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Abstract. In this paper, we consider two new variants of the unit cov-
ering problem in color-spanning set model: Given a set of n points in
d-dimensional plane colored with m colors, the MinCSBC problem is to
select m points of different colors minimizing the minimum number of
unit balls needed to cover them. Similarly, the MaxCSBC problem is
to choose one point of each color to maximize the minimum number of
needed unit balls. We show that MinCSBC is NP-hard and hard to ap-
proximate within any constant factor even in one dimension. For d = 1,
however, we propose an ln(m)-approximation algorithm and present a
constant-factor approximation algorithm for fixed f , where f is the max-
imum frequency of the colors. For the MaxCSBC problem, we first prove
its NP-hardness. Then we present an approximation algorithm with a
factor of 1/2 in one-dimensional case.

Keywords: Unit Covering, Color-Spanning Set, Computational Geom-
etry, Approximation Algorithm

1 Introduction

Given a set of n points, the unit covering (UC) problem is to cover them with
minimum number of unit balls. This problem is NP-hard in Euclidean plane [3],
while for constant-dimensional cases, it admits polynomial-time approximation
schemes (PTAS) [5]. The UC problem has been studied extensively due to wide
applications in many fields such as data management in terrains and wireless
networks [2, 1, 4, 10].

Recently, many researchers address geometric problems in the situation where
the input data is imprecise [8]. One common approach for modeling imprecise
points is to use a set of finite points for possible locations that a single im-
precise point may appear. In computational geometry, this problem is named
color-spanning set model. In this model, we are given n points colored with m
colors. Points with the same color refer to possible locations of an imprecise
point. Imprecise inputs lead to imprecision of output. One of the widely studied
problems in this model is to compute bounds on output [8].
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Given points MinCSBC MaxCSBC

Fig. 1. Three different color selections of given points and their corresponding unit
covering (i.e., to cover them using minimum number of unit balls).

In this paper, we discuss the unit covering problem in color-spanning set
model. This model can be applied to the case when for each term, at least
one of its alternatives should be covered. As an example, consider n different
networks and suppose that we want to connect these networks to the Internet
with minimum number of access points. Each access point can cover nodes in
the certain distance, and a network is connected to the Internet if and only if at
least one of its nodes is close enough to an access point, i.e., it is “covered” by
the ball corresponding to the access point.

Given a set P = {p1, p2, ..., pn} of n points in d dimensions colored with
m ≤ n colors in C = {c1, c2, ..., cm}, a color selection of P is a subset of m
points, one from each color.

We define the following two problems:

Problem 1 (MinCSBC). Find a color selection S of P that minimizes the number
of balls in unit covering of S.

Problem 2 (MaxCSBC). Find a color selection S of P that maximizes the num-
ber of balls in unit covering of S.

In Figure 1, three different color selections for a set of points and their cor-
responding unit covering depicted.

2 Preliminaries and Notation

Suppose that P is a set of points given as the input for either MinCSBC or
MaxCSBC and C = {c1, . . . , cm} is the set of colors of elements in P . For each
ci ∈ C, define the frequency of ci as the number of points colored with ci. We
refer to the maximum frequency as fP (and omit the subscript P when it is clear
from the context), so that no more than fP points are of the same color. Since
there exists only one color selection for f = 1, we assume that f ≥ 2.

Except explicitly specified, we restrict our discussion to one-dimensional case.
In this case, a unit ball turns into a unit interval.

Given a color selection S of P , let U(S) denote the set of intervals in the unit
covering of S. Recall that unit covering uses the minimum number of intervals
to cover the points. We have the following simple observation:
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G = {x1, x2, x3, x4} F = {S1, S2, S3, S4}

S3 = {x2, x3, x4} S4 = {x1, x4}
S1 = {x1, x3} S2 = {x2, x3}

x1 x2 x3 x4

c1 c2 c3 c4

S1 S2 S3 S4

Fig. 2. An instance of MinCSBC.

Observation 1 There is an optimal covering U(S) such that the left endpoint
of each interval corresponds to a point in S and all intervals in U(S) are disjoint.

