The Fastest Way to View a Query Point in Simple Polygons

Ramtin Khosravi*

Abstract

In this paper, we study the problem of finding the
shortest path from a given source point in a sim-
ple polygon to some point visible from a given query
point. We will present an algorithm based on the
notion of funnels in simple polygons. The algorithm
preprocesses the input containing a simple polygon
and a source point to produce a data structure to an-
swer the queries in logarithmic time. The time and
space required for preprocessing is quadratic in size of
the simple polygon.

1 Introduction

The shortest path problem is a well-known problem
for the domain of simple polygons. The problem is
studied with several variations. One of the these vari-
ations is to constrain the shortest path to view a query
point from at least one point on the path [6, 5]. An-
other similar constraint is studied in [4] where the
path is required to meet a target polygon where an
O(n) algorithm is given for the problem. In this pa-
per, we study the problem of finding the shortest path
must be taken from a given source point in a simple
polygon to view a query point.

To define the problem more precisely, let P be a
simple polygon with n vertices. Suppose a source
point s is given in P. The goal is to preprocess the
input to answer queries of this type: given a query
point ¢ € P, find the shortest distance one needs to
travel from s to see q. More precisely, we want to find
a point ¢ visible from ¢ that has the shortest distance
from s. Note that if the query point ¢ is visible from
s, the point ¢ is the s itself, so throughout the pa-
per, we assume the query point ¢ is given somewhere
outside the visibility polygon of s.

The query can be answered in O(n) time without
preprocessing [4], so our goal is to find a logarithmic
query time. Since the complexity of the path may
be O(n), we define two types of queries: one to find
out the shortest distance, and another to report the
shortest path. Our goal is to answer the first type
of queries in logarithmic time, and the second type

*Department of Computer Engineering, Sharif Univer-
sity of Technology, and IPM School of Computer Science,
ramtin@mehr.sharif.edu

TDepartment of Computer Engineering, Sharif Univer-
sity of Technology, and IPM School of Computer Science,
ghodsi@.sharif.edu

Mohammad Ghodsit

in O(k + logn), where k is the length of the optimal
path. In this paper, we consider the first type of query
and will provide comments on the second type when
necessary.

The algorithm relies on the notion of funnel defined
in [1]. In section 2 we study some properties of the
funnel related to the problem under considerations.
Our algorithm, presented in section 3, is based on the
fact that the desired path always ends on a window
of the visibility polygon of g. So, during the prepro-
cessing phase, we compute a partition of all possible
windows of visibility polygons in P into sets such that
knowing the set a window belongs to, we can answer
the ending point of the path efficiently.

2 Basic Properties

We use the notation V,, for the visibility of a point p €
P, 7w(x,y) for the shortest path between two points x
and y inside P, SPT(s) for the shortest path tree from
s, and SPM(s) for the shortest path map of P with
respect to s. Removing V, from P results in a number
of disconnected regions we call invisible regions. Each
invisible region has exactly one edge in common with
Vy called a window. Since s is invisible from g, it lies
in an invisible region. It is easy to see that the point
c lies on the window w separating s from V,. More
precisely, ¢ is the point on w that has the shortest
distance to s (Fig. 1). From now on, we refer to such
a point ¢ as the optimal point c(w) to show explicitly
the window it belongs to.

We use the notion of funnel as defined in [1]. As-
sume a and b be the endpoints of w. Define the funnel
F(w) as w(r,a)Un(r, b) where r is the deepest common
ancestor of a and b in the last common vertex between
the two paths (s, a) and 7 (s, b) when considered from
s to a and b (Fig. 2). We assume the vertices on
the funnel are named a = vg,v1,...,0%, V41 = b in
the ordered traversal from a to b. The region en-
closed between F(w) and w can be decomposed into
triangular regions by extending the edges of F(w)
to intersect w. Assume the extension of the edge
vv;+1(0 < i < k) intersects w in x; (hence, g = a
and xx = b). The shortest path from s to points on
the segment x;z;,1 passes through v; as the last ver-
tex. Denote the sequence of angles between the exten-
sion edges and the window w by (6o, 61, ..., 60k), such
that 0, = Zbx;v;(0 < i < k—1) and 0, is 180° — ZLabuy.
Outward convexity of the paths from the cusp of the



Figure 1: The shaded part is V;. The window ab
separates s and V;. The shortest path between s and
q is shown with heavy dashed segments. c is the point
with shortest distance to s that is visible from gq.

funnel to its endpoints leads to the following observa-
tion:

Observation 1 The sequence of angles between the
extension edges and the window w (0,01, ...,0;) is
an increasing sequence.

We can characterize the optimal contact point c(w)
in the following way. For the sequence of angles men-
tioned in the above observation, one of the following
cases holds:

1. There exists an angle 6; = 90°. In this case,
c(w) = x;.

2. There exists a pair of adjacent angles 6; < 90°
and 6;41 > 90°. In this case, c(w) is the foot of
the perpendicular from v; 41 to w.

