders in combinatorial auctions to maximize
the auctioneer’s revenue is considered in [17–21]. However, in contrast to our set-
tings, the risk and uncertainty concepts are not considered in most of these works.

1.3 Organization

This paper is organized as follows. First, in Sect. 2, we formally define permutation
markets and the subset betting problem. In Sect. 3, we define the subset betting prob-
lem, and prove its inapproximability. In Sect. 4, we first formally define the singleton
betting problem, and give an algorithm to verify if there exists a subset of bets with
positive revenue. Then, we provide a linear programming-based polynomial-time al-
gorithm to maximize the revenue for the singleton betting problem. At the end of
Sect. 4, we show how to solve the revenue maximization problem in the presence of
some extra information about the possible outcomes of market. Finally, in Sect. 5, we
define the probabilistic setting and present a positive remark and a negative result for
this setting.

2 Preliminaries

In this section, we formally define permutation betting markets and the subset betting
problem.

Permutation Betting Markets Permutation betting markets are those in which the
set of possible outcomes of the market is the set of all possible permutations of n

candidates. For example, the candidates can be horses in a race, and the outcome
is the ranking of horses in an increasing order. In such markets, traders can bet on
various types of securities for a future event. The result of the future event determines
the outcome of the market. For example, the event could be a horse competition. In
permutation markets, each security is a property of the ranking outcome. The value
of the security is not known before the event, and its truth will be revealed after
the future event. For example, a security is “horse A ends up in position 3.” The
auctioneer receives a set of bets on various types of securities, and can accept or
reject each bet. Each bet i consists of a bet value b and a security φ. b is the amount
of money the trader is willing to pay if his/her bet is accepted. If the bet is accepted by
the auctioneer, the trader pays $b before the event, and after the event, if the security
φ happens, e.g., if horse A ends up in position 3, then, the trader gets $1. The revenue
of the auctioneer is defined as follows. If the auctioneer accepts a bet of value b on a
security φ, if φ happens, the auctioneer’s revenue from this bet is b − 1, and if φ does
not happen, the revenue from this bet is b. The (total) revenue of the auctioneer is the
sum of his/her revenue from all accepted bets. In the risk-free setting, the goal of the
auctioneer is to find a subset of bets that guarantees a positive revenue for him/her
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in any possible outcome. For example, if one trader bets on the event “horse A ends
up in position 2” for $0.7 (i.e., the trader pays $0.7 ahead of time and gets $1 if the
event happens), and another trader bets on the event “horse B ends up in position 2”
with $0.7, then the set of all two bets is a risk-free set of bets for the auctioneer, since
by accepting the two bets, in any possible outcome, the auctioneer has to pay $1 to
at most one trader, and thus the revenue of the auctioneer is 2 × 0.7 − 1 = 0.4. Our
goal is to find a subset of bets for the auctioneer to accept in order to maximize the
revenue.

Subset Betting A subset betting permutation market allows two types of bets.
Traders can either bet on a subset of positions a candidate may end up with, or they
can bet on a subset of candidates that will occupy a particular position. In an instance
of the subset betting problem, we are given a set of bets, I . A bet i ∈ I of the first type
is a triple (bi, xi, Yi) where bi is the amount of money that the trader is willing to pay,
xi is the candidate he is bidding on, and Yi is a subset of positions. The trader gets
$0 if candidate xi does not end up in a position in set Yi , and gets $1 when candidate
xi stands at one of the positions in set Yi . A bet j ∈ I of the second type is a triple
(bj ,Xj , yj ) where bj is the amount of money that the trader is willing to pay, Xj is
the set of candidates he is bidding on, and yj is a position. The trader gets $0 if none
of the candidates in Xj ends up in position yj , and gets $1 if one of the candidates in
set Xj stands at position yj .

3 Hardness of Subset Betting

In this section, we show that it is NP-hard to approximate the optimal revenue for
subset bettings within any factor.

We say that an algorithm for the revenue maximization problem is a c-approxima-
tion algorithm, if for any input market with optimal revenue x, this algorithm runs in
polynomial time and returns a solution with revenue not less than cx. We prove that
the problem of maximizing revenue in subset bettings is not approximable within any
multiplicative factor c even in the special case that all bets are of second type, and yj

is equal to 1 for all bets. We do so by proving that in some instances of the problem,
we can not even decide whether or not the optimal answer has positive profit for the
auctioneer in every possible outcome. This fact implies that this problem can not be
approximated. To see this, assume that the problem admits a c-approximation algo-
rithm. Therefore, using this algorithm, we can verify whether x is zero or a positive
number. It remains to prove that verifying whether or not the revenue is positive is
NP-hard.

Definition 1 In the big independent set problem, we are given a graph G, with n

vertices, with no isolated vertex (a vertex of degree zero), and a number k > n/2.
The goal is to output ‘Yes’ when the graph has an independent set of size k, and ‘No’
otherwise.

Lemma 1 The big independent set problem is NP-Complete.
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Proof We prove the lemma using the NP-Completeness of the independent set prob-
lem. In the independent set problem, given a graph G and an arbitrary input k, the
goal is to find an independent set of size k in G. Without loss of generality, we as-
sume that G has no isolated vertex. Now, we give a reduction from the independent
set problem to the big independent set problem. Let the number of vertices and edges
in G be n and e, respectively. Let x be the size of the biggest independent set in G.
We add n patterns of P3 (a path with 3 vertices) to G. This new graph has n+3n = 4n

vertices and e + 2n edges. Obviously, the size of the biggest independent set in this
new graph is 2n + x which is greater than 4n/2. So the problem of finding the size
of the biggest independent set in this new graph reduces to the big independent set
problem. Thus, if there is a polynomial-time algorithm which solves the big indepen-
dent set problem, we can find 2n+ x using this algorithm, and consequently x can be
found. As a result, the big independent set problem is NP-Complete. �

Now, we can prove the main theorem of this section which resolves the open ques-
tion posed by Chen et al. [1].

Theorem 1 For any c > 0, there is no c-approximation algorithm for subset betting
problem with indivisible bets.

