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Abstract

In a multi-robot system, a number of autonomous robots would sense, communicate, and decide to

move within a given domain to achieve a common goal. In the pursuit-evasion problem, a polygonal

region is given and a robot called a pursuer tries to find some mobile targets called evaders. The

goal of this problem is to design a motion strategy for the pursuer such that it can detect all the

evaders. In this paper, we consider a new variant of the pursuit-evasion problem in which the robots

(pursuers) each moves back and forth along an orthogonal line segment inside a simple orthogonal

polygon P . We assume that P includes unpredictable, moving evaders that have unbounded speed.

We propose the first motion-planning algorithm for a group of robots, assuming that they move along

the pre-located line segments with a constant speed to detect all the evaders with unbounded speed.

Also, we prove an upper bound for the length of the paths that all pursuers move in the proposed

algorithm.

Keywords: Computational Geometry, Art Gallery, Motion Planning, Pursuit Evasion, Multi Robot

Systems, Sliding Robot.

1. Introduction

The mathematical study of the “pursuit-evasion” problem was first considered by Parson [1]. After

that, the watchman route problem was introduced as a variation of the art gallery problem, which

consists of finding static evaders in a polygon. The visibility-based motion-planning problem was

introduced in 1997 by Lavalle et al. [2]. The aim was to coordinate the motions of one or more robots5

(pursuers) that have omnidirectional vision sensors to enable them to eventually “see” an evader
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that is unpredictable, has an unknown initial position, and is capable of moving arbitrarily fast. The

process of detecting all evaders is also known as clearing the polygon. The pursuit-evasion problem has

a broad range of applications such as in air traffic control, military strategy, and trajectory tracking

[2].10

In 2011, Katz and Morgenstern introduced sliding camera guards for guarding orthogonal polygons

[3]. A security camera slides back and forth along a horizontal (vertical, respectively) track and

views every point along the track, directly upwards (leftwards, respectively) and directly downwards

(rightwards, respectively). We define our “Robots” to be the same as the security cameras, where a

robot r would travel back and forth along an axis-aligned line segment s inside an orthogonal polygon15

P . A point p is seen by s if there exists a point q ∈ s such that pq is a line segment perpendicular to

s and is completely inside P . The set of all points of P that can be seen by s is its sliding visibility

polygon (see Figure 1). The point p is seen by the robot r, if r is at point q on s (e.g., r = q).

p

q

s

Figure 1: The shaded area shows the sliding visibility polygon of s.

The important reason for defining our robots is that, in spite of the definition of sliding camera

in all the previous papers about this concept ([3][4][5]), it is assumed that a sliding camera can see20

all parts of its sliding visibility polygon simultaneously (which is a contradiction). So, we define our

robots which move along the sliding cameras tracks and can see along the line segment perpendicular

to its moving path. Therefore, the definition of our robots is more realistic than sliding cameras of

the previous papers.

According to the visibility-based motion-planning problem and our defined robots, we study the25

new version of planning the motions for a group of robots for clearing an orthogonal polygon when

robots are modeled as sliding cameras. We call our defined robots as “Sliding Robots”. The given

orthogonal polygon P has unpredictable, moving evaders with unbounded speed. Motion planning

for a group of sliding robots to clear P means presenting a sequence of motions for the sliding robots

such that any point of P is viewed by at least one robot. Moreover, a set of pre-located line segments,30

S, is given such that the union of their sliding visibility polygons is P .
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Previous Works

Generally, in the pursuit-evasion problem, the pursuer is considered as an l-searcher with l flash-

lights and rotates them continuously with a bounded angular rotation speed [6]. Thus, an∞-searcher

(also known as an omnidirectional searcher) is a mobile robot equipped with a 360◦ view sensor for35

detecting evaders. Lavalle et al. proposed the first algorithm for solving the pursuit-evasion problem

for an l-searcher [2]. They decomposed P into cells based on visibility properties and converted the

problem to a search on an exponential-sized information graph. Durham et al. [7] addressed the

problem of coordinating a team of mobile robots with limited sensing and communication capabilities

to detect any evaders in an unknown and multiply connected planar environment. They proposed an40

algorithm that guarantees the detection of evaders by maintaining a complete coverage of the frontier

between cleared and contaminated regions while expanding the cleared region.