3. All angles in the sequence are greater than 90°.
In this case, ¢(w) = a.

4. All angles in the sequence are less than 90°. In
this case, c¢(w) = b.

3 The Algorithm

When receiving a query point ¢, we take the following
two steps:

1. Compute the window w that separates s from V.
2. Compute the optimal point ¢(w).

Both steps must be done in logarithmic time to have
an efficient query-time. To find the window in the
first step, observe that the window separating s from
Vyq is specified by the last vertex of P of the shortest
path from s to ¢ (Fig. 1). Thus, having computed
SPM(s) during the preprocessing phase, we can find

b — — — — — — — — — — —

a T T2 T3 Ty b

Figure 2: The funnel F(w) over the window w = ab.
The optimal point ¢(w) is the foot of the perpendicu-
lar from wvq to ab.

the window w in O(logn) time using a standard point-
location algorithm. For the second step, we must pre-
compute the optimal contact point on all segments in
P that can be a window of a query point. We re-
fer to such a segment of P as a separating window.
Informally, a separating window is a window of the
visibility polygon of an arbitrary point z that sepa-
rates from V.

To specify the set of all windows separating s from
possible query points, we consider each reflex vertex
of P and find the set of separating windows having
that vertex as an endpoint. Assume a is a reflex ver-
tex of P. Considering all possible query points inside
P, we may have a set of windows associated with a
which are defined by the rays emanating from a in two
angular intervals between the extension of each edge
incident to a and the other edge (Fig. 3(a)). Not all
the windows defined by the two intervals mentioned
are separating. To restrict the set to separating win-
dows, consider x as the last vertex the shortest path
7(s,a) passes through. If x lies outside both angular
intervals, then there is no separating window around
a. Otherwise, assume that it lies inside the interval
defined by the extension of e; and e; where e; and es
are the edges incident to a (Fig. 3(b)). The angular
interval defining the set of separating windows around
a is bounded by the extension of e; and the ray ema-
nating from a passing through the z. We denote this
set of separating windows by Sep(a).

For a reflex vertex a, our goal is to partition Sep(a)
into a number of sets such that knowing the set w
belongs to, we can find the optimal point c¢(w) effi-
ciently. To do this, we use a radial sweep around a.
There are two kinds of events in the sweep process:
angles at which the last vertex of 7(s, ¢) changes (in-
terval events), and angles at which the structure of
the funnel changes (funnel events). These events de-
fines the desired partition. We consider the two types
of events subsequently.



€1 (&)

(a) (b)

Figure 3: (a) Two angular intervals defining windows
around a reflex vertex a. (b) The single interval defin-
ing separating windows around a. x is the last vertex
on m(s,a).

Figure 4: Partition of the separating windows around
a. The angular interval between £y and {3 defines the
set of all separating windows. ¢; and /{5 are perpen-
diculars to vsvs and vsvy extensions respectively.

3.1 Interval Events

Suppose Sep(a) is defined by the angular interval
[a,0/]. For a < ¢ < o/, let w, denote the window
with endpoint a and angel ¢. Consider the perpen-
diculars from a to two adjacent extension edges v;x;
and v;412;41. For a window wg that lies between
these two perpendiculars, we can say 6; < 90° and
B;+1 > 90°. So, the optimal point c(wg) is the foot
of the perpendicular from v;41 to wg. For example,
in Figure 4, /1 and /{5 are perpendiculars to the ex-
tensions of vzvy and wvsvs respectively. Hence, for an
arbitrary window between ¢; and ¢5, the optimal point
is the foot of the perpendicular from vz to the win-
dow. This way, the set of perpendiculars to the ex-
tension edges defines the interval events in which the
last vertex of 7(s,c) changes. Since rotating a win-
dow towards the cusp of the funnel reduces the angles
made between the extension edges and the window,
the number of interval events is bounded by O(n).

Figure 5: Funnel events for a reflex vertex a. The
angular interval between az; and azs defines the set
of all separating windows. The sweep starts from ax;.
Thick solid lines are the edges of P, thin solid lines are
the extension segments, dotted lines show the swap
window in different positions, and the dashed line is
an extension segment added after visiting axy4.

3.2 Funnel Events

Observe that the set of separating windows (Sep(a))
is a subset of the visibility polygon of a, V, bounded
to w, and wys. It is easy to see that the moments
at which the sweep window passes through the ver-
tices of V,, the structure of the funnel changes. So,
for any reflex vertex, there are at most O(n) funnel
events. The problem is to update the funnel efficiently
at these moments. We assume SPT(s) is computed
priory as well as SPM(s) and V, such that we may
traverse the vertices of V, in order. The key to ef-
ficient update is to start the sweep process from the
separating window closest to s. According to our no-
tation, either w, or w,s has this property. Here, we
assume w, is the one.

