
Parallel Minimum Spanning Tree Heuristic
for the Steiner Problem in Graphs

Hoda Akbari1, Zeinab Iranmanesh1, and Mohammad Ghodsi1,2*

1Sharif University of Technology, 2IPM school of Computer Science,
Tehran, Iran

{h_akbari, iranmanesh}@ce.sharif.edu, ghodsi@sharif.edu

Abstract

Given an undirected graph with weights associated

with its edges, the Steiner tree problem consists of
finding a minimum weight subtree spanning a given
subset of (terminal) nodes of the original graph.
Minimum Spanning Tree Heuristic (MSTH) is a
heuristic for solving the Steiner problem in graphs. In
this paper we first review existing algorithms for solving
the Steiner problem in graphs. We then introduce a new
parallel version of MSTH on three dimensional mesh of
trees architecture. We describe our algorithm and
analyze its time complexity. The time complexity
analysis shows that the algorithm's running time is

)(lg2 nO which is comparable with other existing

parallel solutions.

1. Introduction

A great number of the recent applications often
require the underlying network to provide multicasting
capabilities. Multicast refers to the delivery of packets
from a single source to multiple destinations. At the
routing level, a multicast routing scheme is responsible
for determining the packet delivery path from the source
to all destinations, typically a multicast tree [13].
Generation and minimization of the cost of such tree
have been traditionally formulated as the Steiner Tree
Problem. The Steiner Tree Problem involves
constructing the least cost tree that spans a given set of
points. In addition to multicast routing in
communication networks, the Steiner tree problem has
numerous applications especially in the areas of
telecommunication, distribution and transportation*
systems. The computation of phylogenetic trees in
biology and the routing phase in VLSI design are real
life problems that have been modeled as the Steiner tree
problem [12]. Another interesting application is in the
billing strategies of large telecommunications network

* This author's work was partially supported by a grant from IPM (N.
CS2386-2-01.)

service providers. The bill isn’t based on the actual
number of circuits provided, which may change over
time, but on a simple formula calculated for an ideal
network which will provide all the facilities at minimum
cost. Several other network design problems can be
formulated as generalizations of the Steiner tree problem.

Steiner tree problem or so called Steiner Problem in
Graphs (SPG) is a classic combinatorial optimization
problem. Karp showed that its decision version is NP-
complete [18], although some well known special cases
of the SPG can be solved in polynomial time. When |N|
= 2 the problem reduces to the shortest path problem
while when N = V the problem reduces to the minimum
spanning tree problem. Both these problems can be
solved in polynomial time. On the other hand, the
Steiner tree problem is NP-hard when the graph G is a
chordal graph, a bipartite graph or a complete graph
with edge weights either 1 or 2. Thus in the general case
the problem is an NP-hard problem.

Due to its NP-hardness, several heuristics have been
developed to approximate its solution. However, there
are some major difficulties in deployment and
application of the existing algorithms to real-time
communication networks. One of these difficulties in
distributed solutions is that existing protocols don’t
support the information needed to be exchanged among
nodes. Furthermore the convergence time may be
prohibiting for the multicast trees that change
frequently. So, it may be a good approach to design a
parallel algorithm which can be run very fast on a single
node. In this paper we present parallel version of the
minimum spanning tree heuristic (MSTH) for the
Steiner problem in graphs on three dimensional mesh of
trees (3dMOT) architecture. In the next section, we
review the definition of the problem and its variations.
In sec. 3 we present a survey of proposed algorithms for
the Steiner problem in graphs. In sec. 4 we present our
approach for making MSTH parallel on 3dMOT. We
describe our algorithm and present its time complexity.
Finally, in sec. 5 we make an overall evaluation of the
proposed algorithm and conclude the work.

2. Problem definition, variations and
generalizations

Let G = (V, E) be a connected undirected graph,
where V is the set of nodes and E denote the set of edges.
Given a non-negative weight function +→ REw:

associated with graph edges and a subset VX ⊆ of
terminal nodes, the Steiner Problem in Graphs, SPG(V,
E, w, X), consists of finding a minimum weighted
connected subtree of G spanning all terminal nodes in X.
The solution of SPG (V, E, w, X) is Steiner minimum
tree. The non-terminal nodes that end up in the Steiner
minimum tree are called Steiner nodes.