The art gallery problem is a classical problem in computational geometry. Over the years, many

variants of this problem have been studied [8, 9, 10, 11]. Most of these have been proved to be NP-hard

[12], including the problem when the target region is a simple orthogonal polygon, and the goal is to45

find the minimum number of vertex guards to guard the entire polygon (e.g., [8, 11]). Some types of

them, which consider the limited model of visibility, use polynomial time algorithms [13, 14].

The study of the art gallery problem based on the sliding camera was started in 2011 by Katz and

Morgenstern [3]. They studied the problem of guarding a simple orthogonal polygon using minimum-

cardinality sliding cameras (MCSC). They showed that, when the cameras are constrained to travel50

only vertically inside the polygon, the MCSC problem can be solved in polynomial time. They left

the computation of the complexity of the MCSC problem as an open problem. In 2013, Durocher and

Mehrabi [4] studied these two problems: the MCSC problem and the minimum-length sliding camera

(MLSC) problem, where the goal was to minimize the total length of the trajectories along which the

cameras travel. They proved that the MCSC problem is NP-hard, when the orthogonal polygon has55

holes. They also proved that the MLSC problem is solvable in polynomial time even for orthogonal

polygons with holes. In 2014, De Berg et al. [5] presented a linear-time algorithm for solving the

MCSC problem in an x-monotone orthogonal polygon. The complexity of the MCSC problem on a

simple orthogonal polygon remains as an open problem.

Our Result60

In this paper for a given set S of orthogonal line segments, we propose an algorithm to plan the

motion of at most |S| sliding robots along certain segments of S so that the entire polygon is guarded.

Owing to the difficulty of having multiple cooperating robots executing common tasks, we present

a new method by storing some information on each reflex vertex. We assume that the sliding robots
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have map of the environment (a simple orthogonal polygon) and they are capable of broadcasting a65

message to all other robots by sending signals. This way, the robots can have some communications

with each other to maintain the coordination process. The main result of our algorithm is that, if S is a

set of MCSCs that guard the whole P , then our algorithm will detect all evaders with the minimum

number of sliding robots, assuming that the sliding robots just move along line segments of S. We

implement our proposed algorithm and present an examples in Section 6, the Implementation Section.70

We can assume that the input of the algorithm is just an orthogonal polygon P . Then, we compute

set S of line segments using the algorithm in [3] and [4]. The only restriction of the set of line segments

which we use is that it should guard all parts of P. So, we can use the proposed algorithms of [3] and

[4], which find the set of sliding cameras that guards the entire P. In some of the algorithms the aim

is to minimize the total length of sliding cameras [3] and in some of them the aim is to minimize the75

number of sliding cameras [4].

In this paper, we assume P and S as the inputs of the algorithm.

2. Preliminaries and Notations

Let P be an orthogonal polygon and V (P ) = {v1, v2, ..., vn} be the set of all vertices of P in

counterclockwise order. So, n is the number of vertices of P . We consider Vref (P ) to be all of the80

reflex vertices of P and assume a general position such that no four reflex vertices are collinear. The

reason of assuming the general position is explained in the Appendix in Section 8.

Suppose that P (a, b) is a sub-polygon of P whose boundary is from a to b (a and b are two points on

the boundary of P ) in counterclockwise order.

Let vj be a reflex vertex of P . vj has two edges, ej−1 = vj−1, vj and ej = vj , vj+1, that can be85

extended inwardly until reach the boundary of P (See Figure 2).

winj(j − 1)

winj(j + 1)

xj

Pj(j + 1)

Pj(j − 1)

vj+1 vj yj

vj−1

Figure 2: The windows and the sub-polygons of vj are shown.

