
International Journal of Computer Mathematics
Vol. 83, No. 3, March 2006, 357–370

An approximation algorithm for d1-optimal motion of a rod
robot with fixed rotations

MOHAMMAD ALI ABAM†‡ and MOHAMMAD GHODSI*†§¶

†Computer Engineering Department, Sharif University of Technology, Tehran, Iran
‡Computing Science Department, TU Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands

§School of Computer Science, Institute for Studies in Theoretical Physics and Mathematics (IPM),
Tehran, Iran

(Received November 2004; reviewed 17 January 2006; revised 21 May 2006; accepted 1 June 2006)

Given a translating and rotating rod robot in a plane in the presence of polygonal obstacles with the
initial and final placements of the rod known, the d1-optimal motion planning problem is defined as
finding a collision-free motion of the rod such that the orbit length of a fixed but arbitrary point F

on the rod is minimized. In this paper we study a special case of this problem in which the rod can
translate freely, but can only rotate by some pre-specified given angles around F . We first characterize
the d1-optimal motion of the robot under the given conditions and then present a (1 + ε)–approximation
algorithm for finding the optimal path. The running time of the algorithm is bounded by a polynomial
in terms of some parameters related to the problem input.

Keywords: Approximation algorithms; Robot motion planning; Rod robot; d1-optimal motion

AMS Classification: 68U01; 68T20

1. Introduction

The problem of moving a robot in the presence of obstacles has received much attention. Most
early published results in this area were concerned with the feasibility of motion planning.
For example, comprehensive mathematical and algorithmic analyses of the general motion
planning were given in [1–5] . Some authors have proposed efficient algorithms for the simple
case of a rod moving in the polygonal space [6–8]. However, only a few researchers have
algorithmically studied the optimal motion of a rotating robot. One major reason is that there is
no well-defined objective function to measure the motion in general except for the simple planar
case where the robot is a rod (directed line segment).

Let F be a fixed point on the rod. The curve traced by F in any continuous motion m of
the rod is called the orbit of F . Several objective functions for measuring the motion of the
rod are available. A commonly used function, the dn function, is the average orbit length of n

*Corresponding author. Email: ghodsi@sharif.edu
¶This author’s work was partially supported by a grant from IPM school of CS (No. CS1384-2-01).

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 online © 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207160600847787



358 M. A. Abam and M. Ghodsi

(n ≥ 1) evenly distributed points on the rod. In particular, the d1 function is the orbit length
of one fixed arbitrary point on the rod. The aim of the dn-optimal motion problem is to find
the motion m with the least dn(m) of all collision-free motions between the given initial and
final placements of the rod.

The d2-optimal motion problem is to minimize the average lengths of the orbits of the two
endpoints of the rod. If there are no obstacles, this problem is known as Ulam’s problem. It
was solved by Icking et al. [9] who proved that there is an optimal motion between the initial
and final placements consisting of either at most three rotations, at most two rotations, and
one straight-line motion, or one rotation between two straight-line motions. However, this
problem has not been solved for the case when obstacles are present. O’Rourke [10] obtained
a polynomial-time algorithm for the d∞-optimal motion problem restricted to pure translation
and rotation by ±90◦.

The d1-optimal motion problem has been proved to be NP-hard [11, 12]. Papadimitriou
and Silverberg [13] studied the d1-optimal problem where F is one endpoint of the rod with
its motion restricted to straight lines between obstacle vertices. They obtained an O(n4 lg n)

time algorithm for this problem where n is the total number of obstacle edges. Sharir [14]
improved this algorithm and obtained an O(n3α(n) lg2 n) time algorithm where α(n) is an
extremely slowly growing function of Ackermann’s inverse. Two approximation algorithms
for the d1-optimal motion problem were presented in [11, 15], some details of which are
presented in section 4, but none of them is a (1 + ε)–approximation algorithm. The existence
of such an algorithm is unknown.

In this paper, we study a restricted case of the d1-optimal motion problem and present a
(1 + ε)–approximation algorithm for this special case. The restriction is that the directed rod
can translate and can only be positioned in one of the k allowable orientations in { �α1, . . . , �αk}.
More precisely, the rod can change its orientation from �αi to �αj by rotating around F through
the smaller angle of �αi and �αj . This implies that the rod can rotate clockwise or counter-
clockwise, but it must sweep through the smaller angle to the destination orientation. We also
assume that our workspace, which is a two-dimensional space, includes a set of disjoint convex
polygonal obstacles.

Our result includes a characterization of the optimal motion under these constraints, and a
(1 + ε)–approximation algorithm for finding this motion. Our algorithm guarantees finding
a motion m between any given initial and final placements of the rod satisfying d1(m) ≤
(1 + ε)d1(m

∗), where m∗ is the optimal motion. The running time of our algorithm is bounded
by a polynomial in n, k, L, and 1/ε, where n is the total number of obstacle edges, k is the
number of allowable rotations, L is a bound on the number of bits for each input integer, and
ε is an arbitrary positive number.

