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Abstract 

 
Given an undirected graph with weights associated 

with its edges, the Steiner tree problem consists of 
finding a minimum weight subtree spanning a given 
subset of (terminal) nodes of the original graph. 
Minimum Spanning Tree Heuristic (MSTH) is a 
heuristic for solving the Steiner problem in graphs. In 
this paper we first review existing algorithms for solving 
the Steiner problem in graphs. We then introduce a new 
parallel version of MSTH on three dimensional mesh of 
trees architecture. We describe our algorithm and 
analyze its time complexity. The time complexity 
analysis shows that the algorithm's running time is 

)(lg2 nO which is comparable with other existing 

parallel solutions. 
  

1. Introduction 
 

A great number of the recent applications often 
require the underlying network to provide multicasting 
capabilities. Multicast refers to the delivery of packets 
from a single source to multiple destinations. At the 
routing level, a multicast routing scheme is responsible 
for determining the packet delivery path from the source 
to all destinations, typically a multicast tree [13]. 
Generation and minimization of the cost of such tree 
have been traditionally formulated as the Steiner Tree 
Problem. The Steiner Tree Problem involves 
constructing the least cost tree that spans a given set of 
points. In addition to multicast routing in 
communication networks, the Steiner tree problem has 
numerous applications especially in the areas of 
telecommunication, distribution and transportation* 
systems. The computation of phylogenetic trees in 
biology and the routing phase in VLSI design are real 
life problems that have been modeled as the Steiner tree 
problem [12]. Another interesting application is in the 
billing strategies of large telecommunications network 
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service providers. The bill isn’t based on the actual 
number of circuits provided, which may change over 
time, but on a simple formula calculated for an ideal 
network which will provide all the facilities at minimum 
cost. Several other network design problems can be 
formulated as generalizations of the Steiner tree problem. 

Steiner tree problem or so called Steiner Problem in 
Graphs (SPG) is a classic combinatorial optimization 
problem. Karp showed that its decision version is NP-
complete [18], although some well known special cases 
of the SPG can be solved in polynomial time. When |N| 
= 2 the problem reduces to the shortest path problem 
while when N = V the problem reduces to the minimum 
spanning tree problem. Both these problems can be 
solved in polynomial time. On the other hand, the 
Steiner tree problem is NP-hard when the graph G is a 
chordal graph, a bipartite graph or a complete graph 
with edge weights either 1 or 2. Thus in the general case 
the problem is an NP-hard problem.  

Due to its NP-hardness, several heuristics have been 
developed to approximate its solution. However, there 
are some major difficulties in deployment and 
application of the existing algorithms to real-time 
communication networks. One of these difficulties in 
distributed solutions is that existing protocols don’t 
support the information needed to be exchanged among 
nodes. Furthermore the convergence time may be 
prohibiting for the multicast trees that change 
frequently. So, it may be a good approach to design a 
parallel algorithm which can be run very fast on a single 
node. In this paper we present parallel version of the 
minimum spanning tree heuristic (MSTH) for the 
Steiner problem in graphs on three dimensional mesh of 
trees (3dMOT) architecture. In the next section, we 
review the definition of the problem and its variations. 
In sec. 3 we present a survey of proposed algorithms for 
the Steiner problem in graphs. In sec. 4 we present our 
approach for making MSTH parallel on 3dMOT. We 
describe our algorithm and present its time complexity. 
Finally, in sec. 5 we make an overall evaluation of the 
proposed algorithm and conclude the work. 

 



2. Problem definition, variations and 
generalizations 
  

Let G = (V, E) be a connected undirected graph, 
where V is the set of nodes and E denote the set of edges. 
Given a non-negative weight function +→ REw:  

associated with graph edges and a subset VX ⊆  of 
terminal nodes, the Steiner Problem in Graphs, SPG(V, 
E, w, X), consists of finding a minimum weighted 
connected subtree of G spanning all terminal nodes in X. 
The solution of SPG (V, E, w, X) is Steiner minimum 
tree. The non-terminal nodes that end up in the Steiner 
minimum tree are called Steiner nodes. 