Terminal Steiner Tree Problem is a variation in which
all the terminal nodes must appear at leaves of the tree.
This problem that is also proved to be NP-complete has
been matter of concern because it has direct application
in VLSI design [5]. In Complete Steiner Problem the
input graph is assumed to be complete. Another
variation is the Complete Steiner (1, 2) in which the
input is a complete graph with edge weights 1 or 2. All
of these variations are NP-complete [6]. SPG – or its
terminal version – are sometimes said to be metric, i.e.
the triangle inequality holds for edge weights in the
input graph. This imposes no limitation on the Steiner
problem itself, since we can replace any edge with the
shortest path connecting its ends [19, 20]. The Steiner
Network Problem generalizes the metric Steiner tree
problem to higher connectivity requirements: Given a
graph G = (V, E), a cost function on edges, and a
function r mapping unordered pairs of vertices to Z+,
find a minimum cost graph that has r(u,v) edge disjoint
paths for each pair of vertices u and v [20]. The issue of
multipoint routing for multimedia traffic has led to
emergence of Constrained Steiner Tree Problem, in
which the problem is to find a minimum cost tree such
that the delay – delay variation or both – between the
source and each of the destinations is bounded. The
Dynamic Steiner Tree Problem is another generalization
of the problem, in which the set of destination nodes
changes over time by receiving join or delete requests
from nodes, and problem asks for a sequence of optimal
trees [11].

Figure 1. Sample Steiner tree. Black nodes are destination
nodes, white nodes and hatched nodes are non-destination.
The Steiner nodes are hatched.

3. Related work

As SPG is NP-complete, there is little hope to find a
polynomial time solution for it. All the work done to
find a solution so far falls into three categories: Exact
Algorithms, Approximation Algorithms and meta-
heuristics.

Two popular exact algorithms, the Spanning Tree
Enumeration Algorithm (STEA) which enumerates all
possible combinations of Steiner nodes, and the
Dynamic Programming Algorithm (DPA), present time
complexities of)2(3)(2 npO pn +− and

)23(32 nnnO pp ++ respectively, where n is the

number of nodes in the network and p is the number of
multicast members [11]. These algorithms require long
computation time or huge computational power for
solving bigger problems, like the branch and bound
algorithm proposed in [7], that makes use of
computational grids.

In [17], the author offers an approximation algorithm
with performance ratio 5/3 based on finding a minimum
spanning tree in 3-uniform hypergraphs that finds the
solution with probability at least 1/2 and claims that the

algorithm runs in)(lg2 nO time, using)(3nO

processors. The best approximation algorithm known so
far is due to Robins and Zelikovsky whose performance
ratio is about 1.55 and even better for special cases such
as quasi-bipartite and complete(1-2) graphs [19].

Among several heuristics proposed to find an
approximate solution, Traveling Salesman Problem
Heuristic (TSPH), Minimum Spanning Tree Heuristic
(MSTH), and Average Distance Heuristic (ADH) have
performance ratio of 2.

TSPH is a heuristic based on the traveling salesman
problem (TSP) and involves finding a tour for the graph
induced by the network followed by removing the most
expensive link.

Shortest path heuristic (SPH) computes the tree by
connecting all the terminals to an arbitrary root through
their shortest paths and then finding the minimum
spanning tree of the graph induced by the union of these
paths, repeatedly removing the nonterminal leaves.

The algorithm presented in [11] is a distributed
algorithm based on an improved version of the ADH
heuristic, known as ADH with Full connection (ADHF).
[11] Also provides an efficient approach that supports
dynamic multicast membership, by means of periodic
improvement of locally inefficient subtrees.

In [9] the author introduces a new algorithm using the
Random Neural Networks to find potential Steiner
vertices that are not already in the solution returned by
the MSTH or ADH, starting with the solution of the
MSTH or ADH.

The first approximation algorithm for SPG having an
approximation ratio constant lower than 2 was due to
Zelikovsky [10] with performance ratio 11/6. Then he
repeatedly improved this ratio to currently best known
performance ratio: 1.55.