We call these extensions as the windows of vj and denote them as winj(j − 1) = vjxj and

winj(j + 1) = vjyj , respectively. winj(j − 1) and winj(j + 1) are two line segments whose endpoints
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are on the boundary of P . winj(j − 1) partitions P into two sub-polygons. Let Pj(j − 1) be a sub-

polygon that consists of vj+1, and let P ′j(j − 1) be P \ Pj(j − 1). Therefore, Pj(j − 1) and P ′j(j − 1)90

are denoted by P (vj , xj) and P (xj , vj), respectively. Similarly, let Pj(j + 1) be a sub-polygon that is

separated from P by winj(j+1) and consists of vj−1, and let P ′j(j+1) be a sub-polygon that includes

vj+1. Therefore, Pj(j+1) and P ′j(j+1) are denoted by P (yj , vj) and P (vj , yj), respectively. Let L be

the set of all lines which pass through the windows of P . L partitions P into orthogonal rectangles.

For each vj ∈ Vref (P ), we store an array called FFj(i) (1 ≤ i ≤ 4) of size four in which the cells95

(of type Boolean) indicate whether the sub-polygons Pj(j− 1), Pj(j + 1), P ′j(j− 1), and P ′j(j + 1) are

cleared (true), respectively.

3. The Proposed Algorithm

In this section, we present an algorithm for solving the pursuit-evasion problem using sliding robots.

Assume that an orthogonal polygon P and a set of orthogonal line segments S = {s1, s2, . . . , sk} are100

given. We present a path-planning algorithm for finding the unpredictable evaders using a set of

sliding robots R = {r1, r2, . . . , rk} in which ri can move along the line segment si (k is the number of

line segments).

In our algorithm at each time one sliding robot moves and clears some portion of P . The other

robots are divided in two groups. The set of the robots which are waiting to clear some parts of P105

and the rest of them which are stopped until some request arrive. To distribute the movements of the

robots, we define the “event points” as below:

Definition 1. An event point happens when ri sees a reflex vertex, sees its corresponding waiting

sliding robot, or reaches an endpoint of si.

3.1. Overview of the Algorithm110

Our algorithm has six steps. The “start step,” the “decision step,” the “sending a signal step,”

the “update step,” the “move back step,”and the “termination step.” We assume that P is initially

contaminated and we should clear the whole of it. To present our path-planning method, we start

with an arbitrary sliding robot ri ∈ R, which can move along si ∈ S. The first robot, ri, starts moving

from one endpoint of si. When ri reaches an event point, it updates the cleared sub-polygons. By the115

time that ri finishes its clearing, it moves back along si. Moreover, at each event point, ri stops and,

according to the cleared sub-polygons of P , decides to continue its movement or wait and send a signal

to the other robots to clear a specific sub-polygon of P . When ri sends a signal to the other robots

to clear a sub-polygon, such as P1, an arbitrary robot that can clear some parts of P1 starts moving

along its corresponding line segment. When all parts of P become cleared, the algorithm terminates.120
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3.2. Details of the Algorithm

Now, we explain the steps of the algorithm in detail. We store the status of the regions in their

corresponding reflex vertices, which are updated by the robots during the movements to keep track

of the contaminated regions, which is helpful in the decision-making process.

For each ri ∈ R, we consider an array, which is called Di(j), 1 ≤ j ≤ 3. Each storage includes125

an interval such as (a, b), which indicates the boundary of P between a and b in counterclockwise

order. These storage are updated at each event points. The first storage, Di(1), indicates the cleared

sub-polygon of P when ri is clearing (Di(1) maybe cleared partly by ri). The second storage, Di(2),

indicates the sub-polygon of P that should be cleared by ri and maybe some other robots. The third

storage, Di(3), specifies the sub-polygon that should be cleared until ri can continue its movement.130

Initially, we assume that all parts P are contaminated; therefore, ∀ri∈RDi(1) = ∅ and ∀vj∈Vref (P ),1≤i≤4

FFj(i) = false. Also, we assume that ∀ri∈RDi(2) = Di(3) = ∅. Note that, except the start and

termination steps, there is no order for the other steps and they can be done in any order.

Start Step

As mentioned earlier, we start with one of the endpoints of an arbitrary si (ri moves along si).135

• If ri is going to start from an endpoint that is on the boundary, ri can see two consecutive

vertices (suppose the endpoint is on the edge ek = vkvk+1).