Terminal Steiner Tree Problem is a variation in which 
all the terminal nodes must appear at leaves of the tree. 
This problem that is also proved to be NP-complete has 
been matter of concern because it has direct application 
in VLSI design [5]. In Complete Steiner Problem the 
input graph is assumed to be complete. Another 
variation is the Complete Steiner (1, 2) in which the 
input is a complete graph with edge weights 1 or 2. All 
of these variations are NP-complete [6]. SPG – or its 
terminal version – are sometimes said to be metric, i.e. 
the triangle inequality holds for edge weights in the 
input graph. This imposes no limitation on the Steiner 
problem itself, since we can replace any edge with the 
shortest path connecting its ends [19, 20]. The Steiner 
Network Problem generalizes the metric Steiner tree 
problem to higher connectivity requirements: Given a 
graph G = (V, E), a cost function on edges, and a 
function r mapping unordered pairs of vertices to Z+, 
find a minimum cost graph that has r(u,v) edge disjoint 
paths for each pair of vertices u and v [20]. The issue of 
multipoint routing for multimedia traffic has led to 
emergence of Constrained Steiner Tree Problem, in 
which the problem is to find a minimum cost tree such 
that the delay – delay variation or both – between the 
source and each of the destinations is bounded. The 
Dynamic Steiner Tree Problem is another generalization 
of the problem, in which the set of destination nodes 
changes over time by receiving join or delete requests 
from nodes, and problem asks for a sequence of optimal 
trees [11]. 

 
Figure 1. Sample Steiner tree. Black nodes are destination 
nodes, white nodes and hatched nodes are non-destination. 
The Steiner nodes are hatched. 
 
3. Related work 
 

As SPG is NP-complete, there is little hope to find a 
polynomial time solution for it. All the work done to 
find a solution so far falls into three categories: Exact 
Algorithms, Approximation Algorithms and meta-
heuristics.  

Two popular exact algorithms, the Spanning Tree 
Enumeration Algorithm (STEA) which enumerates all 
possible combinations of Steiner nodes, and the 
Dynamic Programming Algorithm (DPA), present time 
complexities of )2( 3)(2 npO pn +−  and 

)23( 32 nnnO pp ++  respectively, where n is the 

number of nodes in the network and p is the number of 
multicast members [11]. These algorithms require long 
computation time or huge computational power for 
solving bigger problems, like the branch and bound 
algorithm proposed in [7], that makes use of 
computational grids. 

In [17], the author offers an approximation algorithm 
with performance ratio 5/3 based on finding a minimum 
spanning tree in 3-uniform hypergraphs that finds the 
solution with probability at least 1/2 and claims that the 

algorithm runs in )(lg2 nO time, using )( 3nO  

processors. The best approximation algorithm known so 
far is due to Robins and Zelikovsky whose performance 
ratio is about 1.55 and even better for special cases such 
as quasi-bipartite and complete(1-2) graphs [19].  

Among several heuristics proposed to find an 
approximate solution, Traveling Salesman Problem 
Heuristic (TSPH), Minimum Spanning Tree Heuristic 
(MSTH), and Average Distance Heuristic (ADH) have 
performance ratio of 2.  

TSPH is a heuristic based on the traveling salesman 
problem (TSP) and involves finding a tour for the graph 
induced by the network followed by removing the most 
expensive link. 



Shortest path heuristic (SPH) computes the tree by 
connecting all the terminals to an arbitrary root through 
their shortest paths and then finding the minimum 
spanning tree of the graph induced by the union of these 
paths, repeatedly removing the nonterminal leaves. 

The algorithm presented in [11] is a distributed 
algorithm based on an improved version of the ADH 
heuristic, known as ADH with Full connection (ADHF). 
[11] Also provides an efficient approach that supports 
dynamic multicast membership, by means of periodic 
improvement of locally inefficient subtrees. 

In [9] the author introduces a new algorithm using the 
Random Neural Networks to find potential Steiner 
vertices that are not already in the solution returned by 
the MSTH or ADH, starting with the solution of the 
MSTH or ADH. 

The first approximation algorithm for SPG having an 
approximation ratio constant lower than 2 was due to 
Zelikovsky [10] with performance ratio 11/6. Then he 
repeatedly improved this ratio to currently best known 
performance ratio: 1.55. 