The paper is organized as follows. In section 2, we present the basic definitions and some
known relevant results. Section 3 describes the structure of the optimal motion. Our proposed
approximation algorithm is presented in section 4. Finally, section 5 contains the concluding
remarks.

2. Notation and basic definitions

In general, the placement of a robot moving in a workspace is specified by a number of
parameters. For example, the placement of a planar robot � which can only translate can
be specified by a pair (x, y) that are coordinates of one fixed point, known as the reference
point, on the robot. This location is denoted �(x, y). The parameter space of �, which is
usually called its configuration space, is denoted by C(�). A point p in C(�) corresponds



Approximation algorithm for d1-optimal motion 359

to a particular placement of � in the workspace. For a translating and rotating robot,
C(�) is a three-dimensional R

2 ∗ [0, 2π) space. A point (x, y, α) in this space corresponds
to the placement �(x, y, α) in the workspace where x and y are coordinates of the reference
point of � and α specifies its orientation.

The points in C(�) corresponding to the placements where the robot intersects one of the
obstacles in the workspace are not permitted to be parts of any motion. The set of these points
is called the robot’s forbidden space and is denoted by Cforb(�). The rest of C(�) is called the
robot’s free space and is denoted by Cfree(�). A path of � is a curve in the configuration space,
and every placement along that path maps to its corresponding point in C(�). Obviously,
a collision-free path maps to a curve in the free space. We can map an obstacle O to a set
of points p in C(�) such that �(p) intersects O. The resulting set is called the forbidden
space of obstacle O and is denoted by Cobstacle(O). Cforb(�) is the union of Cobstacle(O) for
all obstacles.

The Minkowski sum of the two sets S1, S2 ∈ R
2, denoted by S1 ⊕ S2, is defined as

S1 ⊕ S2 = {p + q : p ∈ S1, q ∈ S2}
where p + q is the vector sum of two vectors p and q [16]. The following lemma is used to
express Cobstacle(O) in terms of Minkowski sum. For simplicity, we denote the reflection of a
point, arc, or shape x about the origin by x.

LEMMA 1 [16] Let � be a planar translating robot and let O be a planar obstacle. Then
Cobstacle(O) is O ⊕ �(0, 0).

In the remainder, let � be a rod robot (a directed unit-sized vector
−→
AB) moving around a

two-dimensional environment workspace which consists of a set O = {O1, . . . ,O�} of disjoint
convex polygonal obstacles. The number of edges of Oi , or its size, is assumed to be ni , and the
problem size n is defined to be n = ∑�

i=1 ni . F is an arbitrary fixed point on � as its reference
point. The orientation of the rod must be one of the allowable orientations in { �α1, . . . , �αk}
(assuming that αi ∈ [0, 2π) and α1 < α2 < · · · < αk where αi is the angle of �αi from the x

axis) and the rod can change its orientation by rotating around F by sweeping through the
corresponding smaller angle.

For any Z = (p, α), where p is a point in the plane and α is a real number, and any point
q in the plane, we define q[Z] to be a transformation by rotating q through the angle α

around the origin followed by a translation under �p. Every motion m is specified by a function
m : [0, 1] → C(�). For any point X on �, let Xm : [0, 1] → R

2, called the orbit of X under
m, denote the function Xm(x) = X[m(x)]. In other words, X[m(x)] denotes the curve traced
by point X in the workspace under the motion m. More precisely, we define the motion m as
follows.

A motionmof the rod from a placementS = (s, θs) to another locationT = (t, θt ) (s, t ∈ R
2

and θs, θt ∈ {α1, . . . , αk}) is a function of the form m : [0, 1] → C(�), where m(0) = S and
m(1) = T , and Fm, the orbit of F under m, is a continuous and rectifiable function. We denote
this motion by S

m→ T . For simplicity, we use pq to denote the line segment whose endpoints
are two points p and q. The length of S

m→ T is defined as follows:

d1(m) = sup(a0=0<a1<···<aj =1)

j−1∑
i=0

|F [m(si)]F [m(si+1)]|

where the supremum is taken over all finite subdivisions a0 < a1 < · · · < aj of the interval
[0, 1] and | · | denotes the Euclidean length. We define the d1 function between any two place-
ments S and T to be d1(S, T ) = inf

S
m→T

d1(m) where the infimum is taken over all collision-free



360 M. A. Abam and M. Ghodsi

motions m between S and T . If m is a motion from S to T and d1(S, T ) = d1(m), we say that
m is a d1-optimal motion.

A glossary of the main notations is presented in the Appendix.

3. Structure of the optimal motion

The structure of the forbidden spaces is important for precise specification of the optimal
motion in our approximation algorithm. Therefore we first give a detailed specification of the
forbidden spaces and provide algorithms to compute them, and then present the structure of
the optimal motion.