Proof. Let U(S) = {I1, I2, ..., Ik} be the set of intervals sorted by their left
endpoints. Starting from I1, for each interval Ii, shift Ii until its left endpoint
lies on the first point that is not covered by intervals I1, ..., Ii−1. Clearly, the
resulting set of shifted intervals satisfies the required property. ut

In the rest of the paper, U(S) refers to an optimal covering with the prop-
erty in Observation 1. We define OPTmin and OPTmax as the color selection
regarding MinCSBC and MaxCSBC, respectively (for explicitly mentioned P or
whenever it is clear from the context).

3 MinCSBC

3.1 Hardness of MinCSBC

Theorem 1. MinCSBC is NP-hard.

Proof. We show that the problem is NP-hard even in one dimension using a
reduction from the Set Cover. Consider an instance of Set Cover with ground
set G = {x1, x2, ..., xm}, covering family F = {S1, S2, ..., Sk} and OPTsc ⊆ F
as the optimal cover. For each xj ∈ G, consider color cj in MinCSBC instance,
and for each subset Si, specify a unit segment on x-axis Celli in a way that the
distance between the endpoints of different segments is more than 1. Next, for
each element xj ∈ Si, put a point with color cj in Celli as illustrated in Figure 2.

Suppose that P is the set of created points in the MinCSBC instance. Since
the distance between each two cells is more than 1, each interval in U(OPTmin)
covers points in only one cell. Moreover, if two intervals intersect the same cell,
it is possible to replace them with one interval which includes the whole cell
contradicting the minimality ofOPTmin. We return the sets whose corresponding
cells in MinCSBC instance intersect the intervals in U(OPTmin). Let R denote
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the set of returned subsets. Since at least one point of each color is covered
by intervals in U(OPTmin), R is a feasible solution to the Set Cover instance.
Consequently, we have |U(OPTmin)| ≥ |OPTsc|.

On the other hand, consider the cells corresponding to subsets in OPTsc and
find a color selection using points in these cells. Since OPTsc covers all elements
in G, such a color selection exists. Obviously, this color selection can be covered
by |OPTsc| unit intervals, so |U(OPTmin)| ≤ |OPTsc|.

As a consequence, |U(OPTmin)| = |OPTsc| which, keeping in mind NP-
hardness of the Set Cover problem, implies MinCSBC to be NP-hard as well.

ut

Note that the Set Cover problem is NP-hard even when the frequency of each
xj ∈ G is at most 2, i.e., xj appears in at most two subsets in F . Therefore,
using the same reduction for this restricted version of the Set Cover problem,
we can claim that one-dimensional MinCSBC is NP-hard even when f = 2.

Furthermore, it can be concluded from the above reduction that any constant-
factor approximation algorithm for MinCSBC yields an approximation for the
Set Cover problem with the same factor. Taking into account that there is no
approximation algorithm with a constant factor for the Set Cover problem unless
P=NP, we obtain the following corollary.

Corollary 1. MinCSBC admits no polynomial-time approximation algorithm
with a constant factor unless P = NP .

3.2 Approximation Algorithms for MinCSBC

Theorem 2. There is an ln(m)-approximation algorithm for MinCSBC in one
dimension.

Proof. Let I = {I1, I2, ..., In} be the set of intervals, where Ii is the unit interval
whose left endpoint lies on point pi. By Observation 1, for any color selection,
there exists an optimal covering using intervals in I. Therefore, the MinCSBC
problem is basically to find I ⊆ I of the minimum size such that I covers at
least one point of each color, and then choose a color selection from the covered
points.

In order to represent this problem with the Set Cover problem:

– let G be the set of all colors;
– for each Ii ∈ I, define a subset of G containing the colors covered by Ii.

There is a well-known greedy approximation algorithm for the Set Cover
problem with factor ln(∆), where ∆ is the maximum size of the subsets in the
covering family [6]. Since in above reduction, the size of each covering subset
is at most m, applying this ln(∆)-approximation algorithm results in an ln(m)-
approximation algorithm for MinCSBC.

ut
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Theorem 3. There is a 2f -approximation algorithm for MinCSBC in one di-
mension.