– If vk and vk+1 are convex (for example, the left endpoint of s1 in Figure 3), then ri starts

clearing P by its movement and updates Di(1) = (vk, vk+1) and Di(2) = (vk+1, vk). ri

continues its movement along si until an event point happens. At each event point, ri does140

the update step then the decision step.

– If at least one of vk or vk+1 is a reflex vertex (for example, the lower endpoint of s1 or s2

in Figure 4), then ri cannot start clearing P and stops on the endpoint. Suppose that the

maximal line segment passes through edge ek is l. Let x and w be the first intersection of l

at the boundary of two sides. si can be inside the sub-polygon corresponding to (x,w) or145

(w, x). Assume that si is inside (w, x). Therefore, ri stops on the endpoint and does the

decision step and updates Di(2) = (w, x).

• If ri is going to start from an endpoint that is not on the boundary, then ri cannot start clearing

P ; it therefore stops on the endpoint and does the decision step. Suppose that the maximal

normal line segment to si that passes through ri is lr. Let x and w be the first intersection of l150

at the boundary of two sides. si can be inside the sub-polygon corresponding to (x,w) or (w, x).

Assume that si is inside (w, x). Therefore, ri sends a signal to the other robots to clear (x,w),
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and updates Di(2) = (w, x) and Di(3) = (x,w). As shown in Figure 3, if r2 is going to start

from z, it stops and sends a signal to the other robots to clear the sub-polygon corresponding

to (x,w).155

s1

s2

s3

ca b

xk

yt
vt

vk

vk′−1

vk+1

vk−1

vk′

yk′

vk′+1

x

w

z

Figure 3: Sliding robots r1, r2, and r3 move along line segments s1, s2, and s3, respectively.

Update Step

Assume that ri moves along si. When an event point happens, ri stops and updates Di(1)

(increases the cleared region) and Di(2) (decreases the sub-polygon that should be cleared). See

Figure 3; when r1 starts moving from left endpoint and reaches a, it updates D1(1) = (vk, xk) and

D1(2) = (xk, vk). When r1 reaches b, it updates D1(1) = (yk′ , vk′+1) and D1(2) = (vk′+1, yk′). These160

updates can be done in O(1) time by changing two endpoints of Di(1) and Di(2).

When ri sees a reflex vertex, vk, during its movement, it updates FFk(j) for 1 ≤ j ≤ 4 as detailed

below:

Note that if (vk, xk) ∈ Di(1) and (yk, vk) ∈ Di(1), then vk+1 ∈ Di(1) and vk−1 ∈ Di(1), respectively.

• If (vk, xk) ∈ Di(1), then Pk(k− 1) is cleared and ri updates FFk(1) = true (See Figure 3; when165

r1 moves back from left to right and reaches a, it sees vk).

• If (xk, vk) ∈ Di(1), then P ′k(k− 1) is cleared and ri updates FFk(3) = true (See Figure 3; when

r1 moves back from right to left and reaches a, it sees vk).

• If (yk, vk) ∈ Di(1), then Pk(k + 1) is cleared and ri updates FFk(2) = true (See Figure 3; when

r1 moves back from left to right and reaches b, it sees vk′).170
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• If (vk, yk) ∈ Di(1), then P ′k(k + 1) is cleared and ri updates FFk(4) = true (See Figure 3; when

r1 moves back from right to left and reaches b, it sees vk′).

Move Back Step

Assume that an event point happens when ri moves along si. Then, ri updates Di(1) and Di(2).

At each time that Di(2) becomes empty while Di(1) 6= ∅, ri finishes its clearing and moves back175

along si. It moves back until it sees a waiting robot or reaches an endpoint of si. While it is moving

back, if ri sees its corresponding waiting robot (supposedly rj) and Di(1) = Dj(3), then Di(2) = ∅.
Therefore, ri updates Dj(3) = ∅, Dj(1) = Dj(1)

⋃
Di(1), and Dj(2) = Dj(2)/Di(1) . If ri sees a

reflex vertex vk during moving back, it updates FFk(j) for 1 ≤ j ≤ 4 as explained in “Update Step”.