3.1 Forbidden space

The configuration space (C(�) = R
2 ∗ {α1, . . . , αk}) is a three-dimensional space consisting

of k planes {S1, . . . ,Sk}, where Si is the set of points corresponding to all placements where
the orientation of the rod is �αi . Then Si = {(x, y, α)|α = αi}. In fact, we can assume there
are k workspaces with the same obstacles and the rod has a specified orientation in each
space. Figure 1 illustrates two workspaces Si and Sj . For simplicity, we assume that Si =
{(x, y)|x, y ∈ R}. We also use �α(x, y) to represent �(x, y, α) and �α to denote the rod with
orientation �α. In remainder, Si is called the plane rather than the workspace provided that no
confusion arises.

The rod performs a translating motion when it moves around in each plane and performs
a rotating motion when it moves from one plane to another. The rod must not intersect any
obstacle during rotation or translation. Therefore, there are two kinds of forbidden spaces in
each plane.

1. Translating forbidden space, denoted by TFSi , is defined as

TFSi = {(x, y) ∈ Si : �αi
(x, y) ∩ (∪�

h=1Oh) = ∅}.

The boundary of TFSi is denoted by BTFSi .

Figure 1. Two distinct orientations of the rod.



Approximation algorithm for d1-optimal motion 361

2. Rotating forbidden space, denoted by RFSj

i (i = j), is defined as

RFSj

i = {(x, y) ∈ Si : ∃α ∈ Iij , �α(x, y) ∩ (∪�
h=1Oh) = ∅}

where Iij is the interval [minimum(αi, αj ), maximum(αi, αj )], if |αi − αj | ≤ π . Other-
wise, it is the interval [maximum(αi, αj ), minimum(αi, αj ) + 2π ]. The boundary of RFSj

i

is denoted by BRFSj

i .

Thus there is one translating forbidden space and k − 1 rotating forbidden spaces. By lemma 1,
TFSi = �αi

(0, 0) ⊕ (∪�
h=1Oh).

LEMMA 2 The complexity of BTFSi is O(n) and it can be computed in O(n log2 n) time.

Proof Since the complexity of � is 2 (constant) and all obstacles are convex, the lemma is
a simple conclusion from lemma 13.13 of [16]. �

We now concentrate on computing BRFSj

i . To move from plane Si to plane Sj , the rod
rotates around F from angle αi to angle αj by sweeping through the smaller angle. During
this rotation, the rod sweeps the area illustrated in figure 2(a). This area is denoted by sectorij
and consists of two sectors: a lower sector with radius |AF | denoted by lsectorij , and an upper
sector with radius |BF | denoted by usectorij . Thus we have

RFSj

i = sector ij ⊕ (∪�
h=1Oh) = (usector ij ⊕ ∪�

h=1Oh) ∪ (lsector ij ⊕ ∪�
h=1Oh).

Since the rod must sweep through the smaller angle to the destination orientation,
usectorij and lsectorij are convex. The following algorithm describes how we can compute
usector ij ⊕ Oh.

1. Find the reflection of usectorij about the origin. Let B i and Bj be the reflections of Bi and
Bj about the origin, respectively.

2. Compute the intersections of arc
�

BiBj with the half-lines originating from the origin and
lying parallel to the outer normals of the edges of Oh. Let C1, . . . , Cr denote the intersection

points (see figure 2(b)). Since each half-line intersects arc
�

B iBj at most once, r ≤ nh. The
resulting polygon C = FB iC1 . . . CrBj is convex.

3. Compute Oh ⊕ C using the algorithm given in [16].
4. Replace the edges of Oh ⊕ C corresponding (parallel and equal) to B iC1, C1C2, . . . , CrBj

with the respective arcs of
�

B iC1,
�

C1C2, . . . ,
�

CrBj .

Figure 2. (a) The area swept by the rod in a rotation. (b) The Minkowski sum of a convex polygon and a part
of a disc.



362 M. A. Abam and M. Ghodsi

LEMMA 3 The above algorithm correctly computes usector ij ⊕ Oh. Its time complexity and
the complexity of usector ij ⊕ Oh are both O(nh).

Proof It is easy to see that step 1 of the algorithm correctly computes the reflection of
usectorij about the origin. Let v1, . . . , vnh

be the vertices of Oh and let �1, . . . , �nh
be the

half-lines originating from the origin and lying parallel to �d1, . . . , �dnh
, the outer normals of

the edges of Oh. Since the order of the outer normals is the same as the order of edges

in Oh, some consecutive half-lines intersect
�

B iBj . Without loss of generality, assume that

�1, . . . , �r intersect
�

B iBj at C1, . . . , Cr , respectively. It is known that the extreme point on

the Minkowski sum in direction �d is the sum of the extreme points on the operands of the
Minkowski sum in the same direction. If the half-line originating from the origin and lying

parallel to �d does not intersect
�

B iBj , the extreme point on usector ij in direction �d, which is
F , B i , or Bj , is the extreme point on C in the same direction. Thus the sum of the extreme

points on Oh and usectorij in direction �d is equal to the sum of the extreme points on Oh and
C in the same direction which are correctly computed in step 3 of the algorithm. Now let the

half-line originating from the origin and lying parallel to �d intersect
�

B iBj at X. Without loss
of generality, assume that X is between C1 and C2, which implies that the extreme point on
Oh in direction �d must be v2. Then the sum of the extreme points in direction �d is X ⊕ v2.
When the direction �d , which is initially equal to �d1, moves toward �d2, the extreme point on
Oh does not change and still remains v2 and the extreme point X on usectorij moves from