Proof. First, find a set I of unit intervals, with |I| ≤ n, satisfying the following
two conditions.

– All of the n points are covered.
– No two intervals in I intersect, i.e., all the intervals are disjoint.

Then, consider the following problem which is similar to MinCSBC but with
an additional restriction.

The modified MinCSBC Problem: Find a subset of I with minimum
size that covers at least one point of each color.

Lemma 1. |SI | ≤ 2|U(OPTmin)|, where SI is the optimal solution to the mod-
ified MinCSBC problem with respect to I.

Proof. Since intervals lie on x-axis, for each u ∈ U(OPTmin), there exists I ′ ⊆ I
with |I ′| ≤ 2 such that I ′ covers all points covered by u. Consequently, by replac-
ing each interval in U(OPTmin) with at most two intervals in I, one can obtain
a family S′ ⊆ I of intervals covering all points that are covered by U(OPTmin).
Since |SI | ≤ |S′| and |S′| ≤ 2|U(OPTmin)|, we obtain that |SI | ≤ 2|U(OPTmin)|.

ut

As a consequence of Lemma 1, any f -approximation algorithm for modified
MinCSBC yields an approximation algorithm for MinCSBC with factor 2f .

Note that, an instance of the modified MinCSBC problem can be considered
as an instance of the Set Cover problem. So, the f -approximation algorithm for
Set Cover leads to an 2f -approximation algorithm for MinCSBC.

ut

4 MaxCSBC

4.1 Hardness of MaxCSBC

Theorem 4. MaxCSBC is NP-hard.

Proof. We show that MaxCSBC is NP-hard even in one dimension for f > 2 by
reduction from a restricted version of normal CNF 3SAT in which each variable
occurs at most twice in positive form and once in negative form. This problem
which we name 3-Occurrence SAT is known to be NP-complete 1.

1 It is worth mentioning that in 3-Occurrence SAT problem, if each clause has to have
exactly 3 distinct variables, the formula is always satisfiable and thus, the problem
is not hard anymore. However, we allow clauses to have less than 3 variables, see [9]
for more details.
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Φ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

φ1
φ2

x1

x2

x3

Cell1 Cell3Cell2

Cell1 Cell2 Cell3

Fig. 3. Reduction to an instance of MaxCSBC.

Given an instance of 3-Occurrence SAT, for each variable xi, specify two dis-
joint segments Celli and Celli, each of length 3. These two segments correspond
to xi and xi, respectively. The cells have to be placed in a way that no two cells
intersect. Next, assign distinct colors to each variable and each clause. Denote
the color assigned to variable xi by ci and the color which is corresponding to
clause φj by c′j .

For each variable xi, place two points colored with ci at the middle of Celli
and Celli. Since these two points are the only points which are colored with ci,
any color selection must include at least one of them. Selecting the middle point
of a cell is interpreted as setting the corresponding literal to 0. In other words,
if the middle point of Celli is selected, then xi = 0, while selecting the middle
point of Celli means that xi = 0 or, equivalently, xi = 1.

Next, for each clause φj , place three points colored with c′j in the cells

corresponding to its literals at the distance of 3
4 from the middle. Note that

at most two clause-points are placed in the same cell (by the definition of 3-
Occurrence SAT). If two points corresponding to different clauses are placed in
the same cell, they have to be placed at the different sides of the middle point.
See the example depicted in Figure 3.

Lemma 2. The instance of 3-Occurrence SAT is satisfiable if and only if there
exists a color selection for the corresponding MaxCSBC instance in which the
distance between any pair of points is greater than 1.

Proof. Suppose that a color selection S exists with the distance between each
two points in S more than 1. For each color ci, if the middle point of Celli is in
S, set xi = 0, otherwise (i.e., if the middle point of Celli is in S) set xi = 0. Note
that for each clause φj , there is one point pj of color c′j in S. Since the distance
between pj and the middle point of the cell that pj lies in, is less than 1, this
middle point cannot be in S, and so there exists a literal in φj whose value is 1.

