
Fair Allocation of Indivisible Items With Externalities

Mohammad Ghodsi ∗† Hamed Saleh ‡ Masoud Seddighin ∗

Abstract

One of the important yet insufficiently studied subjects in fair allocation is the external-
ity effect among agents. For a resource allocation problem, externalities imply that a bundle
allocated to an agent may affect the utilities of other agents.

In this paper, we conduct a study of fair allocation of indivisible goods when the externalities
are not negligible. We present a simple and natural model, namely network externalities, to
capture the externalities. To evaluate fairness in the network externalities model, we generalize
the idea behind the notion of maximin-share (MMS) to achieve a new criterion, namely, extended-
maximin-share (EMMS). Next, we consider two problems concerning our model.

First, we discuss the computational aspects of finding the value of EMMS for every agent.
For this, we introduce a generalized form of partitioning problem that includes many famous
partitioning problems such as maximin, minimax, and leximin partitioning problems. We show
that a 1/2-approximation algorithm exists for this partitioning problem.

Next, we investigate on finding approximately optimal EMMS allocations. That is, alloca-
tions that guarantee every agent a utility of at least a fraction of his extended-maximin-share.
We show that under a natural assumption that the agents are α-self-reliant, an α/2-EMMS al-
location always exists. The combination of this with the former result yields a polynomial-time
α/4-EMMS allocation algorithm.

1 Introduction

Consider a scenario where there is a collection of m indivisible goods that are to be divided amongst
n agents. For a properly chosen notion of fairness, we desire our division to be fair. Motivating
examples are dividing the inherited wealth among heirs, dividing assets of a bankrupt company
among creditors, divorce settlements, task assignments, etc.

Fair division has been a central problem in Economic Theory. This subject was first introduced
in 1948 by Steinhaus [24] in the Polish school of mathematics. The primary model used the
metaphor of cake to represent a single divisible resource that must be divided among a set of
agents. Proportionality is one of the most well-studied notions defined to evaluate the fairness
of a cake division protocol. An allocation of a cake to n agents is proportional, if every agent
feels that his allocated share is worth at least 1/n of the entire cake. Despite many positive results
regarding proportionality and other fairness notions (e.g. envy-freeness) in cake-cutting (see among
many others, [5, 23, 24, 9, 3, 4]), moving beyond the metaphor of cake the problem becomes more
subtle. For example, when the resource is a set of indivisible goods, a proportional allocation is
not guaranteed to exist for all instances1.

∗Sharif University of Technology
†Institute for Research in Fundamental Sciences (IPM) School of Computer Science
‡University of Maryland
1For example, consider the case that there are two agents and the resource is a single indivisible item.

1

ar
X

iv
:1

80
5.

06
19

1v
1 

 [
cs

.G
T

] 
 1

6 
M

ay
 2

01
8



For allocation of indivisible goods, Budish [8] introduced a new fairness criterion, namely
maximin-share, that attracted a lot of attention in recent years [1, 22, 18, 12, 25]. This notion
is a relaxation of proportionality for the case of indivisible items. Assume that we ask agent i
to distribute the items into n bundles, and take the bundle with the minimum value. In such a
situation, agent i distributes the items in a way that maximizes the value of the minimum bundle.
The maximin-share value of agent i is equal to the value of the minimum bundle in the best possible
distribution. Formally, the maximin-share of agent i, denoted by MMSi, for a set M of items and
n agents is defined as

max
P=〈P1,P2,...,Pn〉∈Π

min
j
Vi(Pj),

where Π is the set of all partitions of M into n bundles, and Vi(Pj) is the value of bundle Pj to
agent i. In a nice paper, Procaccia and Wang [22] show that in some instances, no allocation can
guarantee maximin-share to all the agents, but an allocation guaranteeing each agent 2/3 of his
maximin-share always exists. This factor has been recently improved to 3/4 by Ghodsi et al. [12].

Our goal in this paper is to generalize the maximin-share to the case of the agents with ex-
ternalities. Roughly speaking, externalities are the influences (costs or benefits) incurred by other
parties. For resource allocation problems, externalities imply that the bundle allocated to an agent
may affect the utility of the other agents. In this work, we assume that the externalities are positive,
which is a common assumption in the literature [15, 7, 20].

There are many reasons to consider externalities in an allocation problem. The goods to be
divided might exhibit network effects. For example, the value of an XBox to an agent increases
as more of his friends also own an XBox, since they can play online. Many merit goods generate
positive consumption externalities. In healthcare, individuals who are vaccinated entail positive
externalities to other agents around them, since they decrease the risk of contraction. Furthermore,
allocating a good to an agent might indirectly affect the utility of his friends since they can borrow
it.

The messages of our paper can be condensed as follows: First, considering the externalities is
important: value of EMMS (the natural generalization we define to adapt MMS to the environment
with externalities) and MMS might have a large gap. In fact, we show that even a small amount of
influence can result in an unbounded gap between these two notions. Thus, when the externalities
are not negligible, methods that guarantee MMS to all the agents might no longer be applicable.
Second, regarding our model and fairness notion, we can approximately maintain fairness in the
environment with externalities. In the next section, we give a more detailed description of our
results and the techniques used in the paper.

1.1 Our Results and Techniques

In this paper, we take one step toward understanding the impact of externalities in allocation of
indivisible items. We start by proposing a general model to capture the externalities in a fair
allocation problem under additive assumptions. Although we present some of our results with
regard to this general model, the main focus of the paper is on a more restricted model, namely
network externalities, where the influences imposed by the agents can be represented by a weighted
directed graph. This model is inspired by the well-studied linear-threshold model in the context of
network diffusion.

We suggest the extended-maximin-share notion (EMMS) to adapt maximin-share to the envi-
ronment with externalities. Similar to maximin-share, our extension is motivated by the maximin
strategy in cut-and-choose games. We discuss two aspects of our notion.

2



First, we discuss the hardness of computing the value of EMMSi, where EMMSi is the extended-
maximin-share of agent i. For this, we introduce a generalized form of the partition problem that
includes many famous partitioning problems such as maximin, minimax, and leximin partitioning
problems. This generalized problem is NP-hard due to a trivial reduction from the partition
problem. In Section 4, we propose a 1/2-approximation algorithm for computing EMMSi (Theorem
4.2). In fact, we show that the LPT method, which is a famous greedy algorithm in the context
of job scheduling, guarantees 1/2-approximation for the general partition problem. We also reveal
several structural properties of such partitions.