The heuristics proposed to find the Steiner tree for
routing applications are either centralized or distributed.
In the centralized approach, a central node that is aware
of the state of the whole network computes the tree. The
computation is generally easy and fast. But impractical
for large networks where the overhead of maintaining,
in a single node, coherent information about the state of
the entire network may be prohibitive. In a distributed
approach, on the other hand, each node of the network
actively contributes to the algorithm computation.
Distributed routing algorithms can be slower and more
complex than the centralized ones, but they become
indispensable when the network nodes can not reach a
complete knowledge of the topology and of the state of
the network [11].

Some meta-heuristics are proposed as the solution for
the Steiner problem in graphs too. Among the most
efficient ones, it is found implementations of meta-
heuristics such as genetic algorithms, tabu search,
GRASP and simulated annealing [16, 18].

Esbensen and Mazumder [8] proposed a genetic
algorithm and discuss its application in global routing of
VLSI layouts. The algorithm’s encoding is based on the
use of the Distance Network Heuristic (DNH) which is a
deterministic heuristic for the SPG. The performance of
algorithm is compared to that of two heuristics from the
literature and it has been shown that the algorithm is
superior.

Di Fatta, Lo Presti, and Lo Re proposed a parallel
genetic algorithm for the Steiner problem in networks.
When solving Beasley’s OR Library standard test
problems, they obtain promising speedup values.
Recently, the same authors working with Storniolo and
Urso extend their proposal presenting a parallel hybrid
method that combines a distributed genetic algorithm

and a local search strategy using a specific Steiner tree
problem heuristic [1].

Tabu Search was introduced by Glover in 1986. TS is
an extension of classical local search methods typically
used to find approximate solutions to difficult
combinatorial optimization problems [3]. Ribeiro and
Souza [18] proposed an improved tabu search for the
Steiner problem in graphs. The important feature of the
algorithm is that move estimations, elimination tests,
and neighborhood reduction techniques are used to
speedup the local search and lead to a much faster
algorithm with similar performance in terms of solution
quality. In the context of parallel tabu search for the
Steiner problem in graphs, Bastos and Ribeiro [2]
describe a two phase algorithm: in their approach, a
parallel multithread reactive TS phase is followed by a
distributed Path Relinking (PR) phase, i.e., all processes
switch from TS to PR simultaneously.

Martins, Ribeiro and Souza [16], proposed a parallel
grasp for the Steiner problem in graphs. A Greedy
Randomized Adaptive Search Procedure (GRASP) is a
meta-heuristic for combinatorial optimization. A
GRASP is an iterative process, where each iteration
consists of two phases: construction and local search.
The construction phase of the algorithm is based on a
version of distance network heuristic which is improved
by Mehlhorn. Some heuristics are used in order to
speedup the local search. For parallelization of GRASP,
each slave processor performs a fixed number of
GRASP iterations. Once all processors have finished
their computations, the best solution is collected by the
master processor. The results of computational
experiments illustrate the effectiveness of the proposed
parallel GRASP procedure for the Steiner problem in
graphs.

Verhoeven and Severens proposed sequential and
parallel local search methods for the Steiner tree
problem based on a novel neighborhood. They claimed
their approach is “better" than those known in the
literature. Computational results indicated that good
speedups could be obtained without loss in solution
quality [4].

4. Our Contribution

Having studied all the work explained in the previous
section, we were to select a proper algorithm to be
parallelized. Among those algorithms having
exponential execution time, we concluded that
parallelization may not be wise or effective, because as
the network scales up and the number of nodes grows,
the complexity grows exponentially and therefore the
number of required processors would be exponential
too. In other words, such algorithms suffer from
scalability problem. But among those algorithms having
polynomial execution time – and so in the category of

Approximation Algorithms – the only acceptable
approximation ratios were 2 – due to ADH and MSTH –
, 11/6 and 1.55 – due to Zelikovsky. As Zelikovsky
assumes the network graph is complete, the solution
may be found only in special cases. Furthermore,
although the algorithm runs in)(lg2 nO time using

)(3nO processors, this solution is only found with

probability at least 1/2 [17]. So the only possible
candidates for our purpose are ADH and MSTH. They
have been experimentally compared and none of them is
proved to be superior of the other in all situations [9].
Shortest path heuristic is not good as its performance
ratio is not constant, but bounded by m, where m is the
number of destination vertices.