C1 towards C2 on
�

C1C2. This means that we must replace the edge corresponding to C1C2 in

Oh ⊕ C with the arc that is equal to
�

C1C2 (step 4 of the algorithm). Since the complexity of C

is O(nh), the complexity of Oh ⊕ C is O(nh). Therefore the complexity of Oh ⊕ usector ij is
O(nh). It is straightforward to see that step 1 of the algorithm requires O(1) time and steps 2
and 4 require O(nh) time. By the properties of the Minkowski sum, the step 3 requires O(nh)

time. Thus the time complexity of the algorithm is O(nh). �

The same algorithm can be used to compute Oh ⊕ lsector ij . To compute their union for all
h, we can use a simple divide and conquer approach. We thus obtain the following theorem.

LEMMA 4 The complexity of BRFSj

i is O(n2) and it can be computed in time O(n2 log n).

Proof The number of edges of Oh ⊕ usector ij and Oh ⊕ lsector ij are both O(nh), for each

h and
∑�

h=1 nh = n. In the worst case, if each edge is intersected by all other edges, it is
partitioned into O(n) edges. Therefore the total number of edges of BRFSj

i is O(n2). Let
T (n) be the time needed by the algorithm. Since the merge step requires O(n2 log n) (using the
overlay algorithm presented in section 2.3 of [16]), we have T (n) = 2T (n/2) + O(n2 log n)

and thus T (n) = O(n2 log n). �

Each edge of BT FSi is a line segment but each edge of BRFS
j

i can be either a line or an
arc segment. An arc edge can be contained in a circle of either radius |FA| or radius |FB|.
Other simple and useful properties are as follows:

1. Since �αi
(0, 0) ⊕ Oh ⊂ sector ij ⊕ Oh, we have TFSi ⊂ RFSj

i , i.e. the translating free
space is a subset of the rotating free space.

2. Since sectorij = sectorji , we have BRFSj

i = BRFSi
j .



Approximation algorithm for d1-optimal motion 363

3.2 Characterization of the optimal motion

The following theorem summarizes the characterization of optimal motion m between two
placements S = (s, θs) and T = (t, θt ).

THEOREM 1 Any optimal motion m can be transformed into a motion m′ such that Fm′ is a
polygonal path whose vertices, except those around which the rod rotates, are the starting
point s, the target point t, and the vertices of BTFSi (i = 1, . . . , k). The vertices that the rod
rotates around are s and those on BRFSj

i (i, j = 1, . . . , k).

Proof Since m is optimal, each submotion of m is also locally optimal. Therefore the
submotion of m contained in Si is a polygonal path whose inner vertices are, by lemma 15.1
of [16], the vertices of BTFSi . Using this, we can say that Fm consists of a finite sequence
v0v1 · · · vq where vhvh+1 is a line segment and v0 = s, vq = t . Let vr be the vertex in which
the rod rotates from αi to αj . If vr does not belong to BRFSj

i and s, then vr−1vr is parallel
to vrvr+1. Otherwise, as illustrated in figure 3, we can find a shorter path. This is because
there is a disc centred at vr avoiding RFSj

i and RFSi
j (RFSj

i = RFSi
j ), and the submotion of m

inside the disc can be replaced by translating along the line segment GH and rotating around
G. Obviously, this path is shorter. Therefore, since vr−1vr and vrvr+1 are parallel, the rotation
around vr can be performed later or earlier at either BRFSj

i or s. �

The following theorem describes the vertices around which the rod rotates.

THEOREM 2 If vr is a vertex at which the rod changes its orientation from �αi to �αj , one of the
following holds.

1. vr is a vertex of BRFSj

i .
2. vr−1, vr and vr+1 are collinear.
3. vrvr+1 is the reflection of vr−1vr with respect to the normal at vertex vr of one edge of

BRFSj

i .

Proof Let C, A, B be a curve and two distinct points in the plane, respectively. Let X be a
point on C such that |AX| + |BX| is minimum. If C intersects the segment AB in point D,
it is obvious that X = D (figure 4(a)). Otherwise, consider an ellipse whose foci are A, B

and whose fixed value is |AB|. We increase the fixed value of the ellipse until it touches
the curve C. The touching point X is either one endpoint of C or an interior point of C. In
the latter case, the ellipse and C are tangent at X, which means that the tangent line to the
ellipse at X is tangent to C. As shown in figure 4(b), we know that ∠AXF = ∠BXE, i.e. BX
is the reflection of AX with respect to the normal of C at X. Assume that vr is on edge e of

Figure 3. Performing rotations on s and BRFSj

i .