Second, we consider the approximate α-EMMS allocation problem. That is, allocations that
guarantee every agent a utility of at least a fraction α of his extended-maximin-share. We define
the property of β-self-reliance and show that when the agents are β-self-reliant, there exists an
allocation that guarantees every agent i a utility of at least β/2-EMMSi (Theorem 5.1). This is
our most technically involved result. The basic idea behind our method is as follows: every agent
has an expectation value which estimates the utility that he must gain through the algorithm.
Initially, the expectation value of agent i is at least EMMSi/2. In every step of the algorithm, we
choose an agent and allocate him a bundle with value at least as his expectation value. Regarding
the bundle allocated to this agent, we decrease the expectation value of the remaining agents.
Although the algorithm is simple, the analysis is rather complex and heavily exploits the structural
properties of the general partitioning problem. The combination of our existential proof with the
1/2-approximation algorithm for computing EMMS yields a polynomial time β/4-EMMS allocation
algorithm.

Additional Results

Brânzei et al. [7] extend the proportionality to the case of the agents with externalities. Here, we
define the average-share notion and claim that average-share is a better extension of proportionality
in presence of externalities. We justify our claim by considering the implications among extended-
maximin-share, average-share, and extended-proportionality.

In interest of space, most of the proofs are deferred to the appendix.

1.2 Related Work

Maximin-share has received a lot of attention over the past few years [22, 12, 1, 13, 18, 11, 25,
2, 6]. The counter-example suggested by Procaccia and Wang [22] refutes the existence of any
allocation with the maximin-share guarantee. In addition, Procaccia and Wang propose the first
approximation algorithm that guarantees each agent 2/3 of his maximin-share. Recently, Ghodsi
et al. [12] improve the approximation ratio to 3/4. For the special case of 3 agents, Procaccia and
Wang [22] prove that guaranteeing 3/4 of every agent’s maximin-share is always possible. This
factor is later improved to 7/8 by Amanatidis et al. [1] and to 8/9 by Gourvès and Monnot [13].
Kurokawa et al. [18] show that when the valuations are drawn at random, an allocation with
maximin-share guarantee exists with a high probability, and it can be found in polynomial time.

Other works generalize maximin-share for different settings. For example, Farhadi et al. [11]
generalize maximin-share for the case of asymmetric agents with different entitlements. They
introduce the weighted-maximin-share (WMMS) criterion and propose an allocation algorithm with
a 1/2-WMMS guarantee. Suksompong [25] considers the case that the items must be allocated to
groups of agents. Gourvès and Monnot [13] extend maximin-share to the case that the goods
collectively received by the agents satisfy a matroidal constraint and propose an allocation with a
1/2 maximin-share guarantee.

3



In recent years, considering externalities for different problems has received an increasing at-
tention in computer science [16, 15, 7, 20, 19, 2, 21, 6, 11]. For example, Haghpanah et al. [15]
study auction design in the presence of externalities. In a more related work, Brânzei et al. [7]
consider externalities in the cake cutting problem. They introduce a model for cake cutting with
externalities and generalize classic fairness criteria to the case with externalities. Following this
work, other works also consider externalities in fair division. For example, Li et al. [20] study
truthful and fair methods for allocating a divisible resource with externalities.

2 Model

Throughout the paper, we assumeM is a set of m indivisible items that must be fairly allocated to
a set N = [n] of agents, where [n] denotes the set {1, 2, . . . , n}. We introduce our model in Section
2.1 and our fairness criteria in Section 2.2.

2.1 Modeling the Externalities.

We start by proposing a general model to represent the externalities. In the general externalities
model, we suppose that for every set S of items, Vj,i(S) reflects the utility that agent i recieves by
allocating S to agent j. In this model, there is no restriction on the value of Vj,i(.), except that the
valuations are additive, i.e., Vj,i(S) =

∑
b∈S Vj,i({b}).

We also consider a more restricted model where the externalities are due to the relationships
between agents. For example, friends may share their items with a probability which is a function
of their relationship. We consider a directed weighted graph G where for every pair of vertices i
and j, the weight of edge (

−→
j, i), denoted by wj,i, represents the influence of agent j on agent i. We

refer such a graph as influence graph. If we allocate item b to agent j, the utility gained by agent
i from this allocation would be Vi({b}) · wj,i, where Vi is the valuation function of agent i. As an
example, consider the influence graph illustrated in Figure 1. For the allocation that allocates Si
to agent i (1 ≤ i ≤ 6), total utility of agent 1 would be V1(S1) · 0.8 + V1(S2) · 0.2. We call such
a model the network externalities model. Notice that, in this model, the utility of agent i for
allocating a set S of items to himself is Vi(S) · wi,i. In this paper, we suppose w.l.o.g. that the
weights of the edges in the influence graph are normalized, so that for every agent i,

∑
j wj,i = 1.

Although we prove some of our results for the general externalities model, our main focus is on the
network externalities model.

Definition 2.1 We say agent i is β-self-reliant, if wi,i ≥ β.

For example in Figure 1, agent 1 is 0.8-self-reliant and agent 5 is 0.55-self-reliant. In real-world
situations, we expect β to be a value close to 1. Note that, being β-self-reliant for β ' 1 doesn’t
mean that we can ignore the externalities (for example, see the instance presented in the proof of
Observation 5.1).

Definition 2.2 For every agent ai, we define the influence vector of agent i, denoted by xi =
[xi,1, xi,2, . . . , xi,n] as the vector representing the influences of the agents on agent i in the influence
graph, in non-decreasing order.

For example, for the graph in Figure 1, we have x4 = [0, 0, 0.1, 0.4, 0.5] and x5 =
[0, 0, 0.2, 0.25, 0.55]. Note that when agent i is β-self-reliant, we have xi,n ≥ β.

4



1

2

3

5

4

0.2
0.2

0.1

0.25

0.20.4

0.3

0.5

0.55

0.80.5

1

Figure 1: An example of influence graph.

4

4

6

4

4

6

11

6

6

4

4

4

11

4

P1 P2

1 2 3 1 2 3

Figure 2: The illustration of two partitions P1

and P2, which are respectively a minimax and a
maximin partitions.

2.2 Fairness Criteria

Proportionality and envy-freeness are two of the most common criteria in the literature of cake
cutting. For envy-freeness, two extensions are introduced to deal with externalities: swap-envy-
freeness by Velez [26] and swap-stability by Brânzei et al. [7]. In addition, Brânzei et al. [7] defined
extended-proportionality as follows.

Definition 2.3 (Extended-proportionality [7]) Let V̂i be the maximum utility that agent i can
gain by allocating each item to the right agent, i.e., agent that maximizes the value of that item
for agent i. Allocation A is extended-proportional, if the utility of every agent i from A is at least
V̂i/n.

In this paper, we suggest another extension of proportionality, which we call average-share.