Proof Let (G, k) be an instance of the big independent set problem. We construct an
instance of the subset betting problem as follows. For each edge between vertices u

and v of G, we consider a candidate cu,v in our instance. Note that cu,v = cv,u. Let
ε be a positive number which satisfies inequalities (k − 1)ε < 1 < kε and nε < 2.
According to the fact that k > n/2, we know that such an ε exists. Now, for each
vertex v in G, we insert a trader in our instance of the subset betting problem. This
trader’s bet is a triple of form (ε,Xv,1) where Xv = {cv,u|(v,u) ∈ E(G)}.

Now, we show that in order to have an output with a positive profit for any possible
outcome, the auctioneer should not accept bets of two traders u and v which are
adjacent in graph G. If the auctioneer accepts the bet of both traders u and v, if a
candidate cu,v stands at the first position (which is a possible outcome), he/she should
pay $1 to each of these two traders. Thus, in this case, he/she should pay $2, but all
the money that is given to the auctioneer is at most n × ε which is less than 2. Note
that there are n traders, and each of them pays the auctioneer ε. This implies that if
the auctioneer accepts the bets of two incident traders, there is a possible outcome
in which his/her revenue is negative. This fact shows that the auctioneer should not
accept bets of two adjacent traders u and v. Therefore, the traders whose bets are
accepted should form an independent set in G. There are possible outcomes in which
we should pay one dollar. So, in order to have a positive revenue, we should accept
at least 1/ε number of bets. In other words, we should accept at least k = 1

ε
bets

which form an independent set of size at least k in G. Therefore, this instance of
the subset betting problem has a solution in which the auctioneer’s revenue is always
positive, the graph has an independent set of size k, and vice versa. Using the previous
lemma, we know that this problem is NP-Complete. This fact proves that verifying
if the revenue is positive or not cannot be done in polynomial time unless P = NP.
Therefore, for any c > 0, there is no c-approximation algorithm for the subset betting
problem. �
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4 The Singleton Betting Problem

In this section, we first formally define the singleton betting problem, and then give
a linear-time algorithm for verifying if the auctioneer’s revenue is positive. Next, we
show that the problem of maximizing revenue for singleton betting can be solved via
a linear programming formulation. Finally, we show that this polynomial-time algo-
rithm can be used to solve the same revenue maximization problem in the presence
of some extra information about the outcome of the market.

4.1 Definitions and Notations

The Singleton Betting Problem The singleton betting market problem is a special
case of the subset betting problem in which players can bet on a singleton set of can-
didates for a single position. More formally, a singleton betting market allows traders
to bet on a (single) position that a (single) candidate may end up with. Consider a set
of candidates in a permutation market in which all n! permutations are possible out-
comes, where n is the number of candidates. In an instance of the singleton betting
problem, we are given a set I of bets that are submitted to the auctioneer by a set of
traders. Each bet i ∈ I is a triple (bi, xi, yi), where xi is a candidate, yi is a position,
and bi is the amount which the trader i is willing to pay for a unit share. Similar to
the subset betting problem, if bet i is accepted, trader i pays $bi before the outcome
is revealed, and if candidate xi stands at position yi in the outcome, trader i wins $1
and wins $0 otherwise. Given a set I of bets, the auctioneer can accept or reject each
of the bets. The goal of the auctioneer is to find a subset of bets that maximizes its
revenue.

To achieve this goal, we consider the following two problems: existence problem,
and revenue maximization problem. In the existence problem, the auctioneer’s goal is
to find a subset of bets, called a risk-free subset, such that by accepting this subset, the
auctioneer has a positive profit in any possible outcome. In the revenue maximization
problem, the auctioneer’s goal is to find a subset of bets such that accepting it, the
auctioneer maximizes his/her minimum profit in every possible outcome. It is clear
that the existence problem is a special case of the revenue maximization problem.
There is a generalization in which any trader is allowed to order more than one share
of security in her bet. In this case, the auctioneer is allowed to accept any subset of
them. We can easily generalize our results to solve this problem.

In the following, we give a simple combinatorial algorithm for the existence prob-
lem, and an LP-based algorithm for the revenue maximization problem. First, we
define some notations that will be used throughout this section.

Corresponding Bipartite Graph GI Given an instance of the singleton betting prob-
lem with a set of bets I , we construct a bipartite graph GI as follows. For every can-
didate, we place a vertex in the upper part of GI and for every position, we place a
vertex in the lower part of GI . Let UG denote the set of vertices in the upper part
and LG denote the set of vertices in the lower part. We denote the ith vertex of the
upper part by ui and the j th vertex of the lower part by lj . Finally, for every triple
(bi, xi, yi) ∈ I , we put an edge between uxi

∈ UG and lyi
∈ LG with weight bi . Note

that it is possible to have multiple edges between two nodes in GI .
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Fig. 1 Definition of G∗

Given a simple edge-weighted bipartite graph G(UG,LG,E), let wG
i,j be the

weight of the edge between vertices ui ∈ U and lj ∈ L.
Also, given a multigraph G(V,E), let G∗(V ∗,E∗) with edge weights w∗ be a

simple edge-weighted graph with the same set of vertices, i.e., V ∗ = V such that w∗
ij ,

the weight of the edge between vertices i, j ∈ V ∗ in G∗, is equal to the number of
edges between vertices i and j in G (as shown in Fig. 1).

Note that wG∗
i,j is equal to the number of edges between vertices i and j in G. Each

bet has a corresponding edge in GI . Therefore, when the auctioneer accepts a bet, we
can also say that the auctioneer accepts the corresponding edge.

For example, consider the singleton betting market depicted in Fig. 1. There are
nine bets corresponding to edges of the bipartite graph. As a result, the set of bets, I

contains the following triples:

(0.6,1,1), (0.1,1,1), (0.3,1,1), (0.02,1,2), . . . , (0.1,3,3), (0.7,3,3)

In this example, if the auctioneer accepts all bets, he/she gets $3.32 before the
outcome. If candidates 1,2 and 3 stand in positions 1,2 and 3 respectively, the auc-
tioneers should pay 3 + 1 + 2 = $6 to traders.

