Parallel Minimum Spanning Tree Heuristic
for the Steiner Problem in Graphs

Hoda Akbart, Zeinab Iranmaneshand Mohammad Ghodsi

'Sharif University of Technolog$iPM school of Computer Science,
Tehran, Iran
{h_akbari, iranmanesh}@ce.sharif.edu, ghodsi@shedif

Abstract

Given an undirected graph with weights associated
with its edges, the Steiner tree problem consits o
finding a minimum weight subtree spanning a given
subset of (terminal) nodes of the original graph.
Minimum Spanning Tree Heuristic (MSTH) is a
heuristic for solving the Steiner problem in graphs
this paper we first review existing algorithms fmiving
the Steiner problem in graphs. We then introducea
parallel version of MSTH on three dimensional meth
trees architecture. We describe our algorithm and
analyze its time complexity. The time complexity
analysis shows that the algorithm's running time is
O(lg?n) which is comparable with other existing

parallel solutions.

1. Introduction

A great number of the recent applications often
require the underlying network to provide multitagt
capabilities. Multicast refers to the delivery aiciets
from a single source to multiple destinations. Aet
routing level, a multicast routing scheme is resiuoe
for determining the packet delivery path from tberse
to all destinations, typically a multicast tree J13
Generation and minimization of the cost of suctle tre
have been traditionally formulated as t&teiner Tree
Problem The Steiner Tree Probleminvolves
constructing the least cost tree that spans a gietmf
points. In addition to multicast routing in
communication networks, the Steiner tree problem ha
numerous applications especially in the areas of
telecommunication, distribution and transportation
systems. The computation of phylogenetic trees in
biology and the routing phase in VLSI design aral re
life problems that have been modeled as the Stéieer
problem [12]. Another interesting application is thme
billing strategies of large telecommunications rakv

* This author's work was partially supported by angfeom IPM (N.
CS2386-2-01.)

service providers. The bill isn't based on the aktu
number of circuits provided, which may change over
time, but on a simple formula calculated for analde
network which will provide all the facilities at mimum
cost. Several other network design problems can be
formulated as generalizations of the Steiner treblpm.

Steiner tree problem or so call&deiner Problem in
Graphs (SPG) is a classic combinatorial optimization
problem. Karp showed that its decision version B N
complete [18], although some well known speciakesas
of the SPG can be solved in polynomial time. Wingn |
= 2 the problem reduces to the shortest path pmoble
while whenN =V the problem reduces to the minimum
spanning tree problem. Both these problems can be
solved in polynomial time. On the other hand, the
Steiner tree problem is NP-hard when the graph & is
chordal graph, a bipartite graph or a complete tyrap
with edge weights either 1 or 2. Thus in the gelnease
the problem is an NP-hard problem.

Due to its NP-hardness, several heuristics hava bee
developed to approximate its solution. Howeverrdhe
are some major difficulties in deployment and
application of the existing algorithms to real-time
communication networks. One of these difficulties i
distributed solutions is that existing protocolsndlo
support the information needed to be exchanged gmon
nodes. Furthermore the convergence time may be
prohibiting for the multicast trees that change
frequently. So, it may be a good approach to deaign
parallel algorithm which can be run very fast osirggle
node. In this paper we present parallel versiorihef
minimum spanning tree heuristiMSTH) for the
Steiner problem in graphs énree dimensional mesh of
trees (3dMOT) architecture. In the next section, we
review the definition of the problem and its vaoas.

In sec. 3 we present a survey of proposed algositfum
the Steiner problem in graphs. In sec. 4 we present
approach for making MSTH parallel on 3dMOT. We
describe our algorithm and present its time coniplex
Finally, in sec. 5 we make an overall evaluatiorthef
proposed algorithm and conclude the work.