Definition 2.4 (Average-share) The average value of item b for agent i, denoted by V i({b}), is
defined as

∑
j Vj,i({b})/n. The average-share of agent i is V i(M) =

∑
b∈M V i({b}). Furthermore,

an allocation is said to be average, if the total utility of every agent from this allocation is at least
as his average-share.

It is easy to observe that both of these notions are equivalent to proportionality in the absence of
externalities. However, average-share is a stronger notion, i.e., for every agent i, we have V i(M) ≥
V̂i/n. For the network externalities model, we have

V̂i/n = Vi(M) · (max
j
wj,i)/n, , V i(M) = Vi(M) · (

∑
j

wj,i)/n.

We claim that average-share is a better extension of proportionality to capture the external-
ities. Note that extended-proportionality suffers from a drawback, that is its low sensitivity to
the externalities. For instance, it is reasonable to assume that the best allocation of agent i is to
allocate every item to himself. In such a situation, extended-proportionality completely ignores the
externalities. We discuss more on this in Section 3.

It is worth to mention that both the notions described above are too strong to be delivered in the
case of indivisible items. For example, when there are no externalities, no allocation can guarantee
neither envy-freeness nor proportionality, or even an approximation of them. Thus, no extension
of these notions (including extended-proportionality and average-share) can be guaranteed when
items are indivisible.

5



Maximin-share

In this paper, our main focus is on the maximin-share (MMS) criterion. As mentioned, this notion
is introduced by Budish [8] as a fairness criteria in division of indivisible items. In Section 1, we
gave a formal definition of this notion. The intriguing fact about MMS solution is that it can be
motivated by the “cut and choose” game. In this game, an agent divides the items into n bundles
and lets other agents choose their bundle first. In the worst-case scenario, the least valued bundle
remains, and hence the maximin strategy is to divide the items in a way that the minimum bundle is
as attractive as possible. In contrast to proportionality and envy-freeness, guaranteeing a constant
fraction of the maximin-share for all the agents is always possible [22, 12].

To extend maximin-share to the case of the agents with externalities, again we consider the
worst-case scenario in an “extended cut and choose” game. Suppose that an agent divides the
items into n bundles, and other agents somehow distribute these bundles (one bundle to each
agent). The maximin strategy of this agent is to divide the items in a way that maximizes his
utility in the worst possible scenario (a scenario that minimizes his utility). In fact, we define the
extended-maximin-share of each agent i as his outcome in the “extended cut and choose” game,
regarding maximin strategy.

Formally, let P = 〈P1, P2, . . . , Pn〉 be a partition of M into n bundles. Furthermore, let A :
P → [n] be an allocation function that allocates every set Pi to agent A(Pi). For brevity, when P
is clear from the context, we use Ai instead of A(Pi) to refer to the agent whom Pi is allocated to.
Since exactly one bundle must be allocated to each agent, A is a bijection. The utility of agent i for
an allocation A is : Ui(A) =

∑
j VAj ,i(Pj). The worst allocation of P regarding agent i, denoted by

Wi(P ), is the allocation of P that minimizes the utility of agent i: Wi(P ) = arg minA∈ΩP
Ui(A),

where ΩP is the set of all n! different allocations of P . Similarly, the best allocation of P is
defined as: Bi(P ) = arg maxA∈ΩP

Ui(A). Finally, the extended-maximin-share of agent i, denoted
by EMMSi, is defined as:

EMMSi = max
P∈Π

Ui(Wi(P )),

where Π is the set of all partitions of M into n subsets. We also define the optimal partition
of M regarding agent i, denoted by Oi, as the partition that determines the value of EMMSi,
Oi = arg maxP∈Π Ui(Wi(P )). Throughout the paper, when speaking of the network externalities
model, we assume that the bundles in Oi = 〈Oi,1, Oi,2, . . . , Oi,n〉 are sorted by their decreasing
values for agent i, i.e., for all j, Vi(Oi,j) ≥ Vi(Oi,j+1). In addition, when the agent is clear from
the context, for any partition P we use Pj to refer to the j’th valuable bundle of P , regarding that
agent.

Finally, an α-EMMS fair allocation problem with the externalities is defined as follows: is there
an allocation such that every agent i receives a utility of at least α · EMMSi?

3 Model Evaluation

In Section 2.1, we introduced three notions: extended-proportionality, average-share, and extended-
maximin-share. For a better understanding of these notions, here we briefly compare them in the
general externalities model. We already know that average-share is stronger than extended-
proportionality. In Lemma 3.1, we prove the same proposition for extended-maximin-share.

Lemma 3.1 Average-share is a stronger notion than extended-maximin-share.

By a similar argument as in the proof of Lemma 3.1, we can show that for an arbitrary partition
P , V i(M) ≤ Ui(Bi(P )). Therefore, for any partition P we have EMMSi ≤ Ui(Bi(P )). Lemma 3.1

6



states that extended-maximin-share is implied by average-share. However, as we show in Lemma
3.2, there is no implication between extended-proportionality and extended-maximin-share.

Lemma 3.2 Extended-maximin-share does not imply extended-proportionality, nor vice versa.

The fact that in the case without externalities, proportionality is stronger than maximin-share
(MMS), inspires the idea that average-share is a more appropriate extension of proportionality for
the case with externalities. In addition, comparing two scenarios in the proof of Lemma 3.2 reveals
that the extended-proportionality has a low sensitivity to the externalities.

In the last part of this section, we show that for n = 2, a simple cut and choose method
guarantees EMMSi to both the agents. Note that there are instances in which neither extended-
proportionality nor average-share can be guaranteed even for two agents.

Lemma 3.3 For two agents, the following simple cut and choose algorithm yields a 1-EMMS
allocation:

• Ask the first agent to partition the items into his optimal partition O1.

• Ask the second agent to allocate O1 (one bundle to each agent).

4 Computing EMMS

In this section, we study the problem of computing EMMSi and Oi. A closer look at the model
reveals that the challenges to calculate EMMS are twofold. One is to find the worst allocation
of a given partition, and the other is to find a partition that maximizes the utility of the worst
allocation. In Lemma 4.1 and Observation 4.1, we explore the hardness of these problems for
the general externalities model. We then focus on the network externalities model and give a
constant approximation algorithm for computing EMMS.

Lemma 4.1 Given a partition P = 〈P1, P2, . . . , Pn〉 of the items in M, the worst allocation of P
regarding agent i can be found in polynomial time.

Observation 4.1 Since finding the maximin partition of a set of items is NP -hard [27], finding
the optimal partition of m items and n agents with externalities is also NP -hard.

Woeginger [27] also showed that finding the maximin partition of a set of items without external-
ities admits a PTAS. However, their method does not directly extend to the case with externalities.
To the best of our knowledge, finding an approximately optimal partition for an agent in the general
externalities model has not been studied before.