The ADH algorithm works as follows:
1. Begin with a forest F of single node trees, each

representing a vertex in D.
2. Choose Vu ∈ such that f(u) is minimum

where

∑
∈>⊆ −

=
ST

SFS
Tud

S
uf).,(

1

1
min)(

1,

3. Let T1 and T2 be two closest trees to u.
4. Join T1 and T2 by a shortest path through u.
5. If 1>F , go to Step 2, else TADH is the single

tree in F.

The heuristic has a time complexity of)(
3

VO since it

requires the all pairs shortest paths matrix for the graph
[9].

At first glance, the algorithm may seem highly
parallelizable, but this is not true, since step 5 can not be
parallelized. In other words, we face a sequence of
actions, each of which consists of finding the two
candidate trees to be joined and joining these trees. This
imposes a limit of)(nO as a lower bound for execution

time of any parallel algorithm, which is not acceptable
where there exist algorithms with polylogarithmic
execution time, so the only remained candidate for the
purpose of parallelizing would be the MSTH.

In order to select a good architecture, we noted that
this architecture would probably have)(3nO processors,

resulting to)(lg 2 nO algorithm execution time. This led

us to select three dimensional mesh of trees (3dMOT)
which is a powerful scalable network among several
other parallel architectures. 3dMOT consists of a cube
of 3n nodes in which each row of length n comprises
leaves of a complete binary tree in each of three
dimensions [14]. Furthermore, computing the MST of
an n node graph can be performed on a two dimensional
mesh of trees which is a subgraph of 3dMOT efficiently
in)(lg2 nO [14].

Now that we have defined the problem and specified
the architecture, we are ready to dive in the problem
more formally.

4.1. Problem Formulation and Basic
Notation

For the purpose of routing, a communication network
may be modeled as a connected, weighted, undirected
graph G = (V, E, w), where V is the set of vertices
representing the nodes in the network, E the set of edges
representing the links in the network, and w(e) is the
nonnegative weight associated to the edge e, (Ee∈∀).
When the primary goals are to achieve maximum
utilization of the network resources and to ensure load
balancing, these weights are assigned to edges to
represent the cost of using a link [9]. From now on, we
use n to representV , the total number of nodes in the

network. We also define),(jid to be the distance –

length of the shortest path between – nodes i and j.
The Steiner problem in graphs asks for the minimum

weight tree subgraph interconnecting a subset D of
vertices – called terminals – in such a graph.

Three Dimensional Mesh of trees, the architecture
used to solve this problem, is an nnn ×× array of
processors each element of which is a leaf processor
which we denote by a triple (i, j, k) indicating the
position of that processor in dimension 1, 2 and 3
respectively. On each of the dimensions of such an array
in 3dMOT, there exists a two dimensional array of trees
whose leaves are the array elements. For the sake of
simplicity, we represent these trees with triples like (i, j,
-), in which the dash sign represents the tree's dimension
and the two numbers represent the position of the tree
among other trees in the same dimension. We've
assumed that the roots of trees are linked together
among dimensions; this won't add much to the
computational power or cost of the network as discussed
in [14], but only is to simplify the notation and
algorithm explanation.

4.2. The Algorithm

The minimum spanning tree heuristic (MSTH),
developed by Kou et al., finds potential Steiner vertices
assuming that they will likely be on the shortest paths
between the destination vertices. The heuristic proceeds
as follows:

1. Construct a complete graph),(EDG ′=′ where

),(vuCostG′ is the length of the shortest path

from u to v in G.
2. Construct a minimum spanning tree T′ forG′ .
3. Construct a subgraph G ′′ of G with all vertices

ofT′ .

4. Construct a minimum spanning tree T ′′ forG ′′ .
5. Remove successively any pendants which are

non-destination leaf vertices in T ′′ to form a
solution, TMSTH.

As presented in [9], the heuristic has a time

complexity of)(
2

VDO .

The parallel algorithm we have proposed to be run on
a 3dMOT is the following:

1. Compute all pairs shortest paths (APSP)
matrix for the graph, i.e. the length of shortest
path between all pairs whether in D or not in D.
This will result in formation of a complete
graph in which especially between each pair of
vertices of D, there exist an edge with the
weight of minimum cost path linking them, we
call these edges as virtual edges.