Accepted Graph If the auctioneer accepts a subset of bets, there is a subgraph in
G which is formed by the edges corresponding to the accepted bets. We call this an
accepted graph. We say an auctioneer will win with respect to an accepted graph H ,
if accepting the bets corresponding to the edges of H gives a positive revenue to the
auctioneer in every possible outcome.

Graph Theoretic Preliminaries In every graph G, let MG be the value of the maxi-
mum weighted matching. Vector α = (α1, α2, . . . , α|V (G)|) is called a weighted vertex
cover of graph G if for every edge e = (i, j) we have wG

e ≤ αi + αj . The mini-
mum weighted vertex cover is a weighted vertex cover which minimizes the sum∑

i∈V (G) αi .

4.2 The Existence Problem

In this section, we prove a necessary and sufficient condition for the existence prob-
lem which can be checked in linear time.
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Theorem 2 Given a set of bets I for the singleton betting problem, there exists a set
of risk-free bets for the existence problem if and only if there exists a vertex i ∈ V (GI )

and a set of edges A such that (i) edges in A are adjacent to vertex i, and each pair
of edges in A has only one endpoint in common which is i; and (ii) the total weight
of edges in A exceeds 1, or equivalently

∑
e∈A w

GI
e > 1.

Proof Proof of sufficiency: Suppose that there is a vertex i with the desired properties.
Without loss of generality, suppose i is in the upper part of GI . Assume that there
exists a set A of edges which are adjacent to i and the sum of their weights is greater
than 1. If the auctioneer accepts the bets corresponding to edges in A and rejects the
other ones, the amount of money which is earned by him/her is greater than $1. On
the other hand, the auctioneer must pay at most $1 in the worst case, because all the
accepted bets have the candidate i in common and their positions (the third element
in the triples of bets) are distinct, so in each outcome the candidate i stands at only
one position, and we lose at most $1.

Proof of necessity: Suppose there is no vertex i with the desired property of the
theorem and there is a subgraph H of GI such that the auctioneer will win if he
accepts the bets corresponding to edges of H . First, we find the subgraph Ĥ of GI

such that the auctioneer will win if he accepts the corresponding bets of Ĥ and we

have wĤ ∗
i,j ≤ 1, for all i, j . This means that there exists at most one edge between

every pair of vertices ui ∈ UĤ and lj ∈ LĤ in Ĥ . Finally, we prove that if a subgraph
like Ĥ exists, we will reach a contradiction.

In order to prove the existence of Ĥ , we need the following lemma.

Lemma 2 Let G∗ be a weighted simple bipartite graph with integer weights. If the
value of the maximum weighted matching in G∗ is MG∗ ≥ 1, then there exists a vertex
i with the following property:

• If we decrease the weights of all edges adjacent to i by 1 unit, the value of the
maximum weighted matching in the remaining graph will be MG∗ − 1.

Proof The dual of the maximum weighted matching problem in a bipartite graph G∗
is the following problem: assign values αi and βj to the vertices of G∗ (αi to vertex
ui ∈ U and βj to vertex lj ∈ L) such that for every edge e = (ui, lj ), we have that
αi + βj ≥ wi,j , and we also want to minimize the objective function

∑
ui∈U αi +∑

lj ∈L βj . Based on the weak duality theorem, we know that the minimum feasible
value of

∑
ui∈U αi + ∑

lj ∈L βj is greater than or equal to MG∗ in G∗. Consider the
optimal dual solution αi and βj for ui ∈ U and li ∈ L. Note that the weights of the
edges in G∗ are integer, therefore, there exists an optimal solution in which all values
of αi and βj are integers. This is true, since the dual of the weighted matching is
totally unimodular, and its integrality gap is 1 [22]. We also know that MG∗ ≥ 1, so
at least one αi or one βj is greater than 0. Without loss of generality, suppose αk > 0,
and because αk is an integer number, we conclude that αk ≥ 1. Now, we can decrease
the weights of the edges adjacent to uk by 1 unit and let G′ be the remaining graph.
It is clear that

(β ′
j = βj ∀lj ∈ L, α′

i = αi ∀ui ∈ U,ui �= uk , and α′
k = αk − 1)
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is a feasible solution for the dual problem in graph G′ with value
∑

ui∈U α′
i +∑

lj ∈L β ′
j = MG∗ − 1. Therefore, the value of every weighted matching in G′ is not

greater than MG∗ − 1. On the other hand, consider the maximum weighted matching
in G∗ with value MG∗ . It is clear that the value of this matching in G′ is MG∗ − 1. So
the value of the maximum weighted matching in G′ is MG∗ − 1. �

Now we return to the proof of Theorem 2. Consider a graph H and assume that the
auctioneer accepts the bets corresponding to the edges of H . (Note that we assume
that the auctioneer will win by accepting these bets.) Let the value of the maximum
weighted matching in H ∗ be MH ∗ . It is clear that for some permutations, the auction-
eer must pay MH ∗ to the traders. On the other hand, the auctioneer gets

∑
e∈H wH

e

amount of money from traders at first. Since the auctioneer is seeking a risk-free
subset, we should have:

MH ∗ <
∑

e∈H

wH
e (1)

If H ∗ has an edge with weight greater than 1, there are at least two edges in H be-
tween the endpoints of that edge with weight greater than 1. We repeat the following
procedure iteratively, until there is no edge with weight greater than 1 in H ∗.

– We know that there exists a vertex i in H ∗ with the desired property of Lemma 2.
For every vertex j , remove one of the edges between vertices i and j in H . Let
H̃ be the remaining graph. According to Lemma 2, if we decrease the weights of
edges adjacent to i in H ∗ by 1 unit, the value of the maximum weighted matching
in H ∗ will decrease by exactly 1 unit. Therefore, we have M

H̃ ∗ = MH∗ − 1. We
assume that there is no vertex with the desired property of Theorem 2. Therefore,
the sum of the weights of the removed edges from H is not greater than 1, and we
have

∑
e∈H̃

wH̃
e ≥ ∑

e∈H wH
e − 1. Using (1) we conclude:

M
H̃ ∗ = MH∗ − 1 <

∑

e∈H

wH
e − 1 ≤

∑

e∈H̃

wH̃
e (2)

This proves that if the auctioneer accepts the bets corresponding to the edges of H̃ ,
he wins. Therefore, we can replace H by H̃ and iteratively repeat this procedure
until we reach a graph H ∗ with no edge weight greater than one.