2. Problem definition, variations and

generalizations

Let G = (V, E) be a connected undirected graph,
whereV is the set of nodes aftidenote the set of edges.
Given a non-negative weight functiog:E - R,

associated with graph edges and a subsetyv of
terminal nodes, the Steiner Problem in Gra@RG(V,
E, w, X) consists of finding a minimum weighted
connected subtree & spanning all terminal nodes ¥h
The solution of SPQV, E, w, X)is Steiner minimum
tree The non-terminal nodes that end up in the Steiner
minimum tree are calle8teiner nodes

Terminal Steiner Tree Problers a variation in which
all the terminal nodes must appear at leaves ofrtee
This problem that is also proved to be NP-complete
been matter of concern because it has direct atiglic
in VLSI design [5]. InComplete Steiner Problertne
input graph is assumed to be complete. Another
variation is theComplete Steiner (1, Zn which the
input is a complete graph with edge weights 1 oAlR.
of these variations are NP-complete [6]. SPG —t®r i
terminal version — are sometimes said tontedric, i.e.
the triangle inequality holds for edge weights Ire t
input graph. This imposes no limitation on the Stei
problem itself, since we can replace any edge tith
shortest path connecting its ends [19, 20]. Bbeiner
Network Problemgeneralizes the metric Steiner tree
problem to higher connectivity requirements: Giwen
graph G = (V, E) a cost function on edges, and a
function r mapping unordered pairs of vertices b,
find a minimum cost graph that hgs,v) edge disjoint
paths for each pair of verticesandv [20]. The issue of
multipoint routing for multimedia traffic has ledt
emergence ofConstrained Steiner Tree Problenn
which the problem is to find a minimum cost treetsu
that the delay — delay variation or both — betwten
source and each of the destinations is bounded. The
Dynamic Steiner Tree Probleis another generalization
of the problem, in which the set of destination emd
changes over time by receiving join or delete rstpie
from nodes, and problem asks for a sequence ahapti
trees [11].

Figure 1. Sample Steiner tree. Black nodes are déstion
nodes, white nodes and hatched nodes are non-destion.
The Steiner nodes are hatched.

3. Related work

As SPG is NP-complete, there is little hope to fand
polynomial time solution for it. All the work done
find a solution so far falls into three categoriesact
Algorithms, Approximation Algorithmsand meta-
heuristics

Two popular exact algorithms, th8panning Tree
Enumeration Algorithm(STEA) which enumerates all
possible combinations of Steiner nodes, and the
Dynamic Programming AlgorithnfDPA), present time
complexities of O(p?2"™ +n?) and
0O@3°n+2°n? +n?) respectively, wheren is the
number of nodes in the network apds the number of
multicast members [11]. These algorithms requirgglo
computation time or huge computational power for
solving bigger problems, like the branch and bound
algorithm proposed in [7], that makes use of
computational grids.

In [17], the author offers an approximation aldgumit
with performance ratio 5/3 based on finding a mimm
spanning tree in 3-uniform hypergraphs that finkds t
solution with probability at least 1/2 and clainhgt the
algorithm runs in O(lg®n) time, using O(n%)
processors. The best approximation algorithm knean
far is due to Robins and Zelikovsky whose perforogan
ratio is about 1.55 and even better for speciadsasich
as quasi-bipartite and complete(1-2) graphs [19].

Among several heuristics proposed to find an
approximate solution,Traveling Salesman Problem
Heuristic (TSPH), Minimum Spanning Tree Heuristic
(MSTH), andAverage Distance Heuristi(ADH) have
performance ratio of 2.

TSPH is a heuristic based on the traveling salesman
problem (TSP) and involves finding a tour for thagh
induced by the network followed by removing the tmos
expensive link.

Shortest path heuristic (SPH) computes the tree by
connecting all the terminals to an arbitrary rdobtigh
their shortest paths and then finding the minimum
spanning tree of the graph induced by the unicihede
paths, repeatedly removing the nonterminal leaves.

The algorithm presented in [11] is a distributed
algorithm based on an improved version of the ADH
heuristic, known as ADH with Full connection (ADHF)
[11] Also provides an efficient approach that suppo
dynamic multicast membership, by means of periodic
improvement of locally inefficient subtrees.

In [9] the author introduces a new algorithm usime
Random Neural Network$o find potential Steiner
vertices that are not already in the solution regdrby
the MSTH or ADH, starting with the solution of the
MSTH or ADH.

The first approximation algorithm for SPG having an
approximation ratio constant lower than 2 was due t
Zelikovsky [10] with performance ratio 11/6. Thee h
repeatedly improved this ratio to currently besbwn
performance ratio: 1.55.