364 M. A. Abam and M. Ghodsi

Figure 4. Shortest path between A and B passing through curve C.

BRFSj

i , vr−1vr avoids TFSi , and vrvr+1 avoids TFSj . Also, assume that e is a curve. Since
|vr−1vr | + |vrvr+1| is a minimum, using the above characterization, one of the three features
of the theorem must hold. �

4. The approximation algorithm

The d1-optimal motion problem is known to be NP-hard [11, 12]. The environment used in the
reduction of a 4CNF-satisfiability problem to the decision version of the d1-optimal motion
problem consists of the assembly of certain prefabricated modules. There is one basic module
(figure 5) from which other modules are fabricated. It is easy to see that the rod can lie in
two particular orientations in this module. Therefore we can conclude that our problem is also
NP-hard.

The output motion m of the approximation algorithm presented in [11] satisfies the following
condition:

d1(m) ≤ (1 + ε)d1(m
∗) + O(n2ε′)

where ε, ε′ are two positive numbers and m∗ is the optimal motion. The running time of the
algorithm is

O

(
n4α(n)

L − lg ε′

lg(1 + εL−L)

)
.

This algorithm was improved in [15] by introducing a pseudo ε–approximation algorithm
and converting it into an ε–approximation algorithm. The pseudo ε–approximation algorithm
satisfies

d1(m) ≤ d1(m
∗
R) + εR

where R > 0 is an arbitrary number and m∗
R is the d1-optimal when the orbit of F is restricted

to a disc of radius R centred at the starting point s. If R is large enough, m∗
R = m∗.

Figure 5. Schematic and detail description of a wide-beam splitter module.



Approximation algorithm for d1-optimal motion 365

As in [11] and [17], our algorithm breaks up edges of BRFSj

i into smaller segments. A
monotone edge e is an edge whose endpoints are the points closest to and farthest from the
starting point s. Each line edge and arc edge can be partitioned into at most three monotone
edges as follows.

• Let e = pq be a line edge and let x be the closest point on e to s. If x = p or x = q, then
e is already a monotone edge. Otherwise, we partition e into two monotone edges px and
xq.

• Let e = �
pq be an arc edge. The line passing through s and the centre of a circle containing

e intersects e in at most two points which partition e into at most three arcs. It is easy to see
that the three arcs are monotone.

Observation 1 Let e be a monotone edge and let x be the closest point on e to s (x is one of
the endpoints of e). If a point y initially lying on x moves towards the other endpoint of e, |sy|
increases strictly. Moreover, if e is a line edge, then |sy| ≥ |xy|. Otherwise, |sy| ≥ 1/2|xy|.

Observation 2 If E = �
pq is a monotone edge, then |pq| ≥ 2/π | �

pq |.
Observation 3 After making all edges of BRFSj

i monotone, the asymptotic complexity of
BRFSj

i does not change and still remains O(n2).

Let e be an edge of BRFSj

i for some i and j . Let cap(e) be the area surrounded by e and the
chord connecting the two endpoints of e. Edge e is called a visible edge if cap(e) and TFSi

are interiorly disjoint. If e is a visible edge and p and q are two points on e, the rod whose
reference point lies on p can move towards q with minimum cost just by translating along pq.
If e is a line edge, clearly e is a visible edge. However, if e is an arc edge, cap(e) and TFSi are
not necessarily interiorly disjoint. In the following, we explain how e can be partitioned into
arc edges e1, . . . , e� such that cap(eh) and TFSi are interiorly disjoint for any h = 1, . . . , �.

Let u and v be the endpoints of e where e is in the left side of −→
uv (figure 6). Find vertices of

BTFSi lying inside cap(e), among these vertices find vertex w such that the angle of −→
uw from

the x-axis is minimum. Let u1 be the other intersection of e and the line passing through u and
w, the cap corresponding to arc

�
uu1 does not have interior intersection with TFSi . We can now

recursively perform these steps for arc
�

u1v. In figure 6, e is partitioned into three arc edges.

LEMMA 5 After making all edges of BRFSj

i visible, the asymptotic complexity of BRFSj

i does
not change and still remains O(n2).

Proof Let Ve be a set of vertices of BTFSi lying inside cap(e) where e is an edge of BRFSj

i .
After making e visible, e is partitioned into at most |Ve| visible edges. We know that if

Figure 6. Partitioning the arc edge e into visible arc edges.



366 M. A. Abam and M. Ghodsi

e and e′ are two edges of BRFSj

i , cap(e) and cap(e′) are interiorly disjoint which means that
Ve ∩ Ve′ = ∅. Since the complexity of BTFSi is O(n), in total at most O(n) new edges are
created which does not change the O(n2) asymptotic complexity of BRFSj

i . �

The steps of the algorithm are described below. Throughout this algorithm, D(σ, σ ′) denotes
the shortest distance between two segments σ and σ ′ (each point is a segment of length 0).