Since Di(2) is empty, ri finishes its clearing and rj starts moving back. rj can be collinear with the180

endpoint of si. See Figure 3; when r1 moves back from left to right and reaches c, it sees the waiting

robot r2 at z. So, r1 updates the storage of r2 and r2 moves back.

Decision Step

When ri sees an event point, it stops, does the “Update Step” or may do the “Move Back Step”.

In the case that ri is on the endpoint of si, we do as below.185

Let ep be the endpoint which ri is on that. ep can be on the boundary (I) or inside (II) P .

(I.) Suppose that ep is on the boundary of P , it lies on an edge of P called ek = vkvk+1. In this

situation do as below:

1. When vk ∈ Vref (P ), (See Figure 4; assume that r3 is on the blue point of s3.)

(a) If Pk(k + 1) is contaminated (i.e., FFk(2) = false), then Pk(k + 1) should be cleared.190

Therefore, ri waits and sends a signal to the other robots to clear Pk(k + 1) (indicated by

(yk, vk)) and updates Di(3) = (yk, vk).

(b) Else, Pk(k + 1) is cleared (i.e., FFk(2) = true). So, add Pk(k + 1) to the cleared parts,

Di(1) = Di(1) ∪ (yk, vk) and decrease it from the parts that should be cleared, Di(2) =

Di(2) \ (yk, vk) .195

2. When vk+1 ∈ Vref (P ), (See Figure 4; assume that r1 or r2 is on the blue point of s1 or s2,

respectively.)

(a) If Pk+1(k) is contaminated (i.e., FFk+1(1) = false), then Pk+1(k) should be cleared.

Therefore, ri waits and sends a signal to the other robots to clear Pk+1(k) (indicated by

(vk+1, xk+1)) and updates Di(3) = (vk+1, xk+1).200
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vkvk+1

s5

s6

vj
vj+1

s7

l

xj+1
yj

yk

b

a

vk′+1
vk′

s1

vj

vj+1

s4

vk−1

xk′+1

s8

vk−2

a7

yk−1

a1

b7

vm+1

vm

xm+1

s2

s3

Figure 4: Sliding robot ri moves along line segment si.

(b) Else, Pk+1(k) is cleared (i.e., FFk+1(1) = true). So, update Di(1) = Di(1) ∪ (vk+1, xk+1)

and Di(2) = Di(2) \ (vk+1, xk+1).

3. When at least one of vk and vk+1 is a reflex vertex, then ep is aligned a window of P , assume

that ep is on ` ∈ L. (See Figure 4; assume that r3 is on the blue point of s3.)

(a) If ` includes two consecutive reflex vertices vm, vm+1, where m 6= k (suppose that the205

nearest one to ri is vm), then

i. If Pm+1(m) is contaminated, then do same as 2a.

ii. Else, do same as 2b.

4. When vk and vk+1 are convex, (See Figure 4; assume that r4 is on the blue point of s4.)

• If ri is going to start moving from ep (i.e., if Di(1) = ∅), then ri updates Di(1) = (vk, vk+1)210

and starts moving along si.

• If ri reaches the endpoint of si (i.e., if Di(1) 6= ∅), then Di(2) is ∅ and ri moves back.

(II.) Suppose that ep is inside and not on the boundary of P , ep can be collinear with at most 3

reflex vertices (due to general position assumption no four reflex vertices are collinear). According to

the number of these reflex vertices do as below.215

Assume that ep is not collinear with any reflex vertex. Consider the maximal orthogonal line

segment normal to si at ep and call it l. Let a and b be two endpoints of l. Line segment l partitions

P into two sub-polygons. One of them consists of si. Therefore, ri sends a signal to the other robots
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to clear the sub-polygon that does not include si and that is between a and b
(
ri updates Di(3)

depending on its position to Di(3) = (a, b) or Di(3) = (b, a)
)
. See Figure 4; if r7 is on the blue point220

of s7, then the sub-polygon that is between (a, b) in counterclockwise order should be cleared.

Assume that ep is collinear by at least one reflex vertex. So, ep is on a window, say ` ∈ L.

• If ` consists of one reflex vertex vk (assume that the consecutive vertex of vk on ` is vk+1) and

si is inside Pk(k + 1), then (See Figure 4; assume that r5 is on the blue point of s5.)