Initially, we compute the funnel over w,. As the
sweep window rotates around a, we may encounter a
new vertex from V,, such as p. If p is not a reflex
vertex of P, the effect of this event is only the change
in the edge of P on which the non-fixed endpoint of
the sweep window moves. Otherwise, we have encoun-
tered a new node in SPT(s) and this may cause a ver-
tex added to the funnel. It is possible that the newly
added vertex deletes parts of the funnel too. This
happens when the parent of the added vertex was not
a leaf before adding the new vertex. For example,
in Figure 5, the initial funnel is built over ax;. New
vertices are added to the funnel as the sweep window
meets the points zo and z3. At x4, a new vertex is
added with the dashed extension segment introduced
and some vertices are deleted from the funnel.

Note that we must keep track of the last reflex ver-
tex of V, visited. Having this, we can compute the
change that should be made to the funnel in constant



time. Also, we must have the vertices of the initial
funnel in sorted order. This is possible if we make
the recursive calls made during the DFS traversal in
the shortest path algorithm sorted in some fixed di-
rection (e.g. clockwise). Since the funnel structure
used in the algorithm is stored in a finger search tree
[2], the list of vertices in the funnel can be arranged
in sorted order in linear time.

For a vertex a, we have a set of O(n) angular in-
tervals in sorted order so that upon receiving a query
window, we can find the interval it belongs to using bi-
nary search. Finding the interval the window belongs
to, we can compute its optimal point in constant time.

Summarizing the above discussions, we take the fol-
lowing steps during the preprecessing phase:

1. Compute SPT(s) and SPM(s)
2. For each reflex vertex a do the following:

(a) Compute Sep(a).

(b) Compute the portion of V, bounded by
Sep(a).

(¢) Compute the initial funnels and the exten-
sion edges

(d) Perform the radial sweep starting from the
closest separating window to s.

The first step can be done in O(n) time using the
algorithm of [1]. Step (a) involves finding the last
vertex on m(s,a) and m(¢,a) which can be done in
O(logn). The visibility computation in step (b) can
be done using the linear time algorithm of [7, 3]. The
funnel and the extension edges in step (c) are derived
directly from the SPMs in O(n) time. Step (d) in-
volves computing and handling both types of events
which are O(n) in total and needs constant time per
event. This leads to O(n) preprocess for each reflex
vertex. The partition for the reflex vertex is of size
O(n). As there are O(n) reflex vertices, the total pre-
processing time is O(n?) and O(n?) space is needed
to store the partitions.

Upon receiving a query, we find the window (w =
ab) separating s from the query point ¢ in O(logn)
time (by finding ¢ in SPM(s)). We perform a binary
search on the partition associated with the reflex ver-
tex a. Finding the optimal point ¢(w) takes constant
time. So we have our main result as the following:

Theorem 1 Given a simple polygon P and a source
point s inside P, we can preprocess the input in O(n?)
time and the same space to answer the queries of this
type in O(logn) time: given a query point q invisible
from s, find the point ¢ with minimum distance to s
that is visible from q. The path from s to ¢ can be
reported in additional time proportional to the length
of the path.

4 Conclusion

We presented an algorithm to preprocess the input
polygon in O(n?) time and space to answer the queries
to find the shortest distance to a point visible from a
query point in logarithmic time. Possible extensions
to this problem involves studying the problem when
the path is required to end to a given target point (¢)
and the query point must be seen from a point during
the path. This makes us study the behavior of the op-
timal point based on two the funnels related to s and
t made over the window which is not a direct exten-
sion of the behavior regarding one funnel. Another
extension is to consider the query not just a point,
but another geometric object like a segment. For a
segment, the algorithm can still work considering the
appropriate window from the weak visibility polygon
of the segment. For more complex objects like a poly-
gon, the challenge is to find the appropriate window
from the visibility polygon. Once the window is com-
puted, the rest of the algorithm is similar to that of a
point.

References

[1] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir,
and R. E. Tarjan. Linear-time algorithms for visi-
bility and shortest path problems inside triangulated
simple polygons. Algorithmica, 2:209-233, 1987.

[2] L. J. Guibas, E. McCreight, M. Plass, and J. Roberts.
A new representation for linear lists. In Proc. 9th
Annu. ACM Sympos. Theory Comput., pages 49-60,
1977.

[3] B. Joe and R. B. Simpson. Correction to Lee’s visi-
bility polygon algorithm. BIT, 27:458-473, 1987.

[4] R. Khosravi and M. Ghodsi. Shortest paths in sim-
ple polygons with polygon-meet constraints. Inform.
Process. Lett., 91:171-176, 2004.

[5] R. Khosravi and M. Ghodsi. Shortest paths with
single-point visibility constraints. submitted to Sci-
entia Iranica, 2004.

[6] R. Khosravi, M. Ghodsi, and M. Taghdiri. Shortest
point-visible paths on polyhedral surfaces. In Proc.
of the 10th International Conference on Computing
and Information (ICCI’2000), 2000.

[7] D. T. Lee. Visibility of a simple polygon. Comput.
Vision Graph. Image Process., 22:207-221, 1983.