In the case of network externalities, our model is easier to deal with. Since the utility of each
agent is a convex combination of his valuation, finding the worst allocationWi(P ) is trivial: consider
an n-step allocation algorithm whose every step allocates the most valuable remaining bundle to a
currently unallocated agent with the least effect on agent i. Hence,

Ui(Wi(P )) =
∑
j

xi,j · Vi(Pj). (1)

Recall that xi (the influence vector of agent i) is non-decreasing, and the bundles in P are sorted
in non-increasing order of their values for agent i. This property of the network externalities
model allows us to approximate the value of EMMSi with a constant ratio, using a simple greedy

7



approach. On top of that, it is possible to infer relations between EMMS and some previously
defined partitioning schemes.

Apart from the allocation of bundles, partitioning the items is another challenge to overcome.
By definition, an optimal partition is a partition that maximizes Equation (1). Finding an optimal
partition for a given vector x is in fact, a generalized form of partitioning problems that includes
both maximin and minimax partitions. What happens if we partition the items by one of the
famous partitioning schemes such as minimax or maximin? A maximin partition is a partition that
maximizes the value of the minimum bundle. It is easy to see that a maximin partition is optimal
when x = [1, 0, . . . , 0]. Likewise, minimax partition is a partition that minimizes the value of the
maximum bundle, and it is the optimal partition when x = [ 1

n−1 ,
1

n−1 , . . . ,
1

n−1 , 0]. Another example
is the leximin partition. A leximin partition first maximizes the minimum bundle, and subject to
this constraint, maximizes the second least valued bundle, and so on. Real-world applications of
leximin allocations are recently studied by Kurokawa, Procaccia and Shah [17]. For a small enough

ε, the optimal partition for vector x = [ 1−ε
1−εn ,

ε−ε2
1−εn ,

ε2−ε3
1−εn , ...,

εn−1−εn
1−εn ] is a leximin partition. For

example, in Figure 2, if we choose x to be [1, 0, 0], maximin is the optimal partition, and if we
choose x to be [1

2 ,
1
2 , 0], minimax is optimal.

Since none of these partitioning schemes are always optimal, approximating either of them
is not desirable. However, the well-known greedy algorithm LPT 2 provides a partition Li =
〈Li,1, Li,2, . . . , Li,n〉 for agent i, such that Ui(Wi(Li)) is a constant approximation of EMMSi. LPT
is a simple greedy algorithm in the context of job scheduling. This algorithm starts with n empty
bundles and iteratively puts the most valuable remaining item into the bundle with the minimum
total value. It is proved that the partition provided by LPT is a constant approximation for both
maximin and minimax partitions [14, 10].

Theorem 4.2 For the network externalities model, we have

Ui(Wi(Li)) ≥ EMMSi/2. (2)

To prove Theorem 4.2, we label some of the items as huge. Huge items are those whose values
are at least V i(M). Denote the set of huge items for agent i by Hi.

Claim 4.1 For an instance with no huge items we have Vi(Li,n) ≥ V i(M)/2.

Since Li,n is the least valued bundle of Li for agent i, Ui(Wi(Li)) ≥ Vi(Li,n). Furthermore, By
lemma 3.1, V i(M) ≥ EMMSi. Hence, when there is no huge item, regarding Claim 4.1, Inequality
(2) holds. Thus, to prove Theorem 4.2, it only suffices to consider the instances with huge items.
Note that, when there are huge items in M, Vi(Li,n) ≥ V i(M)/2 does not necessarily hold. To
cope with such a situation, we need to consider some properties for Oi.

Definition 4.3 We call a partition P nice for agent i, if no item b in some bundle Pj exists, such
that Vi(Pj) > Vi({b}) > Vi(Pn) (recall that Vi(Pn) = minj Vi(Pj)).

Claim 4.2 For any partition P , there exists a nice partition P ′, such that Ui(Wi(P )) ≤
Ui(Wi(P

′)).

In the rest of this paper, we focus on the optimal partitions which are nice. Furthermore, it
can be easily observed that Li is also nice.

2Longest processing time

8



In a nice partition P regarding agent i, any bundle Pj containing a huge item b ∈ Hi has no
other item. Otherwise, Vi(Pj) > Vi({b}) ≥ V i(M). Since V i(M) > Vi(Pn), this is in contradiction
with the niceness of P . This fact about nice partitions (including Li and Oi) allows us to deal with
huge items. We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. We use induction on the number of agents. For n = 1, the statement
is trivial. For n > 1, if Vi(Li,n) ≥ V i(M)/2 holds, we have Ui(Wi(Li)) ≥ EMMSi/2. Thus, whenM
contains no huge item, by Claim 4.1, Li is a 1/2-approximation of Oi. Therefore, it only remains
to consider the case that n > 1 and Vi(Li,n) < V i(M)/2. For this case, we know that M contains
at least one huge item.

Let BHi(Oi) and BHi(Li) be the set of the bundles containing huge items in Oi and Li respec-
tively. We know that BHi(Oi) = BHi(Li), as the bundles in BHi(Oi) and BHi(Li) do not contain
anything but huge items, and each huge item is the only item within its bundle (recall that both
Oi and Li are nice). In addition, BHi(Li) are the |Hi| most valuable bundles in Li. Otherwise, a
very similar argument as in the proof of Claim 4.1 yields Vi(Li,n) ≥ V i(M)/2.

Let W ′i(Oi) be the worst possible allocation of Oi with the constraint that allocates |Hi| huge
items to the |Hi| agents with the least influence on agent i. By definition, Ui(W ′i(Oi)) ≥ Ui(Wi(Oi)).
Moreover, in bothW ′i(Oi) andWi(Li), huge items are allocated to the same set of agents, say NHi .
Now, consider the sub-instance with items M \ BHi(Oi) and agents N \ NHi . Note that since
Vi(Li,n) < V i(M)/2, the set M\BHi(Oi) (and hence, N \NHi) is non-empty.

By the induction hypothesis, for this sub-instance, Inequality (2) holds. Now, adding huge
items and their corresponding agents back, increases the utility of agent i by the same amount for
both of the allocations. Thus, Ui(Wi(Li)) ≥ 1/2 · Ui(W ′i(Oi)) ≥ 1/2 · Ui(Wi(Oi)). �

5 α-EMMS Allocation Problem

In this section, we focus on the allocations that guarantee every agent i an approximation of EMMSi.
We start this section by comparing EMMSi and MMSi. Note that the value of MMS is determined
by the least valued bundle in the maximin partition, while EMMSi = Ui(Wi(Oi)) ≥ Ui(Wi(Qi)),
where Qi is a maximin partition of agent i. In addition, Ui(Wi(Qi)) is a convex combination of the
values of several bundles with a value of at least MMSi, and hence EMMSi ≥ MMSi always holds.
Furthermore, Observation 5.1 states that the gap between EMMSi and MMSi could be unbounded
even for the instances with 3 agents.