The heuristics proposed to find the Steiner tree for 
routing applications are either centralized or distributed. 
In the centralized approach, a central node that is aware 
of the state of the whole network computes the tree. The 
computation is generally easy and fast. But impractical 
for large networks where the overhead of maintaining, 
in a single node, coherent information about the state of 
the entire network may be prohibitive. In a distributed 
approach, on the other hand, each node of the network 
actively contributes to the algorithm computation. 
Distributed routing algorithms can be slower and more 
complex than the centralized ones, but they become 
indispensable when the network nodes can not reach a 
complete knowledge of the topology and of the state of 
the network [11]. 

Some meta-heuristics are proposed as the solution for 
the Steiner problem in graphs too. Among the most 
efficient ones, it is found implementations of meta-
heuristics such as genetic algorithms, tabu search, 
GRASP and simulated annealing [16, 18].  

Esbensen and Mazumder [8] proposed a genetic 
algorithm and discuss its application in global routing of 
VLSI layouts. The algorithm’s encoding is based on the 
use of the Distance Network Heuristic (DNH) which is a 
deterministic heuristic for the SPG. The performance of 
algorithm is compared to that of two heuristics from the 
literature and it has been shown that the algorithm is 
superior.  

Di Fatta, Lo Presti, and Lo Re proposed a parallel 
genetic algorithm for the Steiner problem in networks. 
When solving Beasley’s OR Library standard test 
problems, they obtain promising speedup values. 
Recently, the same authors working with Storniolo and 
Urso extend their proposal presenting a parallel hybrid 
method that combines a distributed genetic algorithm 

and a local search strategy using a specific Steiner tree 
problem heuristic [1]. 

Tabu Search was introduced by Glover in 1986. TS is 
an extension of classical local search methods typically 
used to find approximate solutions to difficult 
combinatorial optimization problems [3]. Ribeiro and 
Souza [18] proposed an improved tabu search for the 
Steiner problem in graphs. The important feature of the 
algorithm is that move estimations, elimination tests, 
and neighborhood reduction techniques are used to 
speedup the local search and lead to a much faster 
algorithm with similar performance in terms of solution 
quality. In the context of parallel tabu search for the 
Steiner problem in graphs, Bastos and Ribeiro [2] 
describe a two phase algorithm: in their approach, a 
parallel multithread reactive TS phase is followed by a 
distributed Path Relinking (PR) phase, i.e., all processes 
switch from TS to PR simultaneously. 

Martins, Ribeiro and Souza [16], proposed a parallel 
grasp for the Steiner problem in graphs. A Greedy 
Randomized Adaptive Search Procedure (GRASP) is a 
meta-heuristic for combinatorial optimization. A 
GRASP is an iterative process, where each iteration 
consists of two phases: construction and local search. 
The construction phase of the algorithm is based on a 
version of distance network heuristic which is improved 
by Mehlhorn. Some heuristics are used in order to 
speedup the local search. For parallelization of GRASP, 
each slave processor performs a fixed number of 
GRASP iterations. Once all processors have finished 
their computations, the best solution is collected by the 
master processor. The results of computational 
experiments illustrate the effectiveness of the proposed 
parallel GRASP procedure for the Steiner problem in 
graphs. 

Verhoeven and Severens proposed sequential and 
parallel local search methods for the Steiner tree 
problem based on a novel neighborhood. They claimed 
their approach is “better" than those known in the 
literature. Computational results indicated that good 
speedups could be obtained without loss in solution 
quality [4]. 

 
4. Our Contribution 
 

Having studied all the work explained in the previous 
section, we were to select a proper algorithm to be 
parallelized. Among those algorithms having 
exponential execution time, we concluded that 
parallelization may not be wise or effective, because as 
the network scales up and the number of nodes grows, 
the complexity grows exponentially and therefore the 
number of required processors would be exponential 
too. In other words, such algorithms suffer from 
scalability problem. But among those algorithms having 
polynomial execution time – and so in the category of 



Approximation Algorithms – the only acceptable 
approximation ratios were 2 – due to ADH and MSTH –
, 11/6 and 1.55 – due to Zelikovsky. As Zelikovsky 
assumes the network graph is complete, the solution 
may be found only in special cases. Furthermore, 
although the algorithm runs in )(lg2 nO time using 

)( 3nO  processors, this solution is only found with 

probability at least 1/2 [17]. So the only possible 
candidates for our purpose are ADH and MSTH. They 
have been experimentally compared and none of them is 
proved to be superior of the other in all situations [9]. 
Shortest path heuristic is not good as its performance 
ratio is not constant, but bounded by m, where m is the 
number of destination vertices. 