– If P ′k(k + 1) is contaminated (i.e., FFk(4) = false), then ri sends a signal to the other225

robots to clear P ′k(k + 1) and updates Di(3) = (vk, yk).

– Else, Di(1) = Di(1) ∪ (vk, yk) and Di(2) = Di(2) \ (vk, yk).

• if ` consists of one reflex vertex vk and si is inside P ′k(k + 1), then

– If Pk(k + 1) is contaminated, then do same as 1a.

– Else, do same as 1b.230

• If ` consists of two consecutive reflex vertices vk and vk+1 (suppose that the nearest one to ep

is vk) and si is inside Pk(k + 1), then (See Figure 4; assume that r6 is on the blue point of s6.)

– If Pk+1(k) is contaminated, do same as 2a.

– Else, ri sends a signal to the other robots to clear P ′k+1(k)
⋂
P ′k(k+1) and updates Di(3) =

(xk+1, yk).235

• If ` consists of two consecutive reflex vertices vk and vk+1 and si is inside P ′k(k + 1), then

– If Pk+1(k) is contaminated, do same as 2a

– If Pk(k + 1) is contaminated, do same as 1a

– If Pk+1(k) and Pk(k + 1) are cleared, then Di(1) = Di(1)∪ (yk, xk+1) and Di(2) = Di(2) \
(yk, xk+1) (do same as 1b and 2b).240

Now, suppose that an event point happens and ri sees at least one reflex vertex. If there are no two

consecutive reflex vertices on `, then ri continues its movement along si. If there are two consecutive

reflex vertices on `, do same as I1, I2. See Figure 4; assume that r1 moves from blue point until point

a1 of s1.
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Sending a Signal Step245

Assume that ri waits and sends a signal to the other robots to clear sub-polygon P1, which is

between a and b in counterclockwise order (Di(3) = (a, b)). Robot ri can wait whenever it sees a

reflex vertex or it reaches an endpoint.

When ri sends a signal, a robot that can clear some parts of P1 consisting of a starts clearing. If

more than one robot can start clearing, choose one of them arbitrarily. At each time, one robot is250

clearing the polygon. Suppose that rj sees a and starts clearing P1.

Let la(sj) be the orthogonal line segment which passes through a and intersects sj . Also, let aj

be the intersection of sj and la(sj). rj can be inside or outside P1. rj starts its movement from aj on

sj . Dj(1) is the intersection of the boundary of P1 (that is on the boundary of P ) and la(sj). Also,

Dj(2) = Di(3). See Figure 4; suppose ri = r5 is on purple point and sends a signal to the other robots255

to clear P1 = Pk−1(k − 2) (i.e., D5(3) = (yk−1, vk−1)). rj = r7 is a robot which is outside of P1. r7

starts clearing from a7 towards the right endpoint of s7 and set D7(2) = D5(3), D7(1) = (yk−1, vk′).

Here la(sj) is a vertical line segment. rj = r1 is a robot which is inside of P1. r1 starts clearing from

a1 towards the down endpoint of s1 and set D1(2) = D5(3), D1(1) = (vk−1, yk−1). Here la(sj) is a

horizontal line segment.260

Note that when rj moves it can clear some parts of P except P1 but we only consider the cleared

parts which is inside P1.

As mention before, in some cases ri can wait and send a signal when it sees a reflex vertex vg and

FFg(x) = false, x ∈ {1, 2, 3, 4}. In this case P1 is the corresponding sub-polygon of FFg(x). See

Figure 4; when ri = r5 and FFk−1(1) = false, r5 waits until P1 = Pk−1(k − 2) becomes cleared. At265

the time that a robot (supposedly ru) updates FFg(x) to true, ru finishes its clearance and updates

Di(1) = Di(1)
⋃
Du(1) and Du(2) = Du(2) \Du(1) and Di(3) = ∅. Then, ri continues its movement.