2. Compute MST of the graphG′ , taking into
account only the vertices in D.

3. Construct G ′′ by marking all the edges in G
which are contained in at least one of the
virtual edges ofT ′ .

4. Construct MST of G ′′ , T ′′ keeping track of
whether each edge joins two required
components – and therefore should be
preserved – or not.

To explain how to implement these steps on a

3dMOT, we first show how to compute APSP matrix.
We simply use the matrix multiplication and squaring
technique discussed in [14]. This is accomplished by
powering the weight matrix of the graph to n-1, in which
matrix multiplication and powering is defined like this:

}{min

}{min

)1(

1

)(

1

−

≤≤

≤≤

+=

+=
=

k
ljil

nl

k
ij

ljil
nl

ij

aaa

bac

ABC

At most)1log(−n multiplications are needed since

it suffices to compute AM where M is the smallest power
of 2 greater than or equal to n-1. Each multiplication
takes 1log2 +n steps when entering the matrix to roots

of dimension 1 and 3 trees and getting the result at the
roots of dimension 2 trees after sending each element to
all leaves, multiplying the values in each leaf an
summing up the values in leaves of dimension 2 trees.
The total time required for matrix multiplication in this

way is 1log3log2 2 ++ nn steps [14].

To compute the MST as explained in [14] on two
dimensional mesh of trees, we need to put the adjacency
matrix of G′ on leaves of one 2-dimensional mesh of

trees in the array. This can be accomplished by sending
each value from roots of dimension 3 trees to say its
uppermost leaf. We assume that node information – i.e.
membership in D or not – is present at the roots of trees
in this level. Then assuming the membership in D to
work as enable signal for the processors, the edges of
minimum spanning tree can be determined in

)(log2 nO steps, using the algorithm presented in [14].

To constructG ′′ , we find the nodes belonging to it.
We use the leaf (i, j, k) to indicate if the node j is on the
shortest path from node i to node k. We note that if this
is the case, we would have the following:

),(),(),(kjdjidkid +=

If the shortest paths are unique, this is of course
correct. Otherwise, then this may cause to construct a
supergraph ofG ′′ , however this would not affect cost of
the result, because we remove the additional nodes and
edges at the next steps, when removing the pendants at
last.

To do this, each tree root when the tree is in the form
(-, j, k), (i, -, k), or (i, j, -), sends the distance to all its
descendent leaves. Each leaf (i, j, k) receiving the
required values from the tree roots in each of three
dimensions, can verify that it is on a virtual edge
connecting i and k and in MST ofG′ . To verify that the
edge (i, k) is in the MST ofG′ , the computed values for
existing edges of the MST matrix in the leaf level are
sent to corresponding roots of dimension 2 trees. Once
we have these values at roots, we send them downward
through the tree edges to all leaves with the form (i, x, k)
that are about to verify the existence of edge (i, k).
Whenever a node is proved to be on a shortest path
contained in the MST, this information should be sent to
the corresponding root node of the 2-dimensional array
on which the shortest paths matrix is computed – i.e. the
uppermost leaf plain. This is a reduction operation since
all the information in nodes (x, j, y) should be
"summarized" by an OR operation in the root of the (-, j,
n) dimension 1 tree. First, all the leaf processors having
an address of the form (x, j, y) send their information to
their dimension 1 tree root. The result is sent from root
to the rightmost leaf node which has an address of the
form (0, j, x). These leaves which are all descendents of
the tree (0, j, x) sum up their values by sending them
upward to the root of this tree. The final result is then
sent to the (0, j, n) leaf which in turn sends it to the (-, j,
n) tree root. These values are sent downward through
dimension 1 and 2 trees to the upper plate leaves. Only
the edges that receive such enable signals from both of
their corresponding trees are considered to be inG ′′ .