The ADH algorithm works as follows: 
1. Begin with a forest F of single node trees, each 

representing a vertex in D. 
2. Choose Vu ∈ such that f(u) is minimum 

where 
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3. Let T1 and T2 be two closest trees to u. 
4. Join T1 and T2 by a shortest path through u. 
5. If 1>F , go to Step 2, else TADH is the single 

tree in F. 
 

The heuristic has a time complexity of )(
3

VO  since it 

requires the all pairs shortest paths matrix for the graph 
[9]. 

At first glance, the algorithm may seem highly 
parallelizable, but this is not true, since step 5 can not be 
parallelized. In other words, we face a sequence of 
actions, each of which consists of finding the two 
candidate trees to be joined and joining these trees. This 
imposes a limit of )(nO as a lower bound for execution 

time of any parallel algorithm, which is not acceptable 
where there exist algorithms with polylogarithmic 
execution time, so the only remained candidate for the 
purpose of parallelizing would be the MSTH.  

In order to select a good architecture, we noted that 
this architecture would probably have )( 3nO  processors, 

resulting to )(lg 2 nO  algorithm execution time. This led 

us to select three dimensional mesh of trees (3dMOT) 
which is a powerful scalable network among several 
other parallel architectures. 3dMOT consists of a cube 
of 3n  nodes in which each row of length n  comprises 
leaves of a complete binary tree in each of three 
dimensions [14]. Furthermore, computing the MST of 
an n node graph can be performed on a two dimensional 
mesh of trees which is a subgraph of 3dMOT efficiently 
in )(lg2 nO  [14].  

Now that we have defined the problem and specified 
the architecture, we are ready to dive in the problem 
more formally. 
 
4.1. Problem Formulation and Basic 
Notation 
 

For the purpose of routing, a communication network 
may be modeled as a connected, weighted, undirected 
graph G = (V, E, w), where V is the set of vertices 
representing the nodes in the network, E the set of edges 
representing the links in the network, and w(e) is the 
nonnegative weight associated to the edge e, ( Ee∈∀ ). 
When the primary goals are to achieve maximum 
utilization of the network resources and to ensure load 
balancing, these weights are assigned to edges to 
represent the cost of using a link [9]. From now on, we 
use n to representV , the total number of nodes in the 

network. We also define ),( jid to be the distance – 

length of the shortest path between – nodes i and j. 
The Steiner problem in graphs asks for the minimum 

weight tree subgraph interconnecting a subset D of 
vertices – called terminals – in such a graph.  

Three Dimensional Mesh of trees, the architecture 
used to solve this problem, is an nnn ×× array of 
processors each element of which is a leaf processor 
which we denote by a triple (i, j, k) indicating the 
position of that processor in dimension 1, 2 and 3 
respectively. On each of the dimensions of such an array 
in 3dMOT, there exists a two dimensional array of trees 
whose leaves are the array elements. For the sake of 
simplicity, we represent these trees with triples like (i, j, 
-), in which the dash sign represents the tree's dimension 
and the two numbers represent the position of the tree 
among other trees in the same dimension. We've 
assumed that the roots of trees are linked together 
among dimensions; this won't add much to the 
computational power or cost of the network as discussed 
in [14], but only is to simplify the notation and 
algorithm explanation. 
 
4.2. The Algorithm 
 

The minimum spanning tree heuristic (MSTH), 
developed by Kou et al., finds potential Steiner vertices 
assuming that they will likely be on the shortest paths 
between the destination vertices. The heuristic proceeds 
as follows: 

1. Construct a complete graph ),( EDG ′=′ where 

),( vuCostG′ is the length of the shortest path 

from u to v in G. 
2. Construct a minimum spanning tree T′  forG′ . 
3. Construct a subgraph G ′′ of G with all vertices 

ofT′ . 