1. Compute BRFSj

i and BTFSi for all i, j = 1, . . . , k.
2. Make the edges of BRFSj

i monotone for all i and j .
3. Make the edges of BRFSj

i visible for all i and j .
4. Divide each edge e of BRFSj

i into a set of segments by introducing points on it, such as
b0, b1, b2, . . .; each segment is then of the form σ = [p, q] where p, q are consecutive
points introduced on e. Let ε1 be ε/8µ where µ is the total number of edges of all BRFSj

i ,
s, t , and the vertices of all BTFSi .
(a) Let b0 be the closest point on e to the starting point s, i.e. D(s, e) = |sb0|. Notice that

b0 is one of the endpoints of e (figure 7).
(b) Let bi be at distance D(s, e)(1 + ε)i−1 (i > 0) from b0 on edge e. Notice that if e is

an arc edge, | �

b0bi | = D(s, e)(1 + ε)i−1.
(c) The segment b0b1 is uniformly subdivided into segments of length ε1D(s, E). This

further introduces points c1, c2, . . ..

If e is an arc, the arc
�

bibi+1 (i > 0) is uniformly subdivided into arcs of length 1/π | �

bibi+1 |.
5. Construct the visibility graph G as follows. The nodes of G are the segments from step 4

as well as vertices of BTFSi (i = 1, . . . , k), t in the target plane, and s in every plane Sj

where BRFSj

h (let θs = αh) does not contain s. Two segments σ and σ ′ contained in Si are
visible to each other when there exists x ∈ σ and x ′ ∈ σ ′ such that the line segment xx ′
avoids the interior of TFSi . The edges of G are pairs (σ, σ ′) of nodes such that σ and σ ′
are in the same plane and visible to each other or are corresponding segments on BRFSj

i

and BRFSi
j that are equal (notice that BRFSj

i = BRFSi
j ). Notice that t , s, and the vertices

of TFSi are taken as segments of length zero.
6. For each edge (σ, σ ′), compute and assign a nominal cost: If σ and σ ′ are in the same

plane, this cost is the Euclidean distance between the midpoints of σ and σ ′. Otherwise,
the cost is zero.

7. Apply Dijkstra’s shortest path algorithm to the weighted graph G. Let σ1, . . . , σq be
the nodes lying on the shortest path. The output of the algorithm is a sequence of
points u1, w1, . . . , uq, wq where uj , wj ∈ σj , u1 = w1 = s, uq = wq = t , and wj, uj+1

are visible to each other.

Figure 7. Breaking up a line segment e into smaller segments.



Approximation algorithm for d1-optimal motion 367

As mentioned above, the main aim of the algorithm is to break up the edges of BRFSj

i into
small segments. The following lemmas shows that the strategy adopted to split the edges of
BRFSj

i creates segments that have useful properties.

LEMMA 6

1. If σ is a segment computed in step 4 of the algorithm, its length satisfies |σ | ≤ ε1D(s, σ ).
2. There are at most O(L/ log(1 + ε1)) segments on each edge e and a total of O(µL/ log(1 +

ε1)) segments on all edges. Recall that µ is the total number of edges of all BRFSj

i , point
s, point t, and the vertices of all BTFSi and L is a bound on the number of bits for each
input integer.

3. µ is bounded by O(k2n2). Recall that k is the number of available orientations.

Proof

1. Let σ belong to an edge e. If one endpoint of σ is ci for some i, the length of σ is equal to
ε1D(s, e). Also, since D(s, e) ≤ D(s, σ ), we have

|σ | = ε1D(s, e) ≤ ε1D(s, σ ).

If e is a line edge and σ = bhbh+1 (h > 0), then we have

|σ | = bh+1 − bh = D(s, e)(1 + ε1)
h − D(s, e)(1 + ε1)

h−1 = ε1D(s, e)(1 + ε1)
h−1.

Since D(s, σ ) = |sbh| ≥ |b0bh| = D(s, e)(1 + ε1)
h−1 = 1/ε1|σ |, then |σ | ≤ ε1D(s, σ ).

If e is an arc edge, the arc
�

bhbh+1 is divided into segments of length 1/π | �

bhbh+1 |. If σ is
one of these segments, then we have

D(s, σ ) ≥ |sbh| ≥ 1

2
|b0bh| ≥ 1

π
| �

b0bh | ≥ 1

π
D(s, e)(1 + ε1)

h−1 = 1

ε1
|σ |.

We used observations 1 and 2 to prove some of the above inequalities.
2. We have assumed that the number of bits of each input integer is bounded by L. Then the

maximum length of e is 2L and the minimum distance between two different points is 2−L.
Consequently, we have

D(s, e)(1 + ε1)
h−1 ≤ 2L ⇒ h ≤ L − log D(s, e)

log(1 + ε1)
+ 1 ≤ 2L

log(1 + ε1)
+ 1.

The segment b0b1 is divided into 1/ε1 segments and the segment bibi+1 (i > 0) is divided
into at most π segments. Therefore the number of segments on e is 1/ε1 + 2πL/ log(1 +
ε1) + π . Since ε1 ≥ ln(1 + ε1), the number of segments on e is O(L/ log(1 + ε1)). With
µ edges, the total number of segments is O(µL/ log(1 + ε1)).