This proves that there exists a graph H such that the auctioneer wins with respect
to H , and there is at most one edge between any pair of vertices in H .

Now, we construct a network flow F using the graph H as follows. See Fig. 2.

1. Add two vertices s and t to H . Let s be the source of our network flow and t be
its sink.

2. Put an edge between s and each vertex ui in the upper part of H with capacity
of 1.

3. Put an edge between each vertex lj in the lower part of H and t with capacity of 1.
4. Let the capacity of each edge from vertex ui in the upper part to vertex lj in the

lower part be equal to wH
ui,lj

.
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Fig. 2 Constructing the
network flow F using graph H

We know that there is no vertex with the desired property of Theorem 2. Therefore,
for every vertex i, the sum of the weights of the edges adjacent to i in H is not greater
than 1. So, we have a flow with value

∑
e∈H wH

e in the network flow F . Construct
a new network flow F ′ by rounding up the capacities of edges in F . It is clear that
the value of the maximum flow in F ′ is not less than the value of the maximum flow
in F , because we do not decrease the capacities. On the other hand, we can see that
the value of the maximum flow in F ′ is equal to the value of the maximum weighted
matching in H ∗(MH ∗ ). Knowing these facts, we can conclude:

MH ∗ = max flow in F ′ ≥ max flow in F ≥
∑

e∈H

wH
e (3)

which is a contradiction (see (1)) �

Verifying the necessary and sufficient condition of Theorem 2 for all vertices in
graph GI can be done in running time O(|I |+m+n) where n and m are the number
of candidates and positions respectively. As a result, Theorem 2 gives a linear-time
algorithm for the existence problem.

Now we are ready to solve the generalization in which traders can order more than
one share of security. In the existence problem, we only need to compute the sum
of weights of edges incident to a specific vertex u. Note that if we submit C copies
of a bet, these are C parallel edges in GI with 2 common vertices. Thus, we should
consider only one of them in our calculations. Therefore, this generalization is not
computationally harder.

4.3 The Revenue Maximization Problem

In this section, we propose a polynomial-time algorithm for finding a subset of bets
with the maximum guaranteed revenue to the auctioneer. The algorithm is based on
a linear programming (LP) formulation. We first characterize an LP whose optimal
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Fig. 3 A solution with revenue 0.2

integer solution is equal to our optimal solution in the singleton betting problem.
We relax the linear program to a fractional linear program, and then prove that we
can change any optimal fractional solution of our LP to an integer solution with
the same objective function in polynomial-time. Note that in the revenue maximiza-
tion problem, we have a weighted bipartite graph G with multiple edges each of
which corresponds to one bet, and we want to find a subgraph H of G that maxi-
mizes:

∑

e∈H

wH
e − MH ∗ (4)

In other words, if the auctioneer accepts the bets of the edges of graph H , he earns∑
e∈H wH

e amount of money from traders, and he should pay MH ∗ in the worst case
outcome. For example, consider the singleton betting market shown in Fig. 1. If the
auctioneer accepts bets (0.7,2,2), (0.4,2,3), (0.4,3,2) and (0.7,3,3), the accepted
graph is H that is shown in Fig. 3. Note that

∑
e∈H wH

e is equal to 2.2, and the max-
imum weighted matching in graph H ∗, MH ∗ is 2. So the revenue is 2.2 − 2 = 0.2 in
this case.

Now we characterize the structure of the maximum revenue solution. Let the sub-
graph H ⊆ G be the maximum revenue solution. Consider the minimum weighted
vertex cover of H ∗ (see the definition of G∗ in the preliminaries). Assume that the
value αi is assigned to the vertex ui ∈ UH ∗

, and βj is assigned to the vertex lj ∈ LH ∗

in this weighted vertex cover.

Lemma 3 In the optimal accepted graph H , wH ∗
i,j is equal to min(wG∗

i,j , αi + βj ) for
every pair of vertices i and j .

Proof We know that H is a subgraph of G, thus wH ∗
i,j is not greater than wG∗

i,j . On the
other hand, the values α1, α2, . . . , α|V (H)| and β1, β2, . . . , β|V (H)| form a weighted
vertex cover of graph H ∗, so we have that wH ∗

i,j ≤ αi + βj .

For the sake of contradiction, assume wH ∗
i,j is not equal to min(wG∗

i,j , αi + βj ) for

some i and j , thus wH ∗
i,j < wG∗

i,j and wH ∗
i,j < αi + βj . The value wH ∗

i,j is integer, for
any pair of vertices i and j . Therefore, by definition, αi and βj are also integers, for
every i and j . Thus, wH ∗

i,j + 1 ≤ αi + βj . We can add one of the edges between i and

j in G−H to H . Note that such an edge exists because we assume that wH ∗
i,j < wG∗

i,j .
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It implies that the value of wH ∗
i,j increases by one. But, it is clear that the minimum

weighted vertex cover of H ∗ is still a weighted vertex cover. Using the fact that
the value of the maximum weighted matching is equal to the value of the minimum
weighted vertex cover, we conclude that the value of

∑
e∈H wH

e −MH ∗ will increase
by adding one of edges between vertices i and j to the optimal accepted graph H .
This contradicts the optimality of H . �

Lemma 3 implies that using values of αi and βj , we can determine the value
wH ∗

i,j by setting it to min(wG∗
i,j , αi + βj ). Now, we can write an integer linear pro-

gram whose optimal solution determines our optimal solution for the singleton bet-
ting problem. In this ILP, we want to find the values of αi and βj . We also want to
choose edges which should be added to the optimal subgraph H . For ease of notation,
let wG

i,j,t be the weight of the t th edge between vertices i and j in G. Without loss
of generality assume that the edges between vertices i and j are sorted in decreasing
order with respect to their weight such that we have wG∗

i,j,t ≥ wG∗
i,j,t+1. The follow-

ing program is the ILP which helps us in computing the minimum weighted vertex
cover:

max

(∑
wG

i,j,t yi,j,t −
∑

xi −
∑

x′
j

)

wG∗
i,j∑

t=1

yi,j,t = Yi,j ∀i ∈ U,j ∈ L

Yi,j ≤ xi + x′
j ∀i ∈ U,j ∈ L (5)

xi, x
′
j ≥ 0 ∀i ∈ U,j ∈ L

yi,j,t ∈ {0,1} ∀i ∈ U,j ∈ L,1 ≤ t ≤ kij

The ILP variables xi , x′
j , yi,j,t and Yi,j are defined as follows:

• xi is the value of αi in the minimum weighted vertex cover of H ∗.
• x′

j is the value of βj in the minimum weighted vertex cover of H ∗.