The heuristics proposed to find the Steiner trae fo
routing applications are either centralized orribsted.

In the centralized approach, a central node thatwisre

of the state of the whole network computes the ffae
computation is generally easy and fast. But imjcatt
for large networks where the overhead of maintgnin
in a single node, coherent information about tla¢esof
the entire network may be prohibitive. In a digtidxl
approach, on the other hand, each node of the nletwo
actively contributes to the algorithm computation.
Distributed routing algorithms can be slower andreno
complex than the centralized ones, but they become
indispensable when the network nodes can not reach
complete knowledge of the topology and of the stdite
the network [11].

Some meta-heuristics are proposed as the soluiion f
the Steiner problem in graphs too. Among the most
efficient ones, it is found implementations of meta
heuristics such as genetic algorithms, tabu search,
GRASP and simulated annealing [16, 18].

Esbensen and Mazumder [8] proposed a genetic
algorithm and discuss its application in globaltiog of
VLSI layouts. The algorithm’s encoding is basedttos
use of the Distance Network Heuristic (DNH) whishai
deterministic heuristic for the SPG. The perfornent
algorithm is compared to that of two heuristicanirthe
literature and it has been shown that the algoritam
superior.

Di Fatta, Lo Presti, and Lo Re proposed a parallel
genetic algorithm for the Steiner problem in netigor
When solving Beasley's OR Library standard test
problems, they obtain promising speedup values.
Recently, the same authors working with Storniaid a
Urso extend their proposal presenting a paralldéridy
method that combines a distributed genetic algarith

and a local search strategy using a specific Steéire
problem heuristic [1].

Tabu Searchwas introduced by Glover in 1986. TS is
an extension of classickical searchmethods typically
used to find approximate solutions to difficult
combinatorial optimization problems [3]. Ribeirodan
Souza [18] proposed an improved tabu search for the
Steiner problem in graphs. The important featur¢hef
algorithm is that move estimations, eliminationtdes
and neighborhood reduction techniques are used to
speedup the local search and lead to a much faster
algorithm with similar performance in terms of dain
quality. In the context of parallel tabu search fbe
Steiner problem in graphs, Bastos and Ribeiro [2]
describe a two phase algorithm: in their approach,
parallel multithread reactive TS phase is follownda
distributedPath RelinkingPR) phase, i.e., all processes
switch from TS to PR simultaneously.

Martins, Ribeiro and Souza [16], proposed a pdralle
grasp for the Steiner problem in graphs. A Greedy
Randomized Adaptive Search Procedure (GRASP) is a
meta-heuristic for combinatorial optimization. A
GRASP is an iterative process, where each iteration
consists of two phases: construction and localcbear
The construction phase of the algorithm is based on
version of distance network heuristic which is ioyed
by Mehlhorn. Some heuristics are used in order to
speedup the local search. For parallelization oASR,
each slave processor performs a fixed number of
GRASP iterations. Once all processors have finished
their computations, the best solution is colledigcdthe
master processor. The results of computational
experiments illustrate the effectiveness of theppsed
parallel GRASP procedure for the Steiner problem in
graphs.

Verhoeven and Severens proposed sequential and
parallel local search methods for the Steiner tree
problem based on a novel neighborhood. They claimed
their approach is “better" than those known in the
literature. Computational results indicated thatodjo
speedups could be obtained without loss in solution
quality [4].

4. Our Contribution

Having studied all the work explained in the prexso
section, we were to select a proper algorithm to be
parallelized. Among those algorithms having
exponential execution time, we concluded that
parallelization may not be wise or effective, beszaas
the network scales up and the number of nodes grows
the complexity grows exponentially and therefore th
number of required processors would be exponential
too. In other words, such algorithms suffer from
scalability problem. But among those algorithmsihgv
polynomial execution time — and so in the categufry

Approximation Algorithms — the only acceptable

approximation ratios were 2 — due to ADH and MSTH —
, 11/6 and 1.55 — due to Zelikovsky. As Zelikovsky

assumes the network graph is complete, the solution
may be found only in special cases. Furthermore,
although the algorithm runs irO(Ig?n)time using