On the other hand, we prove that any satisfying assignment for the 3-
Occurrence SAT instance can result in a color selection in which the distance
between any pair of points is greater than 1. For each variable xi, the middle
point of either Celli or Celli should be chosen in order to have a color selection.
If xi = 0, select the middle point of Celli. Otherwise, select the middle point of
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Celli. Since for each clause φj , there is at least one literal in φj satisfying it, a
cell containing a point with color c′j exists whose middle point is not selected,
so it is possible to select a point of color c′j .

ut
Observation 2 In an instance of MaxCSBC, |U(OPTmax)| = m if and only if
there exists a color selection in which the distance between any pair of points is
greater than 1.

Taking into account Observation 2, we can claim that the instance of 3-
Occurrence SAT is satisfiable if and only if |U(OPTmax)| = m. Notice that
|U(OPTmax)| is never strictly larger than m.

ut

4.2 Approximation Algorithm for MaxCSBC

Now, we present an O(n log n)-time approximation algorithm with factor 1
2 for

MaxCSBC in one dimension.

Algorithm 1 Approximation Algorithm for MaxCSBC

Input: A set P of n points colored with m colors
Output: A color selection of P
1: M = ∅, T = ∅, T ′ = ∅
2: while |M| < n do
3: p = the leftmost point in P \M
4: M =M∪ {p}
5: T = T ∪ {p}
6: for each point q ∈ P \M with the same color as p do
7: M =M∪ {q}
8: end for
9: for each point q ∈ P \M where dist(p, q) ≤ 1 do

10: M =M∪ {q}
11: end for
12: end while
13: for each color c with no candidate in T do
14: insert an arbitrary point of color c in T ′

15: end for
16: return T ∪ T ′

Theorem 5. Algorithm 1 is a 1
2 -approximation algorithm.

Proof. Clearly T ∪ T ′ needs at least |T | unit intervals to be covered since the
distance between any two points in T is greater than 1. By Observation 1, all
the intervals in U(OPTmax) are disjoint and the left endpoint of any interval in
U(OPTmax) is one of the input points. Let T be a set of these points. We claim

that |T | ≥ |T |2 .
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To this end, we show that by adding p to T , at most two points of T that
have been left unmarked2 yet, can be inserted to M. Note that when we add
point p to T ,

– only one of the points in T can be of the same color with p because all points
in T have different colors;

– there is at most one unmarked point in T within the distance at most 1 to p
as any two points in T are within the distance greater than 1. Recall that p
is the left-most unmarked point, so all points at the left-hand side of p have
been already marked.

Therefore, by adding p to T , at most two unmarked points of T might be
inserted to M. At the end of the algorithm, all points in T are marked, so

|T | ≥ |T |
2 . Thus the output of Algorithm 1 is within a factor 1

2 of the optimal
solution.

ut

5 Conclusion

In this paper, we investigated on the problem of unit covering in the color-
spanning set model.

For MinCSBC, we showed the NP-hardness and also hardness of approxima-
tion within any constant factor. In addition, we presented an ln(m)-approximation
algorithm for this problem and also an approximation algorithm for one-dimensional
case with factor 2f . While one-dimensional MinCSBC is NP-hard even when
f = 2, the latter algorithm results in a constant-factor approximation algorithm
for fixed f .

For MaxCSBC, we proved the NP-hardness and proposed an approximation
algorithm with constant factor 2 when d = 1.

Here are some open questions.

1. Is there any algorithm with approximation factor better than 2f for MinCSBC?
For special case when f = 2, the proposed algorithm leads to a 4-approximation
algorithm. In this case (f = 2), a reduction from the Vertex Cover problem
shows that assuming the Unique Game Conjecture, the problem does not
admit any approximation algorithm with a factor better than 2 [7]. There is
still a gap between these lower bounds and our factor, however.

2. Is there any approximation algorithm for MinCSBC and MaxCSBC in higher
dimensions?

3. Having considered our reduction from 3-Occurrence SAT, we showed that
MaxCSBC is NP-hard for f > 2 even in one-dimensional case, but the
complexity of the problem for f = 2 is still unknown.

2 A point is marked if it is in set M and unmarked otherwise.
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