• Yi,j is the value of wH ∗
i,j which is equal to number of edges between vertices i and

j in H .
• yi,j,t is a number which is equal to 0 or 1, and indicates whether the t th edge

between i and j in G belongs to H .

By strong duality, the value of the maximum weighted matching is equal to the
value of the minimum weighted vertex cover. Since the ILP variables x and x′
correspond to the vectors of the minimum weighted vertex cover (α and β), the
value

∑
xi + ∑

x′
j in the objective function of the ILP is equal to MH ∗ . As a re-

sult, the optimal solution of the integer linear program 5 characterizes the maxi-
mum revenue of the singleton betting problem. In order to solve the integer linear
program 5, we relax the integer constraints yi,j,t ∈ {0,1} to linear fractional con-
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straints 0 ≤ yi,j,t ≤ 1. As a result, we get the following linear programming relax-
ation:

max

(∑
wG

i,j,t yi,j,t −
∑

xi −
∑

x′
j

)

wG∗
i,j∑

t=1

yi,j,t = Yi,j ∀i ∈ U,j ∈ L

Yi,j ≤ xi + x′
j ∀i ∈ U,j ∈ L (6)

xi, x
′
j ≥ 0 ∀i ∈ U,j ∈ L

0 ≤ yi,j,t ≤ 1 ∀i ∈ U,j ∈ L,1 ≤ t ≤ kij

We can solve the linear program 6. Now, the question is how to round the solution
of 6 and construct an integer solution for program 5. The following Lemma 4 shows
that the integrality gap of this linear program is 1 and any solution of this LP can
be rounded to an integer solution in polynomial time without changing the value of
the objective function. Here, we prove this fact by showing that LP 6 is totally uni-
modular. For completeness, we give an explicit polynomial-time rounding method for
rounding fractional solutions of this LP to optimal integer solutions in the appendix.

Lemma 4 The integrality gap of LP 6 is 1 and an optimal integer solution of ILP 5
can be found in polynomial-time by solving the LP relaxation 6.

Proof Here, we prove this lemma by showing that the LP is totally unimodular. For
a constructive proof of this lemma, see the Appendix.

There are four types of variables in LP 6, i.e. yi,j,t , Yi,j , xi, x
′
j . Let v be a vector

that contains all types of variables. We can write the constraints of LP 6 as a matrix
inequality Av ≤ b where A and b are defined as follows: A is a matrix whose number
of rows and columns are equal to the number of constraints and variables in the LP
respectively, and entries of A correspond to coefficients in the linear constraints of
this LP. The vector b contains the right hand side values of the constraints.

There are some equality constraints in LP 6. We can use some slack variables,
and replace these equalities with some inequalities, so the constraints can be written
in the inequality form Av ≤ b. By the way, these slack variables do not disturb the
totally unimodularity property of this inequality system.

It is well known that in order to prove that the integrality gap of LP 6 is 1, it suffices
to show that A is totally unimodular [23, 24]. This fact also implies a polynomial-time
algorithm for rounding any fractional solution of LP 6 to an optimal integer solution
to ILP 5.

For contradiction, assume A is not totally unimodular. In that case, A should have a
square submatrix with determinant not equal to 0, 1 or −1. Suppose K is the smallest
square submatrix of A with this property.

It is not hard to see that each row or column of K has at least two non-zero en-
tries. Since, if there is a row (or column) with only one non-zero entry a (a is either 1
or −1), we can say that the absolute value of determinant of K is equal to the absolute
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value of determinant of K ′ where K ′ is the matrix that is obtained from K by remov-
ing the row and column of entry a. So the determinant of K ′ is also not equal to 0, 1
or −1. This contradicts with the assumption that K is the smallest square submatrix
with determinant not equal to 0, 1 or −1.

According to the fact that each row of K has at least two non-zero entries, we
conclude that rows corresponding to constraints like yi,j,t ≤ 1 or yi,j,t ≥ 0 are not
selected as rows of K . Therefore, without loss of generality, we can delete these
rows from A, and assume that K is a submatrix of the remaining matrix. Since each
column of K also has at least two non-zero entries, we can say that the columns
corresponding to variables yi,j,t are not selected as columns of K , because each of
these columns in the remaining matrix contains exactly one non-zero entry. Similarly
we can remove these columns, and assume that K is a submatrix of the remaining
matrix.

Now, consider a row corresponding to a constraint of the form
∑

yi,j,t = Yi,j .
Since the columns of variables of the form yi,j,t are removed later, the row corre-
sponding to this constraint has only one non-zero entry. Again we can remove these
rows from our matrix. In the remaining matrix, the columns of variables of form Yi,j

has only one non-zero entry, therefore we remove these columns too. The remaining
matrix has only rows of constraints of form Yi,j ≤ xi + x′

j and columns of variables
of form xi or x′

j . Note that each row of this matrix has exactly two non-zero vari-
able with the same sign. Partition the columns into two sets B = {x1, x2, . . . , xn} and
C = {x′

1, x
′
2, . . . , x

′
n}. One of those two non-zero entries belongs to a column in set B ,

and the other one belongs to a column in set C. According to [25], the determinant
of any square submatrix of this matrix, including K is equal to 0, 1 or −1 which is
again a contradiction. Therefore we conclude A is totally unimodular, and thus, the
integrality gap of the corresponding integer linear program is equal to 1. �

Using ILP 5 and the result of Lemma 4, it follows that the revenue maximization
problem for singleton betting is polynomial-time solvable. We conclude this section
by the following theorem.