Observation 5.1 For any c ≥ 1, there is an instance with 3 agents, where EMMS1 > c ·MMS1.

It is worth to mention that the proof of Observation 5.1 highlights that even for very few
externalities, the gap between EMMS and MMS might be large. Thus, the external effects are not
negligible even if the impacts of the parties on each other are small.

Our main result is stated in Theorem 5.1. We show that for the network externalities model
when all the agents are α-self-reliant, an α/2-EMMS allocation always exists.

Theorem 5.1 Let C be an instance where for every agent i, wi,i ≥ α. Then, C admits an α/2-
EMMS allocation.

In the rest of this section, we prove Theorem 5.1 by proposing an α/2-EMMS allocation al-
gorithm for the network externalities model with α-self-reliant agents. For brevity, we name our
algorithm Bundle Claiming algorithm (BC).

9



5.1 Bundle Claiming Algorithm (BC)

In this section, we present the ideas and a general description of Bundle Claiming algorithm. First,
let us review the definition of EMMSi. With abuse of notations, we suppose that vi is a vector
representing the values of the bundles in the optimal partition of agent i, i.e., vi,j = Vi(Oi,j). Recall
that the bundles in Oi are sorted by their decreasing values for agent i. Hence, for all j < n, we
have vi,j ≥ vi,j+1. Furthermore, by definition, we have EMMSi =

∑
j xi,jvi,j .

Observation 5.2 For every k, we have
∑

j≥k xi,jvi,j ≤ vi,k.
For example, in an instance with n = 6, for k = 4, Observation 5.2 yields vi,4 ≥ vi,4xi,4 +

vi,5xi,5 + vi,6xi,6. Observation 5.2 is a direct result of the following two facts: first, for all j > k,
we have vi,k ≥ vi,j and second,

∑
j>k xi,j ≤ 1.

Definition 5.2 For every agent i, we define `i to be the expectation level of agent i. Agent i with
expectation level `i, has an expectation value of vi,`i/2.

In the beginning of the algorithm, the expectation level of all the agents are set to 1. Our
algorithm consists of n steps. In each step, we find a bundle B with the minimum number of items
that meets the expectation of at least one agent. Bundle B meets the expectation of agent i, if
Vi(B) ≥ vi,`i/2. We allocate B to one of the agents whose expectation is met (we say this agent is
satisfied). Next, we update the expectation levels of the remaining agents. The updating process is
a fairly complex process which we precisely describe in Section 5.2. Roughly speaking, we update
the expectation levels in a way that the following property holds during the algorithm:

External-satisfaction property: Let S be the set of currently satisfied agents.
For every remaining agent i with expectation level `i, there is a partition of the agents
in S into `i subsets, namely Ni,1, Ni,2, . . . , Ni,`i−1, Ni,F , such that for all 1 ≤ j < `i,
the total set of items allocated to the agents in Ni,j is worth at least vi,j/2 and at
most vi,j to agent i, and the total set of items allocated to the agents in Ni,F is
worth less than vi,`i/2 to agent i.

Note that in the updating process, `i may increase by more than one unit. However, for every
remaining agent i, `i ≤ n must also hold. As we show in Section 5.2, during our algorithm,
`i ≤ n always holds for every agent i. We use the lower-bounds in this property to show that if
the external-satisfaction property holds for agent i, total amount of externalities incurred by the
satisfied agents is at least

∑
k<`i

vi,kxi,k/2. The fact that EMMSi is calculated with regard to the
worst allocation of Oi is the key to prove this inequality.

Consider one step of the algorithm and suppose that a set B of items is allocated to agent
i. Since B met the expectation of agent i, Vi(B) ≥ vi,`i/2. Furthermore, the utility that agent i
gained through the externalities of the satisfied agents is at least

∑
k<`i

vi,kxi,k/2. Assuming that
agent i is α-self-reliant, his utility is at least∑

k<`i

vi,kxi,k/2 + αvi,`i/2

≥
∑
k<`i

vi,kxi,k/2 + α/2
∑
k≥`i

vi,kxi,k (Observation 5.2)

≥ α/2
∑
k

vi,kxi,k (α ≤ 1)

= α/2EMMSi. (3)

10



ALGORITHM 1: Bundle Claiming algorithm

1 forall the aj ∈ N do
2 `j ← 1 . Initializing expectation levels

3 while N 6= ∅ do
4 forall the aj ∈ N do
5 Γj ← Minimum sized subset of M, s.t. Vj(Γj) ≥ 1/2 · vj,`j
6 Allocate the minimum sized Γi to agent i. . Allocating
7 Remove agent i from N , and Γi from M.
8 forall the aj ∈ N do
9 Add agent i to Nj,F .

10 while Vj(Nj,F ) ≥ 1/2 · vj,lj do

11 Update Mj . . Maintaining external-satisfaction (see Section 5.2)

Inequality (3) ensures that the items allocated to agent i satisfy him. Furthermore, we use
the upper bounds in the external-satisfaction property to prove that the algorithm satisfies all the
agents. To show this, it only suffices to prove that in each step of the algorithm there are enough
items to meet the expectation of the remaining agents. Consider agent i which has not satisfied
yet. The value of the items allocated to the satisfied agents not in Ni,F is at most

∑
j<`i

vi,j .
Hence, the total value of the remaining items plus the items allocated to the agents in Ni,F is at
least

∑
j≥`i vi,j . On the other hand, the value of the items allocated to the agents in Ni,F is less

than vi,`i/2. Thus, the value of the remaining items is at least vi,`i/2 which is enough to meet the
expectation of agent i. As said before, our algorithm maintains the property that `i ≤ n for every
remaining agent i.

The details of the bundle claiming algorithm is demonstrated in Algorithm 1, which is a high
level abstraction of the full algorithm and captures the overall sketch of the algorithm. In the next
section, we show how to maintain the external-satisfaction property in the algorithm.

We end this section by showing that BC can be implemented in polynomial time. The only part
of the algorithm whose implementation in polynomial time is not trivial is when we want to find a
minimum-sized set B meeting the expectation of at least one agent.

Observation 5.3 The minimum-sized set that meets the expectation of at least one remaining
agent can be found in polynomial time.

It is worth to mention that the operations we apply in order to maintain the external-satisfaction
property in the next section, are also trivially polynomial time.

Finally, using Li
3 instead of Oi in BC results in an α/4-EMMS allocation algorithm.

Corollary 5.3 Let C be an instance where for every agent i, wi,i ≥ α. Then, an α/4-EMMS
allocation for C can be found in polynomial time.