The remaining work is to compute the minimum
spanning tree of the result graph and removing the
pendants. One may think that this is easily accomplished
by running the MST on the upper plate and then

removing the degree 1 non-destination nodes. But it's
immediately seen that removing these pendants may
result in formation of other pendants and this can make
us perform a "sequence" of updates, leading the
algorithm running time to be of)(nO . Instead of doing

this, we propose a solution in which we keep track of
the needed non-destination nodes during the formation
of the MST. For this purpose we need to distinguish
between the connected components containing at least
one destination node and the components without any
destination node. We'll refer to the former as D-
components and the latter as S-components. We also
call destination nodes as D-node and non-destination
nodes as S-nodes. The nodes that are proved to be
needed for constructing the Steiner tree will be referred
to as N-nodes (needed) and the other nodes will be
called U-nodes(unneeded). Furthermore, we assume that
among the information contained in each node, we have
one flag to indicate whether or not the node is a pendant
of its component. This flag is initialized to true (is
pendant) for S-nodes and false for D-nodes. We should
update this flag when the tree components are being
connected to each other. When merging two trees, we
may encounter one of these:

1. One of the components is S-component and
the other a D-component,

2. Both the components are S-component,
3. Both the components are D-component

In the first and second case no flag needs to be
updated. In the third case, if we indicate two ends of the
newly added edge by s ands′ , only the flag of the nodes

belonging to the paths from s and s′ to their nearest N-
nodes in each component should be changed from true
to false, meaning that the node is now needed to
construct the tree, because as it's apparent in Figure 2, it
would be on the only path from one N-node to another.
If any of two edge ends is an N-node, no change in the
flags of that component is needed.

Figure 2. Two components are to be linked together.

Black nodes indicate N-node and gray nodes are U-nodes.
The thick edge is the newly added edge. It can be seen that
hatched nodes are U-node before connecting the new edge,
but they should be changed to N-nodes. Also it's obvious
that the state of other nodes needn't change.

To do so, we note that when we connect to

components while constructing the MST, we should be
able to distinguish between D-components and S-

components. This is easily accomplished by giving
priority to D-nodes to be leader of a component. In this
way, if a component is a D-component, its leader would
be a D-node and vice versa.

To determine which nodes are there on the path
connecting one end of an edge to its nearest N-node, we
maintain in the leaf matrix the path-lengths between any
pair of nodes in the current forest and represent it by
dMST. Then we can verify this fact by checking if the
following equality holds:

),(),(),(sMSTMSTsMST nidisdnsd +=

Here, s can represent any of U-nodes at one end of the
new edge and

sn is the nearest N-node to s in its

component. Since there is only one path in tree between
any pair of nodes, to the update path lengths, when
connecting two components, we only need to compute
path lengths between pairs of nodes that are not in the
same component. This value for two arbitrary nodes

1n and 2n as indicated in Figure 3 would be:

),(),(),(),(22211121 sndsswsndnnd MSTMSTMST ++=

Figure 3. Computing the length of newly established

paths when connecting two components.

To do the above on a 2 dimensional mesh of trees
(2dMOT) whose leaves are located at the upper plate,
we run a modified from of the ordinary MST algorithm
on 2dMOT. Whenever we want to connect two
supernodes, as soon that the linking edge information
was received by the leader (i.e. the weight, edge ends,
and leader information of the two ends), it can verify if
the two components are both D-component. If this is
true, then each node i in that component must
have),(sMST dsd ,),(isdMST

and),(sMST did available to

verify if it should be set to an N-node.
At first, the leader sends identity of s downward

through row trees. The cell in column s that receives this
message sends a "calculate nearest N-node" message to
its column tree root. The root in turn sends a message to
all its leaves to send their dMST if they connect s to an N-
node. The minimum of these values is calculated as they
move upward through the column tree. This minimum
value (which embeds the identity of s and ds) is then
sent to the leader root.

We show how a leader can send a message to all its
component members and will use this abstraction later
several times. The leader of any component sends its
identity and the message to all its descendent leaves
through row trees and each node sends identity of its
leader to its column through column trees. In each
column i, the leaf that has received a message from a
leader that is the same as the leader identity received
through the column tree, sends the message upward
through the column tree to the root node.
The leader sends the identity of s and ds to all its
component members. Each member sends its identity
along with the identity of s and ds received from leader
to all its column tree leaves and the proper leaves send

),(isdMST
 and),(sMST did upward to the root. Now that

root has all of the three values),(sMST dsd ,),(isdMST

and),(sMST did available, can set its flag properly. This

is the process through which we can update the N-
nodes.