O(n®) processors, this solution is only found with

probability at least 1/2 [17]. So the only possible
candidates for our purpose are ADH and MSTH. They
have been experimentally compared and none of them
proved to be superior of the other in all situasidf].
Shortest path heuristic is not good as its perfocea
ratio is not constant, but bounded ftaywherem is the
number of destination vertices.
The ADH algorithm works as follows:
1. Begin with a foresF of single node trees, each
representing a vertex .
2. Choose ulV such that f(u) is minimum
where
. 1
f (u) Smrpjgﬂ‘g_l;sd(uﬁ).
3. LetT; andT, be two closest trees to
4. JoinTy andT, by a shortest path through
5. If \F\ >1, go to Step 2, els€xpy is the single

tree inF.

The heuristic has a time complexity@(M3) since it
requires thall pairs shortest pathmatrix for the graph

[9].

At first glance, the algorithm may seem highly
parallelizable, but this is not true, since stegab not be
parallelized. In other words, we face sequenceof
actions, each of which consists of finding the two
candidate trees to be joined and joining thesestrEleis
imposes a limit ofO(n) as a lower bound for execution

time of any parallel algorithm, which is not accdye
where there exist algorithms with polylogarithmic
execution time, so the only remained candidatetlier
purpose of parallelizing would be the MSTH.

In order to select a good architecture, we noted th
this architecture would probably ha@¢n®) processors,

resulting toQ(lg® n) algorithm execution time. This led

us to selecthree dimensional mesh of tre€&dMOT)
which is a powerful scalable network among several
other parallel architectures. 3dMOT consists ofubec

of n® nodes in which each row of length comprises
leaves of a complete binary tree in each of three
dimensions [14]. Furthermore, computing the MST of
ann node graph can be performed otwa dimensional
mesh of treewhich is a subgraph of 3dMOT efficiently

in O(lg? n) [14].

Now that we have defined the problem and specified
the architecture, we are ready to dive in the bl
more formally.

4.1.Problem Formulation and Basic
Notation

For the purpose of routing, a communication network
may be modeled as a connected, weighted, undirected
graph G = (V, E, w) whereV is the set of vertices
representing the nodes in the netwdtkhe set of edges
representing the links in the network, awée) is the
nonnegative weight associated to the egggle E).
When the primary goals are to achieve maximum
utilization of the network resources and to endossl
balancing, these weights are assigned to edges to
represent the cost of using a link [9]. From now we

usen to represer’ﬁv , the total number of nodes in the

network. We also defined(i, j)to be the distance —

length of the shortest path between — nadeg].

The Steiner problem in graphs asks for the minimum
weight tree subgraph interconnecting a sul3ebf
vertices — called terminals — in such a graph.

Three Dimensional Mesh of trees, the architecture
used to solve this problem, is anxnxnarray of
processors each element of which i¢eaf processor
which we denote by a triplei, (j, K) indicating the
position of that processor in dimension 1, 2 and 3
respectively. On each of the dimensions of sucareay
in 3dMOT, there exists a two dimensional arrayreés
whose leaves are the array elements. For the sake o
simplicity, we represent these trees with triplks (i, j,

-), in which the dash sign represents the tree'sudaon

and the two numbers represent the position of tbe t
among other trees in the same dimension. We've
assumed that the roots of trees are linked together
among dimensions; this won't add much to the
computational power or cost of the network as dised

in [14], but only is to simplify the notation and
algorithm explanation.

4.2. The Algorithm

The minimum spanning tree heuristiMSTH),
developed by Kou et al., finds potential Steinetices
assuming that they will likely be on the shorteaths
between the destination vertices. The heuristiceeds
as follows:

1. Construct a complete graf’ = (D, E') where

Cost, (u,v)is the length of the shortest path
fromutovinG.
Construct a minimum spanning trgeforG' .