5.2 Maintaining the External-satisfaction Property

Throughout this section, we suppose that S is the set of satisfied agents. Furthermore, for each
agent i in S, we denote the bundle allocated to him by Bi. We start by giving a detailed explanation

3Partitioning provided by LPT algorithm

11



of the updating process. As mentioned in the previous section, the external-satisfaction condition
must hold during the entire algorithm. To maintain this property in the updating process, for
every agent i, we define a mapping Mi that represents the partitioning of S for agent i (recall the
definition of external-satisfaction).

Definition 5.4 For every agent i, we define Mi : S → {Oi,1, Oi,2, . . . , Oi,n} ∪ {Fi} as a mapping
that corresponds each satisfied agent to a bundle in the optimal partition of Oi or to Fi. Further-
more, we define Ni,j as the set of agents that are mapped to Oi,j in Mi and Ni,F as the set of agents
mapped to Fi. During the algorithm, we say mapping Mi is valid, if the following conditions hold:

(i) ∀j < `i
∑

k∈Ni,j
Vi(Bk) ≥ vi,j/2

(ii) ∀j < `i
∑

k∈Ni,j
Vi(Bk) ≤ vi,j

(iii)
∑

k∈Ni,F
Vi(Bk) < vi,`i/2

During the algorithm, mapping Mi must remain valid for every unsatisfied agent i. In the
beginning, S = ∅ and for every agent i, `i = 1 and hence, Mi is valid. In every step of the
algorithm, we satisfy an agent i by a bundle Bi of items. Next, for every unsatisfied agent j, we
map agent i to Fj in Mj , i.e., we set Mj(i) = Fj . In fact, Nj,F corresponds to the satisfied agents
that are not mapped to any bundle of Oj in Mj . We use these agents to update `j . Throughout the
algorithm, whenever the total value of the items allocated to the agents in Nj,F reaches vj,`j/2, Mj

becomes invalid and hence, we need to update `j and Mj to reinstate the validity of Mj . To do so,
we pick a subset δ of the agents in Nj,F with the minimum size to map them to Oj,`j . Regarding
the validity conditions of Mj , total value of the items allocated to the agents in δ must be at least
vj,`j/2 and at most vj,`j (we call such subset a compatible set). If a compatible set δ exists, we map
the agents in δ to Oj,`j in Mj and increase `j by one. However, there may be some cases that no
subset of Nj,F is compatible. For such cases, we use the argument in Lemma 5.5.

Lemma 5.5 Suppose that total value of the items allocated to the agents in Nj,F is at least vj,`j/2,
but Nj,F admits no compatible subset. Then, it is possible to modify Mj such that conditions (i)
and (ii) remain valid for Mj and Nj,F contains at least one compatible subset.

Note that, after increasing `j for agent j, condition (iii) may still be violated. In that case, as
long as condition (iii) is violated, we continue updating. Each time we update Mj , value of `j is
increased by one. Since at least one agent is mapped to Oj,` for each ` < `j , `j never exceeds n. In
the appendix, you can find a pseudo-code for the updating process (Algorithm 2)

In the last part of this section, we prove Lemma 5.6 which shows that the value of the exter-
nalities imposed to agent i by the satisfied agents is lower-bounded by

∑
j<`i

xi,jvi,j/2. As said
before, the fact that EMMSi is defined with regard to the worst allocation of Oi plays a key role in
proving Lemma 5.6.

Lemma 5.6 Consider one step of the algorithm, and let agent i be an arbitrary remaining agent
with `i > 1. Then, we have

∑
j∈S wj,i · Vi(Bj) ≥

∑
j<`i

xi,j · vi,j/2.

12



References

[1] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. Approxima-
tion algorithms for computing maximin share allocations. In International Colloquium on
Automata, Languages, and Programming, pages 39–51. Springer, 2015.

[2] Nima Anari, Shayan Ehsani, Mohammad Ghodsi, Nima Haghpanah, Nicole Immorlica, Hamid
Mahini, and Vahab S Mirrokni. Equilibrium pricing with positive externalities. In International
Workshop on Internet and Network Economics, pages 424–431. Springer, 2010.

[3] Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for
any number of agents. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on, pages 416–427. IEEE, 2016.

[4] Xiaohui Bei, Ning Chen, Xia Hua, Biaoshuai Tao, and Endong Yang. Optimal proportional
cake cutting with connected pieces. In AAAI, volume 12, pages 1263–1269, 2012.

[5] Steven J Brams and Alan D Taylor. An envy-free cake division protocol. The American
Mathematical Monthly, 102(1):9–18, 1995.

[6] Simina Brânzei, Tomasz Michalak, Talal Rahwan, Kate Larson, and Nicholas R Jennings.
Matchings with externalities and attitudes. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, pages 295–302. International Foundation for
Autonomous Agents and Multiagent Systems, 2013.

[7] Simina Brânzei, Ariel D Procaccia, and Jie Zhang. Externalities in cake cutting. AAAI, 2013.

[8] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium
from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[9] Sina Dehghani, Alireza Farhadi, MohammadTaghi HajiAghayi, and Hadi Yami. Envy-free
chore division for an arbitrary number of agents. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2564–2583. SIAM, 2018.

[10] Bryan L Deuermeyer, Donald K Friesen, and Michael A Langston. Scheduling to maximize
the minimum processor finish time in a multiprocessor system. SIAM Journal on Algebraic
Discrete Methods, 3(2):190–196, 1982.

[11] Alireza Farhadi, MohammadTaghi Hajiaghayi, Mohammad Ghodsi, Sebastien Lahaie, David
Pennock, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. Fair allocation of indivisible
goods to asymmetric agents. In Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, pages 1535–1537. International Foundation for Autonomous Agents
and Multiagent Systems, 2017.

[12] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and
Hadi Yami. Fair allocation of indivisible goods: Improvement and generalization. arXiv
preprint arXiv:1704.00222, 2017.

[13] Laurent Gourvès and Jérôme Monnot. Approximate maximin share allocations in matroids.
In International Conference on Algorithms and Complexity, pages 310–321. Springer, 2017.

[14] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal on Applied
Mathematics, 17(2):416–429, 1969.

13



[15] Nima Haghpanah, Nicole Immorlica, Vahab Mirrokni, and Kamesh Munagala. Optimal auc-
tions with positive network externalities. In Proceedings of the 12th ACM conference on Elec-
tronic commerce, pages 11–20. ACM, 2011.

[16] David Kempe and Mohammad Mahdian. A cascade model for externalities in sponsored search.
Internet and Network Economics, pages 585–596, 2008.

[17] David Kurokawa, Ariel D Procaccia, and Nisarg Shah. Leximin allocations in the real world. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation, pages 345–362.
ACM, 2015.