Theorem 3 The revenue maximization problem for the auctioneer in singleton bet-
ting can be solved in polynomial time.

Note that linear program 6 is a small polynomial-size linear program that can be
solved very efficiently in practice as well. This is different from the exponential-size
linear programming formulation of Chen et al. [1] for divisible variant of the subset
betting.

Now consider the case that traders can order more than one share of security. The
only change we should make is that the constraints of the form yi,j,t ∈ {0,1} should
be replaced by yi,j,t ∈ {0,1, . . . ,C} in ILP 5 where C is the number of copies of a
bet that the corresponding trader orders. It is clear that the integrality gap of LP 6
remains 1 in this case.
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Fig. 4 Best solution with extra information

4.4 The Revenue Maximization Problem with Extra Information

In this section, we study the revenue maximization problem for singleton betting
when we are given a set of pieces of extra information about the outcome of the
betting market. Each piece of the extra information is a forbidden pair (x, y) which
means that candidate x never ends up in position y. Many types of extra information
could be modeled by a set of forbidden pairs. For example if we know that candidate
x ends up in one of positions y1, . . . , yj , we can model this scenario with a set of
forbidden pairs (x, z), for every z �= y1, . . . , yj . The auctioneer may gain this type
of information from various sources, or can predict such forbidden pairs with such a
high confidence that he/she does not bear any risk by assuming these forbidden pairs.
Let F be the set of these pairs. Given a set of forbidden pairs, a possible outcome
can be illustrated by a perfect matching among candidates and positions in which no
forbidden pair appears.

In that case, the auctioneer can use this information in his/her favor and in order to
solve the revenue maximization problem, he/she should take into account such extra
information. In this section, we show that the LP-based revenue maximization algo-
rithm from the previous section can be extended to solve the revenue maximization
problem with extra information.

Before stating the algorithm, we discuss an example. Consider the singleton bet-
ting market in Fig. 1. Suppose we know that candidates 1 and 2 do not stand at
position 1 in any possible outcome (see Fig. 4). In other words, the edges (1,1) and
(2,1) are forbidden pairs. Using this extra information, we can say that the candidate
3 necessarily stands at position 1. Therefore, the auctioneer gains the maximum rev-
enue by accepting all bets except bet (0.02,1,2). The auctioneer gets $3.3 before the
outcome, and will pay at most $1 to the traders after the outcome.

First, we show how to calculate the minimum revenue over all possible outcomes
with respect to a given accepted graph H . Then we propose a linear programming
method to find, an accepted graph which maximizes this minimum revenue over the
possible outcomes. Note that a possible outcome can be shown by a perfect matching
M among candidates and positions that does not use the forbidden pairs. The sum of
weights of edges that are in both M and H ∗ (see definition of G∗ in Sect. 4.1) is the
value that we should pay to the traders in this outcome. Therefore, in order to find the
minimum revenue over all possible outcomes, we should find the maximum weighted
perfect matching in H ∗ without using forbidden edges.
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We can solve this by finding the integer solution of the following LP:

max

(∑
wH ∗

i,j xi,j

)

n∑

j=1

xi,j = 1 ∀i ∈ U

n∑

i=1

xi,j = 1 ∀j ∈ L (7)

xi,j = 0 ∀(i, j) ∈ F

xi,j ≥ 0 ∀i ∈ U,j ∈ L

We consider the dual of the above program:

min

(∑
αi +

∑
βj

)

αi + βj ≥ wH ∗
i,j ∀(i, j) /∈ F

αi + βj + δi,j ≥ wH ∗
i,j ∀(i, j) ∈ F

(8)

In the above LP, αi is the variable corresponding to the constraint of candidate
i ∈ U , βj is the variable corresponding to the constraint of position j ∈ L, and δi,j is
the variable corresponding to the constraint of the forbidden edge (i, j). Note that all
variables including δi,j can get arbitrarily large positive or negative values. Variables
δi,j does not contribute in the cost function, so by setting δi,j = +∞, we can elimi-
nate the constraints of the form αi + βj + δi,j ≥ wH ∗

i,j . Therefore, we can rewrite the
dual program as follows:

min

(∑
αi +

∑
βj

)

αi + βj ≥ wH ∗
i,j ∀(i, j) /∈ F

(9)

This program finds the values αi and βj such that for each non-forbidden edge
(i, j), we have αi + βj ≥ wH ∗

i,j . Since LP 7 is the similar to the LP of the maximum
weighted matching problem, the integrality gap of LP 7 is 1 [24]. Therefore, the best
fractional solution of the dual program 9 is equal to the maximum integer solution
of LP 7.

Now we propose an algorithm to find an accepted graph maximizing this minimum
revenue over the possible outcomes. With the same argument as Lemma 3, we can
use values of αi and βj of dual program 9 to determine the value wH ∗

i,j by setting it to

min(wG∗
i,j , αi + βj ).

We can write an integer linear program whose optimal solution determines our
optimal solution for the singleton betting problem with extra information. The ILP is
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very similar to ILP 5. Again we want to find the values of αi and βj and we also want
to choose edges which should be added to the optimal subgraph H .

The following program is the ILP for computing the minimum weighted vertex
cover in this setting:

max

(∑
wG

i,j,t yi,j,t −
∑

xi −
∑

x′
j

)

wG∗
i,j∑

t=1

yi,j,t = Yi,j ∀i ∈ U,j ∈ L

(10)
Yi,j ≤ xi + x′

j ∀(i, j) /∈ F

yi,j,t ∈ {0,1} ∀i ∈ U,j ∈ L,1 ≤ t ≤ kij

Theorem 4 The revenue maximization problem for the auctioneer in singleton bet-
ting with extra information can be solved in polynomial time.