In order to update path lengths, once again when we
want to connect two supernodes, as soon that the linking
edge information was received by the leader, it sends
identity of s1 and s2 along with),(21 ssw to all its

component members. Each node, having received these
values sends the identity of s1 and),(21 ssw downward

through the column trees to all leaves. The proper leaf
then sends),(11 sndMST

to the root which in turn

broadcasts this value through row and column trees to
its corresponding row and column. In this way, now the
leaf (n1, n2) having received),(11 sndMST

,),(22 sndMST
,

and),(21 ssw can calculate the path length.
All these actions described here are done when we

want to connect two components and The time needed
for each of these tasks is)(lgnO which is of the same

order of the time steps needed to do during ordinary
MST construction. This means that in the overall time of
MST algorithm, only a constant factor may change and
the time order is still)(lg2 nO .

4.3. Time Complexity Analysis

We performed some analysis of time complexity
during algorithm explanation, here we will summarize
all the statements claimed before for each step of the
algorithm and calculate the overall time complexity:

1. Construct),(EDG ′=′ , which is a complete

graph in which),(vuCostG′ is the length of the

shortest path from u to v in G.
This step was performed by repeatedly squaring
the matrix, which takes 1log3log2 2 ++ nn steps

to be completed.
2. Construct a minimum spanning tree T′ forG′ .

This step was accomplished by running the
minimum spanning tree algorithm on 2-
dimensional mesh of trees, which is known to be
possible in)(lg 2 nO steps [14].

3. Construct a subgraph G ′′ of G with all vertices
ofT ′ .

We did this by sending some values from leaves to
roots and vice versa for a few times. This can be
done in)(lgnO steps.

4. Construct a minimum spanning tree
T ′′ forG ′′ .

5. Remove successively any pendants which are
non-destination leaf vertices in T ′′ to form a
solution, TMSTH.

Steps 4 and 5 were done together and as we
discussed when explaining the algorithm, this takes

)(lg2 nO time.

By summing up the values and orders computed

above, we conclude that the total time needed for
algorithm execution is)(lg2 nO .

5. Conclusion

We presented a parallel algorithm on a 3-dimensional
mesh of trees to solve SPG based on minimum spanning
tree heuristic. This algorithm can be further improved
because only in limited steps we do need the whole
network, and in the remaining time of the algorithm we
just perform the task on a 2-dimensional mesh. To make
the algorithm better we may think of pipelining multiple
problems through the network.

The application of this fast algorithm may be in
multimedia applications such as E-learning and video
conferencing where the members of the multicast group
are not permanent, but change dynamically. Each time
the membership of one member is changed, the
algorithm can be run and the new multicast tree is
generated immediately. Although a lot of processors are
needed for this task, the computational power of such
processors is limited because they should do simple
work. In comparison to the only centralized parallel
implementation we've encountered during our study –
which computes the solution with a probability at least
0.5, this algorithm may be better in the sense that it
certainly generates the solution.

6. References

[1] E. Alba and J. F. Chicano, "Evolutionary Algorithms in
Telecommunications", in IEEE Mediterranean
Electrotechnical Conference, May 2006, pp. 795-798.
URL:http://neo.lcc.uma.es/staff/francis/pdf/melecon06.pdf.

[2] M. P. Bastos and C. C. Ribeiro, "Reactive Tabu Search
with Path Relinking for the Steiner Problem in Graphs", In
Proceedings of the Third Metaheuristics International
Conference, 1999, pp. 31-36.
URL:http://citeseer.ist.psu.edu/bastos99reactive.html.

[3] T. G. Crainic, M. Gendreau, and J. Potvin, "Parallel Tabu
Search", Parallel Metaheuristics, E. Alba (Ed.), John Wiley
\& Sons, 2005.
URL:http://www.iro.umontreal.ca/~gendron/Pisa/References/
Meta/Crainic05c.pdf.

[4] T. G. Crainic and N. Hail, "Parallel Meta-heuristics
Applications", Parallel Metaheuristics, E. Alba (Ed.), John
Wiley \& Sons, 2005.
URL:http://www.iro.umontreal.ca/~gendron/Pisa/References/
Meta/Crainic05b.pdf.