[18] David Kurokawa, Ariel D Procaccia, and Junxing Wang. When can the maximin share guar-
antee be guaranteed? In AAAI, volume 16, pages 523–529, 2016.

[19] Renato Paes Leme, Vasilis Syrgkanis, and Éva Tardos. Sequential auctions and externalities. In
Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
869–886. SIAM, 2012.

[20] Minming Li, Jialin Zhang, and Qiang Zhang. Truthful cake cutting mechanisms with exter-
nalities: do not make them care for others too much! In IJCAI, pages 589–595, 2015.

[21] Vahab S Mirrokni, Sebastien Roch, and Mukund Sundararajan. On fixed-price marketing for
goods with positive network externalities. In WINE, pages 532–538. Springer, 2012.

[22] Ariel D Procaccia and Junxing Wang. Fair enough: Guaranteeing approximate maximin
shares. In Proceedings of the fifteenth ACM conference on Economics and computation, pages
675–692. ACM, 2014.

[23] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK Pe-
ters/CRC Press, 1998.

[24] Hugo Steinhaus. The problem of fair division. Econometrica, 16(1), 1948.

[25] Warut Suksompong. Approximate maximin shares for groups of agents. arXiv preprint
arXiv:1706.09869, 2017.

[26] Rodrigo Velez. Fairness and externalities. Unpublished Manuscript, University of Rochester,
2008.

[27] Gerhard J Woeginger. A polynomial-time approximation scheme for maximizing the minimum
machine completion time. Operations Research Letters, 20(4):149–154, 1997.

14



A Missing Proofs

Proof of Lemma 3.1. Consider Oi and let A = {A1, A2, . . . , An}, where Ak is an allocation of Oi
that allocates Oi,j to agent j′ = ((j + k − 1) mod n) + 1. Since in A each item is allocated to each
agent once,

∑
j Ui(A

j) =
∑

j Vj,i(M). Thus, the worst allocation in set A has a utility of at most∑
j Vj,i(M)/n = V i(M) for agent i. As a result, EMMSi = Ui(Wi(Oi)) ≤ V i(M). �

Proof of Lemma 3.2. Consider an instance with one item b and n agents, and the following two
scenarios for the externalities:

(i) ∀i 6=j , Vj,i({b}) = 0

(ii) ∀i 6=j , Vj,i({b}) = Vi,i({b})

In scenario (i), EMMS1 = 0, while the extended-proportional share of agent 1 is V1,1({b})/n. In
the second scenario, EMMS1 = V1,1({b}), but the extended-proportional share of agent 1 is still
V1,1({b})/n. �

Proof of Lemma 3.3. We know U2(B2(O1)) ≥ EMMS2. Furthermore, since W1(O1) determines
the value of EMMS1, we have: U1(B2(O1)) ≥ EMMS1. �

Proof of Lemma 4.1. Consider a complete bipartite graph G(X,Y ) where X represents the
bundles of P , and Y represents the agents and there is an edge with weight Vj,i(Pk) between every
pair xk ∈ X and yj ∈ Y . FindingWi(P ) is equivalent to finding the maximum cardinality matching
with minimum weight in G. Classic network flow algorithms solve this problem in polynomial time
[? ]. �

Proof of Claim 4.1. Consider Li,1 (the most valuable bundle of Li for agent i). Trivially,
we have Vi(Li,1) ≥ V i(M), and since there is no huge item, Li,1 contains at least two items.
On the other hand, according to LPT, the items within a bundle arrive in non-increasing order.
Therefore, the last item added to Li,1 has a value of at most Vi(Li,1)/2 and the total value of Li,1
just before the last item arrives must have been at least Vi(Li,1)/2. Furthermore, whenever an
item is added to a bundle, that bundle has the minimum value among all the bundles. Therefore,
Vi(Li,n) ≥ Vi(Li,1)/2 ≥ V i(M)/2. �

Proof of Claim 4.2. Since P is not nice, there exists an item b in bundle Pj , such that Vi(Pj) >
Vi({b}) > Vi(Pn). We modify P as follows: we remove Pj and Pn from P and add two new bundles
A = {b} and B = Pj∪Pn\{b} to P . Let l and l′ be the indices of the newly added bundles in P (note
that the bundles are rearranged by their decreasing values for agent i), such that j ≤ l ≤ l′ ≤ n
(see Figure 3). We have

Vi(Pj) > max(Vi(A), Vi(B)) ≥ min(Vi(A), Vi(B)) > Vi(Pn).

By this modification, Ui(Wi(P )) increases by a value of at least

xi,l · (max(Vi(A), Vi(B))− Vi(Pj)) + xi,l′ · (min(Vi(A), Vi(B))− Vi(Pn)),

which is non-negative since

Vi(Pj) + Vi(Pn) = max(Vi(A), Vi(B)) + min(Vi(A), Vi(B)),

and xi,l ≤ xi,l′ . Let L(P ) = {Pj | Vi(Pj) = Vi(Pn)}. After each modification, either Vi(Pn) increases,
or |L(P )| decreases. Therefore, sequence (Vi(Pn), Vi(Pn−1), . . . , Vi(P1)) increases lexicographically

15



j = 1 2 3 4 5 6 7 8 n = 9

l=321 4 5 6 l′ = 7 8 9

Figure 3: Switching the subsets

1

23

εε

1− 2ε

11

Figure 4: The gap between MMSi and EMMSi
may be large, even with very small externalities

by each move, and hence we eventually end up with a nice partition P ′ after a finite number of
modifications.

�

Proof of Observation 5.1. Simply consider the influence graph depicted in Figure 4 and three
items b1, b2 and b3 such that V1({b1}) = 1 and V1({b2}) = V1({b3}) = c/ε, where ε is a small
constant less than 1/2. For this instance, EMMS1 = (1−2ε) + 2c, and MMS1 = 1−2ε which means
MMS1/EMMS1 < 1/c. �

Proof of Observation 5.3. For every remaining agent i, we find a bundle Γi with the minimum
size which meets the expectation of agent i as follows: sort the remaining items in their decreasing
values for agent i, and add the items to Γi one by one until the bundle meets the expectation of
agent i. Finally, it only suffices to select the smallest bundle among these bundles. �

Proof of Lemma 5.5. Let δ be a subset of Nj,F with the minimum size that satisfies condition
(i). Such a set trivially exists. Since no subset of Nj,F is compatible, we have

∑
k∈δ Vj(Bk) > vj,`j .

By minimality of δ, no proper subset of δ satisfies condition (i). It is easy to observe that this can
only happen when δ contains only one agent, say k, with Vi(Bk) > vj,`j . We show in Lemma A.1
that |Bk| = 1; but for now suppose that b is the only item in Bk.