3. Construct a subgrap”of G with all vertices
of T'.

4. Construct a minimum spanning trééforG" .

5. Remove successively any pendants which are
non-destination leaf vertices iM"to form a
SOIUtion,TMSTH.

As presented in [9], the heuristic has a time
complexity ofo(D|V|) -

The parallel algorithm we have proposed to be mun o
a 3dMOT is the following:

1. Compute all pairs shortest paths(APSP)
matrix for the graph, i.e. the length of shortest
path between all pairs whetherDror not inD.
This will result in formation of a complete
graph in which especially between each pair of
vertices of D, there exist an edge with the
weight of minimum cost path linking them, we
call these edges agtual edges

2. Compute MST of the graph’, taking into
account only the vertices D.

3. Construct G"by marking all the edges in G
which are contained in at least one of the
virtual edges of '.

4. Construct MST of G", T"keeping track of
whether each edge joins two required
components — and therefore should be
preserved — or not.

To explain how to implement these steps on a
3dMOT, we first show how to compute APSP matrix.
We simply use the matrix multiplication and squgrin
technique discussed in [14]. This is accomplishgd b
powering the weight matrix of the graphrtd., in which
matrix multiplication and powering is defined lik@s:

C=AB
G = Eisq{ail +by}
aj =minfa, +a"}

At most[log(n-1) | multiplications are needed since

it suffices to comput&™ whereM is the smallest power
of 2 greater than or equal t®l. Each multiplication
takes 2logn+1 steps when entering the matrix to roots

of dimension 1 and 3 trees and getting the resuhe
roots of dimension 2 trees after sending each eletoe
all leaves, multiplying the values in each leaf an
summing up the values in leaves of dimension 2stree
The total time required for matrix multiplication this

way is 2log® n+ 3logn +1steps [14].
To compute the MST as explained in [14] on two

dimensional mesh of trees, we need to put the ad@c
matrix of G' on leaves of one 2-dimensional mesh of

trees in the array. This can be accomplished bglisgn
each value from roots of dimension 3 trees to $ay i
uppermost leaf. We assume that node informatioe.— i
membership iD or not — is present at the roots of trees
in this level. Then assuming threembership in o
work as enable signal for the processors, the edfjes
minimum spanning tree can be determined in
O(log? n) steps, using the algorithm presented in [14].
To construcG”, we find the nodes belonging to it.
We use the leafi,(j, k) to indicate if the nodgis on the
shortest path from nodeo nodek. We note that if this
is the case, we would have the following:

d(i,k) =d(i, j) +d(j,k)

If the shortest paths are unique, this is of course
correct. Otherwise, then this may cause to constiuc
supergraph d&", however this would not affect cost of
the result, because we remove the additional nadds
edges at the next steps, when removing the pendants
last.

To do this, each tree root when the tree is infone
(- J, K, @, -, K, or (, j, -), sends the distance to all its
descendent leaves. Each leaf j(k) receiving the
required values from the tree roots in each ofehre
dimensions, can verify that it is on a virtual edge
connecting andk and in MST ofG' . To verify that the
edge {, K) is in the MST oG’ , the computed values for
existing edges of the MST matrix in the leaf leaet
sent to corresponding roots of dimension 2 treexeO
we have these values at roots, we send them downwar
through the tree edges to all leaves with the féym K
that are about to verify the existence of edgek)
Whenever a node is proved to be on a shortest path
contained in the MST, this information should betde
the corresponding root node of the 2-dimensionayar
on which the shortest paths matrix is computee ~the
uppermost leaf plain. This is a reduction operatimte
all the information in nodesx{ j, y) should be
"summarized" by an OR operation in the root of the
n) dimension 1 tree. First, all the leaf processarging
an address of the form,(j, y) send their information to
their dimension 1 tree root. The result is sentnfr@ot
to the rightmost leaf node which has an addreshef
form (O, j, ¥. These leaves which are all descendents of
the tree @, j, ¥ sum up their values by sending them
upward to the root of this tree. The final resslithen
sent to the(, j, n) leaf which in turn sends it to the j;,

n) tree root. These values are sent downward through
dimension 1 and 2 trees to the upper plate led@eb

the edges that receive such enable signals froi difot
their corresponding trees are considered to &' in