Termination Step

We assume that, initially, all parts of P are contaminated. So, ∀ri∈RDi(1) = ∅ and ∀1 ≤ i ≤ 4,

FFj(i) = false. When (1) there is no waiting robot (∀ri∈RDi(3) = ∅), (2) all robots have cleared their270

corresponding sub-polygons (∀ri∈RDi(2) = ∅), and (3) all parts of P have been cleared (
⋃|R|

i=1 Di(1) =

P ), the motion-planning algorithm is finished. These three conditions should happen simultaneously.

We define a “phase” to be the movement between two consecutive event points. Because of our

algorithm, one robot can move and clear some parts of P at any time. In each phasethe cleared parts

are increased. When a robot ri finishes its clearing, it transfers its cleared parts to another robot and275

its Di(2) is ∅. Only the last robot do not transfer anything. When Di(1) indicates P for any robot

and Di(2) = Di(3) = ∅, that robot is the last robot and the algorithm is finished. So, for checking
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⋃|R|
i=1 Di(1) = P , we only need to check Di(1) at each phasein O(1) time. When Di(1) = (vk+1, vk)

for any ri ∈ R, vk ∈ V (P ) and Di(2) = Di(3) = ∅, the algorithm is finished (P can be shown by

(vk+1, vk)).280

4. Correctness

In this section, we show the correctness of the proposed algorithm. One advantage of the proposed

algorithm is that the algorithm is not simple but its correctness is simple. We prove that the proposed

algorithm is deadlock free (it is not trapped in a loop). At each time one robot moves. Since S guards

all parts of P , then the algorithm will be terminated. Then, we will prove Lem.2 which is another285

advantage of our algorithm. Starting with any arbitrary sliding robot, the algorithm can clear P

completely.

Lemma 1. The proposed algorithm is deadlock free.

Proof. Assume that ri is waiting for sub-polygon Pi to be cleared by a sequence of robots. Inside

Pi, rj may be waiting for sub-polygon Pj to be cleared. Therefore, there may exist a chain of waiting290

robots, say, rseq(i) =< rj , rt, . . . , rm >, for clearing Pi. If ri ∈ rseq(i), a deadlock occurs and the

algorithm will not get terminated. Therefore, we shall show that the relation ri ∈ rseq(i) will never

become valid.

Owing to the definition of the window and its corresponding sub-polygons, when ri waits for the

clearance of Pi, it cannot see any points of Pi, except its window. Since the sub-polygons corresponding295

to the other robots of rseq(i) are inside Pi, none of the waiting robots of rseq(i) can wait for ri. Hence,

the algorithm is deadlock free.

Lemma 2. A simple orthogonal polygon can be completely cleared starting with an arbitrary sliding

robot.

Proof. Assume that we start with an arbitrary robot ri. Because of Lemma 1, the proposed algo-300

rithm is deadlock free. Moreover, since S guards all parts of P , the termination step will happen.

Based on the termination step, the relation
⋃|S|

i=1 Di(1) = P becomes valid; therefore, there is no

contaminated point in P and it gets cleared completely.

5. Analysis

In this section, we analysis the total length that all sliding robots move. Let m be the total length305

of the edges of P . Let Rout be the set of the sliding robots which are reported by the algorithm for

clearing P (output of the algorithm). We call the set of the line segments which the robots of Rout
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move on them as Sout. So, Sout ⊂ S is the output set of the line segments that sliding robots move

along them and clear P . First, we show that there is no recontamination in our process. We then

prove that the length of the paths which sliding robots move and clear P is at most 2m + n|emax|,310

where emax = maxei∈S ei.

Lemma 3. There is no recontamination in the proposed algorithm.

Proof. Due to our algorithm when a robot finishes its clearing it stops at that point. So, it keeps

safe its cleared parts. In some cases a robot does the clearance process more than one time. In this

cases another robot keeps the cleared parts safe. When ri stops and waits for the other robot to clear315

sub-polygon P1, it keeps safe the cleared parts since that time. According to Lem.1 the algorithm is

deadlock (i.e., there is no loop in the sequence of the waited robots). So, ri will never clear any parts

of P1 and no point of Di(1) becomes contaminated again. Therefore, there is no recontamination

during our algorithm.