Since Oj is nice4, there is an index ` < `j , such that bundle Oj,` = {b}. We modify Mj as
follows: we map agent k to Oj,` and map the former agents of Nj,` to Fj . Clearly, conditions (i)
and (ii) preserve for Mj after this process. Again, if no subset of Nj,F is compatible, we repeat this
modification. Each time we modify Mj , the number of indices ` for which Oj,` is mapped to an
agent j with Oj,` = Bj increases by one. Therefore, the process terminates after a finite number of
modifications. �

Algorithm 2 illustrates an overview of the update procedure, which completes the BC algorithm.

4Recall the niceness from Definition 4.3

16



ALGORITHM 2: Update Mj

1 Resolve = 0
2 while Resolve == 0 do
3 δ ← Minimum sized subset of Nj,F , s.t.

∑
k∈δ Vj(Bk) ≥ 1/2 · vj,`j

4 if
∑

k∈δ Vj(Bk) ≤ vj,`j then

5 Nj,`j = δ

6 Nj,F = Nj,f \ δ
7 `j ← `j + 1
8 Resolve+ = 1 . Resolved

9 else
10 Let ` be an index s.t. Oj,` = Bk, where δ = {k}.
11 Swap δ (which is a subset of Nj,F ) with Nj,`. . One step closer to resolve

Lemma A.1 Suppose that the total value of the items allocated to the agents in Nj,F is at least
vj,`j/2, but Nj,F admits no compatible subset, and let δ be the minimal subset of Nj,F that satisfies
condition (i). Then, δ contains only one agent, say agent k and |Bk| = 1.

Proof. As mentioned in Lemma 5.5, it is easy to observe that |δ| = 1. Here, we argue that if agent
k is the only agent in δ, then |Bk| = 1. As a contradiction, let z1 be the first step of the algorithm
that δ = {k}, but |Bk| > 1. In addition, let z2 be the step that Bk was allocated to agent k and
let `′j be the expectation level of agent j in step z2. Trivially, we have z2 ≤ z1.

Claim A.1 Either vj,n ≥ vj,`′j/2 or we have |Oj,`| = 1 for all ` ≤ `′j.

Proof of Claim A.1. If for some ` ≤ `′j , Oj,` contains more than one item, Oj,` has a proper
subset s such that Vj(s) ≤ vj,`/2. By the same reasoning as Claim 4.2, moving s to bundle Oj,n
yields a new partition which is at least as good as Oj (See Figure 3). Hence, we can assume w.l.o.g.
that vj,n ≥ vj,`′j/2 holds. �

Regarding Claim A.1, we consider two cases.

First, assume that |Oj,`| = 1 for all ` ≤ `′j . For this case, at least one of the items in
⋃
`≤`′j

Oj,`

is not allocated to any agent before step z2, and this item singly meets the expectation of agent j.
This contradicts the fact that at step z2, Bk was the minimal set (Note that we supposed |Bk| > 1).

Second, assume that vj,`j ≥ vj,`′j/2. In step z2, the expectation value of agent j equals vj,`′/2.

Furthermore, Vj(Bk) > vj,`j which means Vj(Bk) > vj,`′j/2. On the other hand, Vj(Bk) < vj,`′j ,

otherwise a proper subset of Bk would meet the expectation of agent j in step z2. Therefore, in
step z2, δ = {k} is the only compatible set for updating Mj and hence, agent k is mapped to Oj,`′j .

This also implies that z2 6= z1, since we supposed that no compatible subset exists in step z1.
Furthermore, notice that since |Bk| > 1, no item could singly meet the expectation of any agent,

including agent j in step z2. This means that every remaining item in step z2 has the value less
than vj,`j/2. On the other hand, in all the modifications before step z1, the bundle allocated to the
agent in δ consists of only one item (z1 is te first step that the size of the bundle allocated to the
agent in δ is more than 1). This means that after step z2, no modification affects the agents that
are mapped to bundles Oj,` for ` ≤ `′j . But this contradicts the fact that agent k is mapped to Fj
in step z1, because agent k is mapped to Oj,`′j and no modification changes Mj(k). �

17



Proof of Lemma 5.6. We want to show that in every step of the algorithm, for each remaining
agent i, Inequality 4 holds. ∑

j∈S
wj,i · Vi(Bj) ≥

∑
j<`i

xi,j · vi,j/2. (4)

To prove this, we apply a sequence of exchanges between the bundles allocated to the agents
in

⋃
j<`i

Ni,j and show that in every exchange, value of the expression on the left-hand side of

Inequality (4) does not increase 5. Next, we show that after these exchanges, Inequality (4) holds,
which means that the Inequality was held for the original allocation.

Let agent j be the agent in Ni,1 with the least influence on agent i (i.e., minimizes wj,i). First,
we allocate the bundles that belong to the other agents in Ni,1 to agent j and remove all the
agents but agent j from Ni,1. Since agent j has the minimum weight among the agent in Ni,1, this
operation does not increase the left-hand side of Inequality (4).

In addition, let agent j′ be the agent with wj′,i = xi,1. Since agent j′ has the minimum weight
among all the agents, wj′,i ≤ wj,i. Now, let Bj and Bj′ be the current bundles of agents j and j′.
Note that if j′ is not satisfied yet, Bj′ = ∅. If Vi(Bj′) < Vi(Bj), we swap the bundles of j and j′.
This operation also does not increase the left-hand side of Inequality (4) since we have wj′,i ≤ wj,i.
Finally, we exchange the set that agents j and j′ belong to: we remove agent j from Ni,1, and add
agent j′ to Ni,1. In addition, if agent j′ previously belonged to Ni,r for some r, we add agent j to
Ni,r. This exchange has no effect on the value of

∑
j∈S wj,i · Vi(Bj). Furthermore, one can easily

observe that after the exchange, condition (ii) holds.
We repeat the same procedure for Ni,2, Ni,3, . . . , Ni,`i−1. After this sequence of exchanges,

each Ni,j contains one agent j′, where wj′,i = xi,j . Furthermore, after the exchanges, the second
condition for the validity of Mi holds and hence, the value of the items of agent j′ for agent
i is at least vi,j/2. Therefore, total amount of externalities of the satisfied agents is at least∑

j<`i
xi,jvi,j/2. �

5Note that these exchanges are only to prove this lemma, and not in the algorithm.

18


	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work

	2 Model
	2.1 Modeling the Externalities.
	2.2 Fairness Criteria

	3 Model Evaluation
	4 Computing EMMS
	5 -EMMS Allocation Problem
	5.1 Bundle Claiming Algorithm (BC)
	5.2 Maintaining the External-satisfaction Property

	A Missing Proofs