The remaining work is to compute the minimum
spanning tree of the result graph and removing the
pendants. One may think that this is easily accwhet
by running the MST on the upper plate and then

removing the degree 1 non-destination nodes. Bat it
immediately seen that removing these pendants may
result in formation of other pendants and this ke

us perform a "sequence" of updates, leading the

algorithm running time to be @(N) . Instead of doing

this, we propose a solution in which we keep tratk
the needed non-destination nodes during the foomati
of the MST. For this purpose we need to distinguish
between the connected components containing at leas
one destination node and the components without any
destination node. Wel'l refer to the former as D-
components and the latter as S-components. We also
call destination nodes as D-node and non-destimatio
nodes as S-nodes. The nodes that are proved to be
needed for constructing the Steiner tree will derred
to as N-nodes (needed) and the other nodes will be
called U-nodes(unneeded). Furthermore, we assuabe th
among the information contained in each node, we ha
one flag to indicate whether or not the node igm@dant
of its component. This flag is initialized to tryes
pendant) for S-nodes and false for D-nodes. Weldhou
update this flag when the tree components are being
connected to each other. When merging two trees, we
may encounter one of these:

1. One of the components is S-component and

the other a D-component,
2. Both the components are S-component,
3. Both the components are D-component

In the first and second case no flag needs to be
updated. In the third case, if we indicate two eoidhe

newly added edge k/ands’, only the flag of the nodes

belonging to the paths frosmiand S' to their nearest N-
nodes in each component should be changed from true
to false, meaning that the node is now needed to
construct the tree, because as it's apparent uré-j it
would be on the only path from one N-node to anothe

If any of two edge ends is an N-node, no changheén
flags of that component is needed.

Figure 2. Two components are to be linked together.
Black nodes indicate N-node and gray nodes are U-des.
The thick edge is the newly added edge. It can been that
hatched nodes are U-node before connecting the nedge,
but they should be changed to N-nodes. Also it's elous
that the state of other nodes needn't change.

To do so, we note that when we connect to
components while constructing the MST, we should be
able to distinguish between D-components and S-

components. This is easily accomplished by giving
priority to D-nodes to be leader of a componentthis
way, if a component is a D-component, its leadeulaio
be a D-node and vice versa.

To determine which nodes are there on the path
connecting one end of an edge to its nearest N;nvoele
maintain in the leaf matrix the path-lengths betwany
pair of nodes in the current forest and represeblyi
dust Then we can verify this fact by checking if the
following equality holds:

dyst(S,Ng) = dyer(S,i) +dysr (i)

Here,s can represent any of U-nodes at one end of the
new edge angd.is the nearest N-node te in its

component. Since there is only one path in tree/dent

any pair of nodes, to the update path lengths, when
connecting two components, we only need to compute
path lengths between pairs of nodes that are nttan
same component. This value for two arbitrary nodes

N and N, as indicated in Figure 3 would be:

Aysdn,n,) =dys{n,8) +WS, S,) +d,5(,,S,)

Figure 3. Computing the length of newly established
paths when connecting two components.

To do the above on a 2 dimensional mesh of trees
(2dMOT) whose leaves are located at the upper plate
we run a modified from of the ordinary MST algorith
on 2dMOT. Whenever we want to connect two
supernodes, as soon that the linking edge infoomati
was received by the leader (i.e. the weight, eduis,e
and leader information of the two ends), it canfyef
the two components are both D-component. If this is
true, then each nodeé in that component must
haved, o (s,d,) dysr(Si)and d,(i,d,) available to

verify if it should be set to an N-node.

At first, the leader sends identity of s downward
through row trees. The cell in colursthat receives this
message sends a "calculate nearest N-node" metgsage
its column tree root. The root in turn sends a ags$o
all its leaves to send thaidy,stif they connecs to an N-
node. The minimum of these values is calculatetheys
move upward through the column tree. This minimum
value (which embeds the identity sfand ds) is then
sent to the leader root.

We show how a leader can send a message to all its
component members and will use this abstracticer lat
several times. The leader of any component sersds it
identity and the message to all its descendentekeav
through row trees and each node sends identitysof i
leader to its column through column trees. In each
columni, the leaf that has received a message from a
leader that is the same as the leader identityivede
through the column tree, sends the message upward
through the column tree to the root node.

The leader sends the identity efand ds to all its
component members. Each member sends its identity
along with the identity of andds received from leader

to all its column tree leaves and the proper le®essd
dysr(s,i) andd,q; (i,d;) upward to the root. Now that

root has all of the three valuggg,(s,d,), d,c(Si)
and d,,., (i,d,) available, can set its flag properly. This

is the process through which we can update the N-
nodes.