Proof Similar to the proof of Lemma 4, we can show that the constraint ma-
trix of ILP 10 is totally unimodular. Therefore, if we relax the integer constraints
yi,j,t ∈ {0,1} to linear fractional constraints 0 ≤ yi,j,t ≤ 1, we can solve this linear
programming relaxation and round it to optimal integer solution of ILP 10. The op-
timal solution of ILP 10, corresponds to the maximum revenue of singleton betting
problem with extra information. �

5 The Probabilistic Setting

In this section, we study the betting problem in a probabilistic setting. We first define
the problem formally. Assume that the auctioneer has a probability distribution q

over the possible outcome permutations, i.e.,
∑

σ is a permutation q(σ ) = 1. Given a
probability distribution q , a desired revenue x, and a desired probability 0 ≤ p ≤ 1,
we consider the following two problems:

Definition 2 In the max-expected subset betting problem, given a probability distri-
bution q and a set I of subset bets, our goal is to find a subset S of bets I such that
accepting bets in S maximizes the expected revenue of the auctioneer.

Definition 3 In the max-probability singleton betting problem, given a probability
distribution q over the possible outcomes, a desired revenue x , a desired probability
0 ≤ p ≤ 1, and a set I of simple bets, our goal is to accept a subset S of bets in I in
order to have revenue x with probability at least p, and refuse to return a subset if
there does not exist such a subset.

Here, we observe that max-expected subset betting problem can be solved easily,
but the max-probability singleton betting problem is #P -complete.
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In order to solve the max-expected subset betting problem, for any subset S ⊆ I ,
let E(S) be the expected revenue when the auctioneer accepts the bets in set S. For
every bet i ∈ I , let E(i) be the revenue when we accept only bet i. Based on the
linearity of the expectation, E(S) = E(

⋃
i∈S i) = ∑

i∈S E(i). Thus, in order to max-
imize E(S), we should add a bet i ∈ I into S iff E(i) > 0. Therefore, it suffices
to compute E(i) for each bet i. Let pi be the probability that the security of bet i

happens. Given the probability distribution q , we can estimate pi by sampling the
probability distribution q . Thus, we can estimate E(i) = bi − pi .

Next, we prove the hardness of the max-probability singleton betting problem.

Theorem 5 The max-probability singleton betting problem is #P -Complete.

Proof We reduce the problem of counting the number of perfect matchings in a bi-
partite graph to the max-probability singleton betting problem. In fact, we consider
a simpler version of this problem which is equivalent to the original one. Suppose
we are given a bipartite graph G and a number k and we are asked whether there are
at least k perfect matchings in G. We construct an instance of the max-probability
singleton betting problem as follows. Suppose each edge in G is between sets X and
Y where |X| = |Y | = n. For each vertex in xi ∈ X, consider a candidate ai in our in-
stance. For each edge (xi, yj ) in G, we put a bet in our instance of the form (2, ai, j)

which means that this trader is willing to pay $2 for this bet, and the trader wins $1 if
the candidate ai stands in position j . In this instance, we set x = 2E − n + 1 where
E is the number of edges in G. We also define p to be 1 − k−1

n! . It is obvious that in
the optimum solution we should accept all the bets. By definition, we are asked if the
revenue is at least 2E −n+ 1 with probability 1 − k−1

n! . Equivalently, we are asked if
there are at most k matchings of size n in G. Thus max-probability singleton betting
problem can solve the problem of calculating the number of perfect matchings in a
bipartite graph in polynomial time which is a #P -Complete problem. �

Note that our proof works when there are some bids (bi, xi, yi) with bi = 2 > 1. It
is interesting to prove the same result when all bids value are between 0 and 1 which
is more realistic.

6 Conclusion

In this paper, we studied the subset and singleton betting problems for permutation
markets in the risk-free and probabilistic settings. We also considered the single-
ton betting problem with extra information in which the auctioneer has some certain
knowledge of the possible outcome of the market. We showed that maximizing rev-
enue for the subset betting problem is not approximable, but the singleton betting
problem is solvable by solving a linear programming relaxation and rounding its so-
lution, even in the presence of certain knowledge about the outcome of the market.
This indicates that the betting language could play an important role in the complexity
of the corresponding revenue maximization problem, which may have applications in
other areas as a prediction tool.
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An interesting question is to study revenue maximization problem with extra
knowledge about the set of outcomes for different betting languages like pair bet-
ting and subset betting. It is also interesting to consider other types of extra informa-
tion about the possible outcomes. This extra information may include some proba-
bility distribution on certain properties of the outcome. It would also be interesting
to investigate the implications of the LP-based solution discussed in this paper for
applications of betting markets in predication markets.

An interesting extension to our paper is to define other betting languages in which
the “maximizing revenue problem” or “existence problem” could be solved in poly-
nomial time. A suitable language for permutation markets is a language in which a
trader can bet on specific subsets. For example, one of the candidates end up in the
positions below or after certain position. For instance, a security can be “horse A ends
up in a position better than 3.” It would be interesting to study the problem for this
language.

Acknowledgement The third author thank Evdokia Nikolova for introducing permutation betting mar-
kets.

Appendix: A Constructive Proof of Lemma 4

In this proof we modify an optimal fractional solution to an optimal integer solution
iteratively. In fact we give an explicit polynomial-time rounding method for rounding
fractional solutions of LP 6 to optimal integer solutions. In each iteration, we find
some fractional variable and modify the solution based on fractional variable value
and its position in the graph without any changes in objective function of LP 6.

In LP 6, we know that all values wG
i,j,t are nonnegative. So, in any of its optimal

solutions, we have Yi,j = min(wG∗
i,j , xi + x′

j ), yi,j,t = 1 for 1 ≤ t ≤ �Yi,j�, yi,j,t = 0
for t > �Yi,j �+1, and yi,j,t = Yi,j −�Yi,j� for t = �Yi,j �+1. Note that the sequence
wG

i,j,t is sorted in decreasing order with respect to their values. Consider an optimal
fractional solution. There exists at least one xi or one x′

j which is not integer. The
reason is that if all values of xi and x′

j were integer, all the other variables would
be integer too. Without loss of generality, assume that xs is not an integer number.
Define critical, empty and full edges in an optimal solution of LP as follows:

• e = (i, j) is a critical edge if we have Yi,j = xi + x′
j = wG∗

i,j ,

• e = (i, j) is an empty edge if we have Yi,j = xi + x′
j < wG∗

i,j , and

• e = (i, j) is a full edge if we have Yi,j = wG∗
i,j < xi + x′

j .