4. Construct a minimum spanning tree T ′′ forG ′′ . 
5. Remove successively any pendants which are 

non-destination leaf vertices in T ′′ to form a 
solution, TMSTH. 

 
As presented in [9], the heuristic has a time 

complexity of )(
2

VDO . 

The parallel algorithm we have proposed to be run on 
a 3dMOT is the following: 

1. Compute all pairs shortest paths (APSP) 
matrix for the graph, i.e. the length of shortest 
path between all pairs whether in D or not in D. 
This will result in formation of a complete 
graph in which especially between each pair of 
vertices of D, there exist an edge with the 
weight of minimum cost path linking them, we 
call these edges as virtual edges. 

2. Compute MST of the graphG′ , taking into 
account only the vertices in D. 

3. Construct G ′′ by marking all the edges in G 
which are contained in at least one of the 
virtual edges ofT ′ . 

4. Construct MST of G ′′ , T ′′ keeping track of 
whether each edge joins two required 
components – and therefore should be 
preserved –  or not. 

 
To explain how to implement these steps on a 

3dMOT, we first show how to compute APSP matrix. 
We simply use the matrix multiplication and squaring 
technique discussed in [14]. This is accomplished by 
powering the weight matrix of the graph to n-1, in which 
matrix multiplication and powering is defined like this: 
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At most  )1log( −n  multiplications are needed since 

it suffices to compute AM where M is the smallest power 
of 2 greater than or equal to n-1. Each multiplication 
takes 1log2 +n  steps when entering the matrix to roots 

of dimension 1 and 3 trees and getting the result at the 
roots of dimension 2 trees after sending each element to 
all leaves, multiplying the values in each leaf an 
summing up the values in leaves of dimension 2 trees. 
The total time required for matrix multiplication in this 

way is 1log3log2 2 ++ nn steps [14]. 

To compute the MST as explained in [14] on two 
dimensional mesh of trees, we need to put the adjacency 
matrix of G′ on leaves of one 2-dimensional mesh of 

trees in the array. This can be accomplished by sending 
each value from roots of dimension 3 trees to say its 
uppermost leaf. We assume that node information – i.e. 
membership in D or not – is present at the roots of trees 
in this level. Then assuming the membership in D to 
work as enable signal for the processors, the edges of 
minimum spanning tree can be determined in 

)(log2 nO steps, using the algorithm presented in [14].  

To constructG ′′ , we find the nodes belonging to it. 
We use the leaf (i, j, k) to indicate if the node j is on the 
shortest path from node i to node k. We note that if this 
is the case, we would have the following: 

 

),(),(),( kjdjidkid +=  
 

If the shortest paths are unique, this is of course 
correct. Otherwise, then this may cause to construct a 
supergraph ofG ′′ , however this would not affect cost of 
the result, because we remove the additional nodes and 
edges at the next steps, when removing the pendants at 
last. 

To do this, each tree root when the tree is in the form 
(-, j, k), (i, -, k), or (i, j, -), sends the distance to all its 
descendent leaves. Each leaf (i, j, k) receiving the 
required values from the tree roots in each of three 
dimensions, can verify that it is on a virtual edge 
connecting i and k and in MST ofG′ . To verify that the 
edge (i, k) is in the MST ofG′ , the computed values for 
existing edges of the MST matrix in the leaf level are 
sent to corresponding roots of dimension 2 trees. Once 
we have these values at roots, we send them downward 
through the tree edges to all leaves with the form (i, x, k) 
that are about to verify the existence of edge (i, k). 
Whenever a node is proved to be on a shortest path 
contained in the MST, this information should be sent to 
the corresponding root node of the 2-dimensional array 
on which the shortest paths matrix is computed – i.e. the 
uppermost leaf plain. This is a reduction operation since 
all the information in nodes (x, j, y) should be 
"summarized" by an OR operation in the root of the (-, j, 
n) dimension 1 tree. First, all the leaf processors having 
an address of the form (x, j, y) send their information to 
their dimension 1 tree root. The result is sent from root 
to the rightmost leaf node which has an address of the 
form (0, j, x). These leaves which are all descendents of 
the tree (0, j, x) sum up their values by sending them 
upward to the root of this tree. The final result is then 
sent to the (0, j, n) leaf which in turn sends it to the (-, j, 
n) tree root. These values are sent downward through 
dimension 1 and 2 trees to the upper plate leaves. Only 
the edges that receive such enable signals from both of 
their corresponding trees are considered to be inG ′′ . 