In order to update path lengths, once again when we
want to connect two supernodes, as soon thatrikig
edge information was received by the leader, itdsen
identity of s; and s, along with w(s,s,)to all its
component members. Each node, having received these
values sends the identity sf and w(s,,s,)downward
through the column trees to all leaves. The progaf
then sendsd, (n,s)to the root which in turn
broadcasts this value through row and column ttees
its corresponding row and column. In this way, rtbe
leaf (hy, nz) having received, . (n,,s,), dys(N,,S,);
andw(s,,s,) can calculate the path length.

All these actions described here are done when we
want to connect two components and The time needed
for each of these tasks §(lg n) which is of the same
order of the time steps needed to do during orginar
MST construction. This means that in the overatktiof
MST algorithm, only a constant factor may change an
the time order is stilD(Ig? n) .

4.3. Time Complexity Analysis

We performed some analysis of time complexity
during algorithm explanation, here we will summariz
all the statements claimed before for each stephef
algorithm and calculate the overall time complexity

1. ConstructG'=(D,E"), which is a complete

graph in whichCost, (u,v)is the length of the

shortest path fromtovin G.
This step was performed by repeatedly squaring
the matrix, which take2log® n+ 3logn +1 steps

to be completed.
2. Construct a minimum spanning trgeforG' .

This step was accomplished by running the
minimum spanning tree algorithm on 2-
dimensional mesh of trees, which is known to be
possible inO(lg? n) steps [14].

3. Construct a subgrap8” of G with all vertices
of T'.

We did this by sending some values from leaves to

roots and vice versa for a few times. This can be

done inO(Ign) steps.

4. Construct a minimum
T"forG".

5. Remove successively any pendants which are
non-destination leaf vertices " to form a
solution, TysTh-

Steps 4 and 5 were done together and as we

discussed when explaining the algorithm, this takes

O(lg® n) time.

spanning tree

By summing up the values and orders computed
above, we conclude that the total time needed for

algorithm execution i©(Ig®n) .

5. Conclusion

We presented a parallel algorithm on a 3-dimensiona
mesh of trees to solve SPG based on minimum spgnnin
tree heuristic. This algorithm can be further immod
because only in limited steps we do need the whole
network, and in the remaining time of the algorittva
just perform the task on a 2-dimensional mesh. akem
the algorithm better we may think of pipelining ipile
problems through the network.

The application of this fast algorithm may be in
multimedia applications such as E-learning and wide
conferencing where the members of the multicastgro
are not permanent, but change dynamically. Eaclke tim
the membership of one member is changed, the
algorithm can be run and the new multicast tree is
generated immediately. Although a lot of processmes
needed for this task, the computational power @hsu
processors is limited because they should do simple
work. In comparison to the only centralized patalle
implementation we've encountered during our study —
which computes the solution with a probability east
0.5, this algorithm may be better in the sense that
certainly generates the solution.

6. References

[1] E. Alba and J. F. Chicano, "Evolutionary Algbrins in
Telecommunications", in IEEE Mediterranean
Electrotechnical Conferenc#lay 2006, pp. 795-798.
URL:http://neo.lcc.uma.es/staff/francis/pdf/mele@6mpdf.

[2] M. P. Bastos and C. C. Ribeiro, "Reactive T&kearch
with Path Relinking for the Steiner Problem in Graf In
Proceedings of the Third Metaheuristics Internagéibn
Conferencel1999, pp31-36.
URL:http://citeseer.ist.psu.edu/bastos99reactind.ht

[3] T. G. Crainic, M. Gendreau, and J. Potvin, 'dHat Tabu
Search",Parallel Metaheuristicsg. Alba (Ed.), John Wiley
\& Sons, 2005.
URL:http://www.iro.umontreal.ca/~gendron/Pisa/Refezes/
Meta/CrainicO5c.pdf.

[4] T. G. Crainic and N. Hail, "Parallel Meta-hestics
Applications”, Parallel Metaheuristics E. Alba (Ed.), John
Wiley \& Sons, 2005.
URL:http://www.iro.umontreal.ca/~gendron/Pisa/Refezes/
Meta/CrainicO5b.pdf.