Consider the set of vertices in the upper (lower) part of G which have a path to us

through the critical edges. Name this set of vertices CU (CL). For any critical edge
e = (i, j), we know that xi + x′

j = wG∗
i,j which is an integer number, so if one of the

numbers xi and x′
j is not integer, the other one is not an integer number either. Since

xs is not an integer number, numbers xi and x′
j are not integer where ui ∈ CU and

lj ∈ CL. This means that xi and x′
j are greater than zero, and if we change them by a
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sufficiently small ε in the optimal solution, the constraints xi, x
′
j ≥ 0 still hold. Now,

we modify the optimal solution as follows:

xi = xi + ε, i ∈ CU

x′
j = x′

j − ε, j ∈ CL

We study in detail the changes that occur in the optimal solution by these changes of
the values of these variables. First, we define ε to be zero, and then we slowly increase
it and observe the changes in the solution. In the following, we study the situation of
edges in different categories. In some cases, we say that we stop increasing ε if some
certain events occur. Note that we keep increasing ε until at least one of these events
happen, or one of the variables xi or x′

j becomes integer.

• All edges between CU and CL: For edge e = (i, j), the value of xi + x′
j does not

change in this case, so nothing changes for this edge.
• All full edges between CU and (LG −CL): A full edge e = (i, j) which is adjacent

to CU remains full by increasing ε. The reason is that Yi,j = wG∗
i,j < xi + x′

j + ε.

• All full edges between (UG −CU) and CL: We keep increasing ε until the equality
Yi,j = wG∗

i,j = xi + x′
j − ε holds for some full edges such as e = (i, j) which is

adjacent to CL. In fact we stop increasing ε whenever some full edges change to
critical edges.

• All empty edges between CU and (LG − CL): Consider an empty edge e = (i, j)

which is adjacent to CU . Since the value of xi increases by ε, the value of Yi,j =
xi + x′

j also increases. We stop increasing ε whenever some empty edges convert
to critical edges. We may stop increasing ε in another situation. While we are
increasing ε, the value of Yi,j also increases for any empty edge e = (i, j) which
is adjacent to CU . By increasing Yi,j , the value of yi,j,t will increase too, where
t is the first index with yi,j,t < 1. When a variable yi,j,t < 1 reaches value 1, we
stop increasing ε. Note that increasing ε can be stopped by this kind of edge in two
different situations: when an empty edge changes to a critical one, or a non-integer
variable yi,j,t becomes 1. One can see that these increments increase the objective
function as well. Assume that the rate of increasing objective function by this type
of change is R1.

• All empty edges between (UG − CU) and CL: Consider an empty edge e = (i, j)

which is adjacent to CL. The value of Yi,j decreases by increasing ε. Since we∑
k yi,j,k = Yi,j , by decreasing Yi,j the value of yi,j,t also decreases, where t is the

maximum index with a nonzero value. We stop increasing ε whenever a variable
yi,j,t > 0 reaches the value 0. These changes decrease the objective function too.
Assume that the rate of decreasing the objective function by this type of changes
is R2.

• All edges between (UG − CU) and (LG − CL): For edge e = (i, j), the value of
xi + x′

j does not change in this case, so nothing changes for this edge.

One can verify that when we increase ε slowly the amount of change in the objec-
tive function is exactly:

εR = ε|CU | − ε|CL| + εR1 − εR2
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If we have R > 0, we can increase the objective function by increasing ε, which con-
tradicts our optimality assumption. If we have R < 0, we also reach a contradiction,
because if we start with ε = 0, and decrease its value instead, we can prove similarly,
and everything is similar to the case ε > 0. Therefore, R should be zero. In this case,
we will increase ε from zero until one of these scenarios occurs:

1. One of the full edges adjacent to CL changes to a critical edge,
2. One of the empty edges adjacent to CU changes to a critical edge,
3. One variable yi,j,t < 1 reaches the value 1,
4. One variable yi,j,t > 0 reaches the value 0, or
5. One of the non-integer variables xi or x′

j reaches an integer value. Note that we
only modify some non-integer variables xi and x′

j in our algorithm.

If scenarios 1 or 2 occur, the number of critical edges will increase, and we can
continue the algorithm iteratively with the new sets CU and CL. If scenarios 3 or 4
occur, the only change is the sets CU and CL, and we can continue our algorithm
with the new sets CU and CL. If scenario 5 occurs, the number of integer variables xi

and x′
j will increase, and we can continue our algorithm if any non-integer variable

remains. It is clear that during the changes, we have the invariant R = 0 in all cases.
Otherwise, we can increase the objective function which is a contradiction. During
these changes, we stop the algorithm if we reach an integer solution.

We now prove that our algorithm runs in polynomial time. One can see that in-
creasing ε in our algorithm is done step by step. A step starts by increasing ε, and
ends when one of scenarios 1–5 occur. We say a step is a gold step if it ends with sce-
nario 5. In other words, the number of integer variables xi and x′

j increases at the end

of a gold step. It is easy to see that the number of gold steps is at most |UG| + |LG|.
So, we only need to prove that the number of steps between two consecutive gold
steps is a polynomial function of the input size. First, we observe that the number of
steps which end with scenario 1 or 2 is polynomial. The reason is that the number of
critical edges increases in these scenarios, and this number is upper bounded by the
number of edges. The number of steps which end with scenarios 3 or 4 is also polyno-
mial, since at each step one of the y variables become integral. In addition, we know
that the above increasing process stops for a value ε < 1 because before ε reaches 1,
scenario 5 occurs, so each variable yi,j,t triggers the conditions of scenarios 3 or 4 at
most one time. Therefore, the number of steps between two consecutive gold steps is
also polynomial. We can thus conclude that our algorithm runs in polynomial time.
Since we do not lose any value in the modification steps, it is clear that at the end
of the algorithm, we have an integer solution with the same value of the objective
function.
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