The remaining work is to compute the minimum 
spanning tree of the result graph and removing the 
pendants. One may think that this is easily accomplished 
by running the MST on the upper plate and then 



removing the degree 1 non-destination nodes. But it's 
immediately seen that removing these pendants may 
result in formation of other pendants and this can make 
us perform a "sequence" of updates, leading the 
algorithm running time to be of )(nO . Instead of doing 

this, we propose a solution in which we keep track of 
the needed non-destination nodes during the formation 
of the MST. For this purpose we need to distinguish 
between the connected components containing at least 
one destination node and the components without any 
destination node. We'll refer to the former as D-
components and the latter as S-components. We also 
call destination nodes as D-node and non-destination 
nodes as S-nodes. The nodes that are proved to be 
needed for constructing the Steiner tree will be referred 
to as N-nodes (needed) and the other nodes will be 
called U-nodes(unneeded). Furthermore, we assume that 
among the information contained in each node, we have 
one flag to indicate whether or not the node is a pendant 
of its component. This flag is initialized to true (is 
pendant) for S-nodes and false for D-nodes. We should 
update this flag when the tree components are being 
connected to each other. When merging two trees, we 
may encounter one of these: 

1. One of the components is S-component and 
the other a D-component, 

2. Both the components are S-component, 
3. Both the components are D-component 
 

In the first and second case no flag needs to be 
updated. In the third case, if we indicate two ends of the 
newly added edge by s ands′ , only the flag of the nodes 

belonging to the paths from s and s′ to their nearest N-
nodes in each component should be changed from true 
to false, meaning that the node is now needed to 
construct the tree, because as it's apparent in Figure 2, it 
would be on the only path from one N-node to another. 
If any of two edge ends is an N-node, no change in the 
flags of that component is needed. 

 

 
Figure 2. Two components are to be linked together. 

Black nodes indicate N-node and gray nodes are U-nodes. 
The thick edge is the newly added edge. It can be seen that 
hatched nodes are U-node before connecting the new edge, 
but they should be changed to N-nodes. Also it's obvious 
that the state of other nodes needn't change. 

 
To do so, we note that when we connect to 

components while constructing the MST, we should be 
able to distinguish between D-components and S-

components. This is easily accomplished by giving 
priority to D-nodes to be leader of a component. In this 
way, if a component is a D-component, its leader would 
be a D-node and vice versa.  

To determine which nodes are there on the path 
connecting one end of an edge to its nearest N-node, we 
maintain in the leaf matrix the path-lengths between any 
pair of nodes in the current forest and represent it by 
dMST. Then we can verify this fact by checking if the 
following equality holds: 

 

),(),(),( sMSTMSTsMST nidisdnsd +=  
 

Here, s can represent any of U-nodes at one end of the 
new edge and

sn is the nearest N-node to s in its 

component. Since there is only one path in tree between 
any pair of nodes, to the update path lengths, when 
connecting two components, we only need to compute 
path lengths between pairs of nodes that are not in the 
same component. This value for two arbitrary nodes 

1n and 2n as indicated in Figure 3 would be: 
 

),(),(),(),( 22211121 sndsswsndnnd MSTMSTMST ++=  

 

 
Figure 3. Computing the length of newly established 

paths when connecting two components. 
 

To do the above on a 2 dimensional mesh of trees 
(2dMOT) whose leaves are located at the upper plate, 
we run a modified from of the ordinary MST algorithm 
on 2dMOT. Whenever we want to connect two 
supernodes, as soon that the linking edge information 
was received by the leader (i.e. the weight, edge ends, 
and leader information of the two ends), it can verify if 
the two components are both D-component. If this is 
true, then each node i in that component must 
have ),( sMST dsd , ),( isdMST

and ),( sMST did  available to 

verify if it should be set to an N-node.  
At first, the leader sends identity of s downward 

through row trees. The cell in column s that receives this 
message sends a "calculate nearest N-node" message to 
its column tree root. The root in turn sends a message to 
all its leaves to send their dMST if they connect s to an N-
node. The minimum of these values is calculated as they 
move upward through the column tree. This minimum 
value (which embeds the identity of s and ds) is then 
sent to the leader root. 