[5] D. E. Drake and S. Hougardy, "On Approximation
Algorithms for the Terminal Steiner Tree Problem"”,
Information Processing Letters, vol. 89, NumberJanuary
2004, pp. 15-18.

URL:http://lwww.sciencedirect.com/.

[6] M. Demange, J. Monnot, and V. Th. Paschos, fédéntial
Approximation Results for the Steiner Tree ProbleApplied
Mathematics Letters, vol. 16, Issuelly 2003, pp. 733-739.
URL:http://www.sciencedirect.com.

[7]1 L. M. A. Drummond, E. Uchoa, A. D. Goncalves,M.N.
Silva, M. C.P. Santos, and M. C. S. de Castro, tid-gnabled
distributed branch-and-bound algorithm with apglaa on
the Steiner Problem in graphd®arallel Computing, vol. 32,
Issue 90ctober 2006, pp. 629-642.
URL:http://www.sciencedirect.com/.

[8] H. Esbensen and P. Mazumder, "A Genetic Algonitfor
the Steiner Problem in a graphlh Proceedings of the
European Design and TeSbnference, 1994, pp. 402-406.
URL:http://citeseer.ist.psu.edu/185181.html.

[9] A. Ghanwani, "Neural and delay based heurista@sthe
Steiner problem in networks",European Journal of
Operational Research, vol. 108, Issuel@, July 1998, pp.
241-265.

URL:http://www.sciencedirect.com/.

[10] P. Guitart, "A Faster Implementation of Zehisky's
11/6-Approximation Algorithm for the Steiner Protvlein
Graphs", Electronic Notes in Discrete Mathematics, vol.
10, November 2001, pp. 133-136.
URL:http://www.sciencedirect.com.

[11] L. Gatani, G. Lo Re, and S. Gaglio, "An eféint
distributed algorithm for generating and updatingltioast
trees", Parallel Computing, vol. 32, Issues 11;I%cember
20086, pp. 777-793.

URL:http://www.sciencedirect.com.

[12] G. Kulkarni,"A Tabu Search Algorithm for the Steiner
Tree Problety M.Sc. Thesis, North Carolina State University,
2002.

URL:http://www.lib.ncsu.edu/theses/available/etd82002-
115648/unrestricted/etd.pdf.

[13] Z. Kun, W. Heng, and L. Feng-Yu, "Distributetllticast
routing for delay and delay variation-bounded Sieitree
using simulated annealingGomputer Communications, vol.
28, Issue 115 July 2005, pp. 1356-1370.
URL:http://www.sciencedirect.com/.

[14] F.T. Leighton,Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgauifzaann
1992.

[15] C.P. Low and Y.J. Lee, "Distributed multicastuting,
with end-to-end delay and delay variation constedjn
Computer Communications, vol. 23, Issu&é® April 2000, pp.
848-862.

URL:http://lwww.sciencedirect.com.

[16] S. L. Martins, C. C. Ribeiro, and M. C. Souza,Parallel
GRASP for the Steiner Problem in GrapHhsicture Notes In
Computer Science; vol. 1457998, pp. 285-297.
URL:http://citeseer.ist.psu.edu/martins98paraltetlh

[17] H. J. Priomel and A. Steger, "A New Approximat
Algorithm for the Steiner Tree Problem with Perfamme
Ratio 5/3", Journal of Algorithms, vol. 36, Issue Jyly
2000, pp. 89-101. URL:http://www.sciencedirect.com.

[18] C. C. Ribeiro and M. C. De Souza, "Improvedblia
Search for the Steiner Problem in Graphs", Workiager,
Catholic University of Rio de Janeiro, Department o
Computer Science, 1997.
URL:http://citeseer.ist.psu.edu/47337.html.

[19] G. Robins and A. Zelikovsky, "Improved SteinEree
Approximation in Graphs"]n Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorith®an
Francisco, California, United States, 2000, pp.-770.
URL:http://citeseer.ist.psu.edu/robins00improvealht

[20] V. V. Vazirani, "Recent results on approxinmafi the
Steiner tree problem and its generalizationSheoretical
Computer Science, vol. 235, IssuelZ,March 2000, pp. 205-
216.

URL:http://www.sciencedirect.com.