Lemma 4. The total length of the paths which sliding robots move and clear P is at most 2m+n|emax|.320

Proof. Let X be the total length of the paths which sliding robots move and clear P . The paths can

be partitioned into three sets (Y, Z and W ). The set of the movements that robots move and clear

some parts of P simultaneously, called Y . The set of the movements in moving back steps, called

Z. The set of the movements when a robot receives a signal and moves until reaches its start point,

called W . Due to the algorithm the cleared parts of P always increase and never decrease. Only325

when a robot moves back to transfer its information to its corresponding waited robot, it does not

increase the cleared parts. As Lemma 3 and this fact that the cleared parts always increase (except

moving back process), the algorithm clears each part of P once. So, for clearing P its sufficient to

clear boundary of P once. Therefore, Y ≤ m. As the paths where a robot ri moves and clears some

part and the paths where ri moves back are equal, Z ≤ m. As mentioned before the algorithm clear330

boundary of P once. So, in the worst-case for clearing each vertex of P one robot should be called

(send a signal step). In worst-case, at each call a robot ri should move along si and reach its start

point. So, the length of the movement at each call is at most |si|. As emax is the maximum length

line segment in Sout, |si| ≤ |emax|. So, for each call a robot moves at most |emax| and for all calls

(O(n) vertex), we have W ≤ n|emax|. Therefore, X ≤ 2m + n|emax|. The worst-case number of calls335

is shown in Fig. 5. So, the tight upper bound for the number of calls is O(n).

Corollary 5. If S is the set of minimum cardinality sliding cameras that guard the whole P , then

our algorithm clears P with the minimum number of sliding robots (considering that the robots should

move along line segments of S).
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s1

s2

Figure 5: For clearing the polygon a sliding robot s1 (or s2) should be called O(n) times.

6. Implementation340

The algorithm has been implemented in Java processing language using the Apple MF840 PC with

processor 2.7 GHz, Intel Cori5 and Ram 8 GB. In the implementation, we assume that the pursuers

can move along the given line segments which are placed in an environment that is bounded by a simple

orthogonal polygon. All motions are determined using information only from the reflex vertices or the

other visible robots. The algorithm successfully computed results for several examples. One example345

is shown in Figure 6. As lack of space, we do not present some similar steps in Figure 6. See the

animations of applying algorithm on some examples and also, the report of the total length traversed by

the robots using the algorithm, the number of Decision steps, and the number of calling other robots in

a table, in https://www.dropbox.com/sh/wskztugum1s411u/AAApfhkIjC1WkjRxOr_9xlPAa?dl=0.
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(b) (c)
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(a)

s1

s2

s3

s1

s2

s3

Figure 6: The robot’s path, start-point and end-point of each step are shown by dashed arrow, cross and circle,

respectively.

7. Conclusion350

When the environment is known for the sliding robots, we propose an algorithm for planning the

motions of a group of sliding robots to detect all the unpredictable moving evaders with bounded

speed ( 6=∞). We use a set of line segments S where the sliding robots move along them. In the case

where S is a set of minimum-cardinality sliding cameras that guard P , the proposed algorithm uses

the minimum number of sliding robots to clear P .355

As an open problem, we can consider a case where the environment is unknown to the robots,

and the robots can only plan their motions based on the local visible area. If the robots send the

information to those that are visible to them, will be challenging problem in practice.
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Appendix

The assumption of the general position is very important for our algorithm. As defined before, in

general position no four reflex vertices are collinear. If we omit this assumption, each line ` can have

many pairs of consecutive reflex vertices. Then in the steps of our algorithm we should have a while395

loop for checking the cleared areas, which increases the running time of the algorithm. For example

in Fig.7, assume that s1 starts moving from a. When it reaches b, it should check the clearance of all

gray sub-polygons. As O(n) reflex vertices can be on a line, s1 should check O(n) sub-polygons. Our

algorithm can not support these examples.

Our algorithm can be modified to handle this situation. How ever this will increase the space and400

time complexity. This can be done by storing the clearance of the sub-polygons using the floating

storage. Therefore, we consider the general position for the number of collinear reflex vertices.

vi vi+1 vj vj+1 vl vl+1 vm
vm+1

vt vt+1 vq vq+1 vx

s1

a

b

Figure 7: In this example more than three reflex vertices are collinear.
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