3. There are k2 rotating forbidden spaces with complexity of O(n2) (lemma 5) and we have
k translating forbidden spaces with complexity of O(n) (lemma 2). Consequently, the
complexity of the forbidden spaces is O(k2n2) in total, i.e. µ = O(k2n2). �

The output motion m and the optimal motion m∗ pass through each vertex of BTFSi (i =
1, . . . , k), s, and t at most once. Otherwise, Dijkstra’s algorithm returns a shorter path and
m∗ is not an optimal path. Let e be an edge of BRFSj

i for some i and j . Although e may be
partitioned into some segments and for each there is a corresponding node in graph G, e is
visited by m and m∗ at most once. Otherwise, let p and q be distinct points on e visited by



368 M. A. Abam and M. Ghodsi

motion m∗ (or m). Since e is a visible edge, pq avoids TFSi and we can always find a shorter
path by translating along pq.

LEMMA 7 Every edge of BRFSj

i , every vertex of BTFSi , the starting point s, and the target
point t are visited by the output motion m and the optimal motion m∗ at most once.

The following theorem states our main result.

THEOREM 3 The output motion m of the algorithm between the initial placement S = (s, θs)

and the final placement T = (t, θt ) satisfies the inequality

d1(m) ≤ (1 + ε)d1(m
∗),

where m∗ is the optimal motion. Moreover, the running time of the algorithm is bounded by
O(k3L2n7/lg2(1 + ε1)).

Proof Let m (m∗) pass through σ1, . . . , σq (σ ′
1, . . . , σ

′
q ′). More precisely, the motion m (m∗)

is a sequence u1, w1, . . . , uq, wq (u′
1, w

′
1, . . . , u

′
q ′ , w′

q ′) where uh, wh ∈ σh (u′
h, w

′
h ∈ σ ′

h) and
wh and uh+1 (w′

h and u′
h+1) are visible to each other and u1 = w1 = s (u′

1 = w′
1 = s) and

uq = wq = t (u′
q ′ = w′

q ′ = t). Let m1, . . . , mq (m′
1, . . . , m

′
q ′) be the midpoints of σ1, . . . , σq

(σ ′
1, . . . , σ

′
q ′). The following inequality can be derived from steps 6 and 7 of the algorithm:

|m1m2| + · · · + |mq−1mq | ≤ |m′
1m

′
2| + · · · + |m′

q ′−1m
′
q ′ |.

It is easy to see that the following inequalities always hold:

d1(m) ≤ |m1m2| + · · · + |mq−1mq | + 2(|σ1| + · · · + |σq |)
|m′

1m
′
2| + · · · + |m′

q ′−1m
′
q ′ | ≤ d1(m

∗) + 2(|σ ′
1| + · · · + |σ ′

q ′ |).

We also know from lemma 6 that

|σ | ≤ ε1D(s, σ ) ≤ ε1d1(m
∗).

Consequently we have d1(m) ≤ d1(m
∗) + 4(q + q ′)d1(m

∗).According to lemma 7, m and m∗
pass through each edge of BRFSj

i , each vertex of BTFSi , s, and t at most once. This implies
that q and q ′ must be at most µ. On the other hand, we know that ε1 = ε/8µ. Therefore
d1(m) ≤ (1 + ε)d1(m

∗).
Computing BTFSi (i = 1, . . . , k) costs O(kn log2 n) time (lemma 2) and computing BRFSj

i

(i, j = 1, . . . , k) costs O(k2n2 log n) time (lemma 4). Steps 2 and 3 can be done with time
complexities of O(k2n2) and O(k2n3), respectively. The required time to determine whether
σ1 and σ2 are visible to each other is O(n3). Since there are O(µL/k log(1 + ε1)) segments
in each plane, and µ = O(k2n2) and there are k planes, the required time for constructing the
visibility graph is O(k3L2n7/log2(1 + ε1)). Finding the shortest path can be done in

O

(
µL

log(1 + ε1)
log

(
µL

log(1 + ε1)

)
+ k

µ2L2

k2 log2(1 + ε1)

)

time by Dijkstra’s algorithm. In total, the running time of the algorithm is
O(k3L2n7/log2(1 + ε1)). �



Approximation algorithm for d1-optimal motion 369

5. Conclusion

We have considered the problem of characterizing and computing the optimal motions for a
translating and rotating rod robot which can only rotate under a pre-specified fixed number of
angles and around a fixed but arbitrary point on the rod. The latter condition is a new restriction
for the known d1-optimal problem. We characterized the d1-optimal motion of the robot under
the given conditions, and then presented a (1 + ε)–approximation algorithm for finding the
optimal motion of the rod. The running time of the algorithm was shown to be bounded by a
polynomial in terms of problem parameters.