We show how a leader can send a message to all its 
component members and will use this abstraction later 
several times. The leader of any component sends its 
identity and the message to all its descendent leaves 
through row trees and each node sends identity of its 
leader to its column through column trees. In each 
column i, the leaf that has received a message from a 
leader that is the same as the leader identity received 
through the column tree, sends the message upward 
through the column tree to the root node.  
The leader sends the identity of s and ds to all its 
component members. Each member sends its identity 
along with the identity of s and ds received from leader 
to all its column tree leaves and the proper leaves send 

),( isdMST
 and ),( sMST did  upward to the root. Now that 

root has all of the three values ),( sMST dsd , ),( isdMST
 

and ),( sMST did available, can set its flag properly. This 

is the process through which we can update the N-
nodes. 

In order to update path lengths, once again when we 
want to connect two supernodes, as soon that the linking 
edge information was received by the leader, it sends 
identity of s1 and s2 along with ),( 21 ssw to all its 

component members. Each node, having received these 
values sends the identity of s1 and ),( 21 ssw downward 

through the column trees to all leaves.  The proper leaf 
then sends ),( 11 sndMST

to the root which in turn 

broadcasts this value through row and column trees to 
its corresponding row and column. In this way, now the 
leaf (n1, n2) having received ),( 11 sndMST

, ),( 22 sndMST
, 

and ),( 21 ssw  can calculate the path length. 
All these actions described here are done when we 

want to connect two components and The time needed 
for each of these tasks is )(lgnO which is of the same 

order of the time steps needed to do during ordinary 
MST construction. This means that in the overall time of 
MST algorithm, only a constant factor may change and 
the time order is still )(lg2 nO . 

 
4.3. Time Complexity Analysis 
 

We performed some analysis of time complexity 
during algorithm explanation, here we will summarize 
all the statements claimed before for each step of the 
algorithm and calculate the overall time complexity: 

1. Construct ),( EDG ′=′ , which is a complete 

graph in which ),( vuCostG′ is the length of the 

shortest path from u to v in G. 
This step was performed by repeatedly squaring 
the matrix, which takes 1log3log2 2 ++ nn  steps 

to be completed. 
2. Construct a minimum spanning tree T′  forG′ . 

This step was accomplished by running the 
minimum spanning tree algorithm on 2-
dimensional mesh of trees, which is known to be 
possible in )(lg 2 nO steps [14]. 

3. Construct a subgraph G ′′ of G with all vertices 
ofT ′ . 

We did this by sending some values from leaves to 
roots and vice versa for a few times. This can be 
done in )(lgnO  steps. 

4. Construct a minimum spanning tree 
T ′′ forG ′′ . 

5. Remove successively any pendants which are 
non-destination leaf vertices in T ′′  to form a 
solution, TMSTH. 

Steps 4 and 5 were done together and as we 
discussed when explaining the algorithm, this takes 

)(lg2 nO  time. 

 
By summing up the values and orders computed 

above, we conclude that the total time needed for 
algorithm execution is )(lg2 nO . 
 
5. Conclusion 
 

We presented a parallel algorithm on a 3-dimensional 
mesh of trees to solve SPG based on minimum spanning 
tree heuristic. This algorithm can be further improved 
because only in limited steps we do need the whole 
network, and in the remaining time of the algorithm we 
just perform the task on a 2-dimensional mesh. To make 
the algorithm better we may think of pipelining multiple 
problems through the network. 

The application of this fast algorithm may be in 
multimedia applications such as E-learning and video 
conferencing where the members of the multicast group 
are not permanent, but change dynamically. Each time 
the membership of one member is changed, the 
algorithm can be run and the new multicast tree is 
generated immediately. Although a lot of processors are 
needed for this task, the computational power of such 
processors is limited because they should do simple 
work. In comparison to the only centralized parallel 
implementation we've encountered during our study – 
which computes the solution with a probability at least 
0.5, this algorithm may be better in the sense that it 
certainly generates the solution. 
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