[5] D. E. Drake and S. Hougardy, "On Approximation
Algorithms for the Terminal Steiner Tree Problem",
Information Processing Letters, vol. 89, Number 1, January
2004, pp. 15-18.
URL:http://www.sciencedirect.com/.

[6] M. Demange, J. Monnot, and V. Th. Paschos, "Differential
Approximation Results for the Steiner Tree Problem", Applied
Mathematics Letters, vol. 16, Issue 5, July 2003, pp. 733-739.
URL:http://www.sciencedirect.com.

[7] L. M. A. Drummond, E. Uchoa, A. D. Goncalves, J. M.N.
Silva, M. C.P. Santos, and M. C. S. de Castro, "A grid-enabled
distributed branch-and-bound algorithm with application on
the Steiner Problem in graphs", Parallel Computing, vol. 32,
Issue 9, October 2006, pp. 629-642.
URL:http://www.sciencedirect.com/.

[8] H. Esbensen and P. Mazumder, "A Genetic Algorithm for
the Steiner Problem in a graph", In Proceedings of the
European Design and Test Conference, 1994, pp. 402-406.
URL:http://citeseer.ist.psu.edu/185181.html.

[9] A. Ghanwani, "Neural and delay based heuristics for the
Steiner problem in networks", European Journal of
Operational Research, vol. 108, Issue 2, 16 July 1998, pp.
241-265.
URL:http://www.sciencedirect.com/.

[10] P. Guitart, "A Faster Implementation of Zelikovsky's
11/6-Approximation Algorithm for the Steiner Problem in
Graphs", Electronic Notes in Discrete Mathematics, vol.

10, November 2001, pp. 133-136.
URL:http://www.sciencedirect.com.

[11] L. Gatani, G. Lo Re, and S. Gaglio, "An efficient
distributed algorithm for generating and updating multicast
trees", Parallel Computing, vol. 32, Issues 11-12, December
2006, pp. 777-793.
URL:http://www.sciencedirect.com.

[12] G. Kulkarni, "A Tabu Search Algorithm for the Steiner
Tree Problem", M.Sc. Thesis, North Carolina State University,
2002.

URL:http://www.lib.ncsu.edu/theses/available/etd-09032002-
115648/unrestricted/etd.pdf.

[13] Z. Kun, W. Heng, and L. Feng-Yu, "Distributed multicast
routing for delay and delay variation-bounded Steiner tree
using simulated annealing", Computer Communications, vol.
28, Issue 11, 5 July 2005, pp. 1356-1370.
URL:http://www.sciencedirect.com/.

[14] F.T. Leighton, Introduction to Parallel Algorithms and
Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann,
1992.

[15] C.P. Low and Y.J. Lee, "Distributed multicast routing,
with end-to-end delay and delay variation constraints",
Computer Communications, vol. 23, Issue 9, 15 April 2000, pp.
848-862.
URL:http://www.sciencedirect.com.

[16] S. L. Martins, C. C. Ribeiro, and M. C. Souza, "A Parallel
GRASP for the Steiner Problem in Graphs", Lecture Notes In
Computer Science; vol. 1457, 1998, pp. 285-297.
URL:http://citeseer.ist.psu.edu/martins98parallel.html.

[17] H. J. Pr¨omel and A. Steger, "A New Approximation
Algorithm for the Steiner Tree Problem with Performance
Ratio 5/3", Journal of Algorithms, vol. 36, Issue 1, July
2000, pp. 89-101. URL:http://www.sciencedirect.com.

[18] C. C. Ribeiro and M. C. De Souza, "Improved Tabu
Search for the Steiner Problem in Graphs", Working paper,
Catholic University of Rio de Janeiro, Department of
Computer Science, 1997.
URL:http://citeseer.ist.psu.edu/47337.html.

[19] G. Robins and A. Zelikovsky, "Improved Steiner Tree
Approximation in Graphs", In Proceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms, San
Francisco, California, United States, 2000, pp. 770-779.
URL:http://citeseer.ist.psu.edu/robins00improved.html.

[20] V. V. Vazirani, "Recent results on approximating the
Steiner tree problem and its generalizations", Theoretical
Computer Science, vol. 235, Issue 1, 17 March 2000, pp. 205-
216.
URL:http://www.sciencedirect.com.