A. Appendix: main notations

−→
AB Rod robot
{ �α1, . . . , �αk} and {α1, . . . , αk} Specified orientations and corresponding angles

�

BiBj Arc (a part of a disc) between Bi and Bj

BTFSi Boundary of TFSi

C(�) Configuration space of �
Cforb(�) Forbidden space of �
Cfree(�) Free space of �
Cobstacle(Oi ) Forbidden space of obstacle Oi

ε Arbitrary positive number
F Fixed point on �
L Bound on the number of bits for each integer
m Motion
n = ∑�

i=1 ni Total number of edges of all obstacles
ni Number of edges of Oi

O = {O1, dots, O�} Set of obstacles
q[(p, α)] New point reached by rotating point q under α degrees

around the origin and translating under �p
R Real numbers
� Robot
�αi

(x, y) Rod with its fixed point at point (x, y) and orientation αi

R
2 ∗ {α1, . . . , αk} C(�) for a rotating and translating � with fixed rotations

RFSj

i Rotating forbidden space which is the forbidden space in
Si when rotating to αj

Si Set of all points (x, y) such that (x, y, αi) ∈ C(�)

S = (s, θs) Initial placement of the robot
TFSi Translating forbidden space in Si

T = (t, θt ) Final placement of the robot
Xm Orbit of the point X on � under motion m

x Reflections of a point, arc, or a shape x about the origin

Acknowledgements

The authors wish to thank the anonymous referees for many useful comments.



370 M. A. Abam and M. Ghodsi

References
[1] Reif, J., 1979, Complexity of the movers problem and generalizations. In Proceedings of the 20th IEEE

Symposium on Foundations of Computer Science, pp. 420–427.
[2] Schwartz, J.T. and Sharir, M., 1983, On the piano movers’problem. I: The case of a rigid polygonal body moving

amidst polygonal barriers. Communications on Pure and Applied Mathematics, 36, 345–398.
[3] Schwartz, J.T. and Sharir, M., 1983, On the piano movers’ problem. II: General techniques for computing

topological properties of real algebraic manifolds. Advances in Applied Mathematics, 4, 298–351.
[4] Schwartz, J.T. and Sharir, M., 1983, On the piano movers’ problem. III: Coordinating the motion of several

independent bodies: the special case of circular bodies moving amidst polygonal barriers. Robotics Research,
2, 46–75.

[5] Schwartz, J.T. and Sharir, M., 1985, On the piano movers’ problem. IV: Efficient motion planning algorithms
in environments of bounded local complexity. Technical Report 164, Courant Institute, New York University.

[6] Leven, D. and Sharir, M., 1985, An efficient and simple motion planning algorithm for a ladder moving
in two-dimensional space amidst polygonal barriers. In Proceedings of the 1st Annual ACM Symposium on
Computational Geometry, pp. 221–227.

[7] Schwartz, J.T. and Sharir, M., 1984, On the piano movers’ problem. V: The case of a rod moving in three-
dimensional space amidst polyhedral obstacles. Communications in Pure and Applied Mathematics, 37,
815–848.

[8] Sifrony, S. and Sharir, M., 1986, A new efficient motion planning algorithm for a rod in polygonal space. In
Proceedings of the 2nd Annual ACM Symposium on Computational Geometry, pp. 178–185.

[9] Icking, C., Rote, G., Welzl, E. and Yap, C.K., 1993, Shortest paths for line segment. Algorithmica, 10, 182–200.
[10] O’Rourke, J., 1987, Finding a shortest ladder path: a special case. IMA Preprint Series 353, Institute for

Mathematic and its Applications, University of Minnesota.
[11] Asano, T., Kirkpatrick, D. and Yap, C.K. 1996, d1 optimal motion for a rod. In Proceedings of the 12th Annual

ACM Symposium on Computational Geometry, pp. 252–263.
[12] Asano, T., Kirkpatrick, D. and Yap, C.K., 2003, d1 minimizing the endpoint trace length of the rod motions

amidst polygonal obstacles is NP-hard. In Proceedings of the 15th Canadian Conference on Computational
Geometry, pp. 10–13.

[13] Papadimitriou, C.H. and Silverberg, E.B., 1987, Optimal piecewise linear motion of an object among obstacles.
Algorithmica, 2, 523–539.

[14] Sharir, M., 1989, A note on the Papadimitriou–Silverberg algorithm for planning optimal piecewise-linear
motion of a ladder. NYU Robotics Report, no. 188, Courant Institute, New York University.

[15] Asano, T., Kirkpatrick, D. and Yap, C.K., 2002, Pseudo approximation algorithms, with applications to optimal
motion planning. In Proceedings of the 18th Annual ACM Symposium on Computational Geometry, pp. 170–178.

[16] De Berg, D., Van Kreveld, M., Overmars, M. and Schwarzkopf, O., 1997, Computational Geometry: Algorithms
and Applications, Chapters 2, 13, 15 (Berlin: Springer).

[17] Choi, J., Sellen, J. and Yap, C.K., 1994, Approximate Euclidean shortest path in 3-space. In Proceedings of the
10th Annual ACM Symposium on Computational Geometry, pp. 41–48.


