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Abstract

Given a subdivision of plane into convex polygon regions, a sequence of polygons to meet,
a start point s, and a target point t, we are interested in determining the shortest weighted
path on this plane which starts at s, visits each of the polygons in the given order, and ends
at t. The length of a path in weighted regions is defined as the sum of the lengths of the
sub-paths within each region. We will present an approximation algorithm with maximum
δ cost additive. Our algorithm is based on the shortest weighted path algorithm proposed
by Mata and Mitchel [2]. The algorithm runs in O(((n3LW +RW )k

δ )3) time, where n is the
number of vertices of the region boundaries, L is the longest boundary, W is the maximum
weight in the region, R is the sum of the perimeters of the regions, and k is the number of
polygons. The main idea in the algorithm is to add Steiner points on the region boundaries
and polygon edges. In addition, we will also present a solution to the query version of this
problem. We will extend our result in unweighted version of the “Touring a Sequence of
Polygons” problem [3]. We will give an approximation algorithm to solve the general case of
the problem (with non-convex intersecting polygons).
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1 Introduction

1.1 Problem Definition

In computational geometry there are several
problems (e.g., the safari problem, the watch-
man route problem, and the zoo-keepers prob-
lem) involving touring a sequence of the poly-
gons. Although, these problems have been
solved with efficient and optimal algorithms,
variants of the problems involving weighted
regions are still considerable. To model a
weighted subdivision, we can consider that as

some polygonal regions with a weight associ-
ated to each region. If the number of ver-
tices in the subdivision are n, then the num-
ber of polygons will be O(n). By adding edges
between reflex vertices, we can divide non-
convex regions into convex ones with the same
weights. Since the number of vertices is still n,
the number of regions will remain O(n). This
lets us model the weighted plane as a num-
ber convex polygon regions with each region
associated a weight α.

In this paper we will examine new vari-
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Figure 1: Shortest weighted path meeting two polygons.

ants of two problems “Touring a Sequence of
Polygons” (TPP) and “The Weighted Region
Problem” (WRP). In TPP, given a sequence
of k polygons, a starting point(s), and a tar-
get point(t), we are asked to find the shortest
path which starts from s and ends in t and
meets the given polygons in the given order.
In the case when the order of polygons is not
given, the problem is proved to be NP-HARD
by reducing the metric TSP. The answer for
metric TSP (Traveling Salesman Problem) is
the answer for the problem if we consider the
polygons as just points. Dror, Efrat, Lubiw,
and Mitchell have presented the optimal re-
sult for the problem in [3] with the running
time of O(kn log(n/k)) when the polygons are
convex and disjoint.

WRP is a generalization of the shortest
path problem in the plane with obstacles,
in which we assume that polygon is subdi-
vided into convex polygon regions each of
which is associated with a weight α speci-
fying the cost per unit distance of traveling
in that region. One can easily observe that
the weight of each edge is the minimum of
neighbor weights. The goal of WRP is to
find the weighted shortest path for two given
points. WRP was first studied by Papadim-
itriou and Mitchell [1] where they presented an
O(n8 log(n/ε)) running time (1+ε)-algorithm.
Later Mata and Mitchel in [2] presented other
algorithm with O(n3/ε) running time. Min-
imum angle and ratio of maximum weight

to minimum weight have also an effect on
the running time of the algorithm. In the
same paper they have presented another al-
gorithm based on edge subdivision that dis-
cretize the problem by adding Steiner points
to the edges. The algorithm results to an
additive approximation with an error of at
most δ with a running time of O(LWn2 log n

δ ).
The best result for the problem is given by
Aleksandrov, Maheshwari, and Sack in [5].
They have placed O((1/ε) log(1/ε)) points on
each of the edges of regions. By a modified
version of Dijkestra’s algorithm they propose
a O((n/ε)(1/

√
ε + log n) log(1/ε)) time algo-

rithm.

1.2 Our Approach

In this paper our goal is to find the short-
est path from s to t meeting the polygons
in the given order, and having the minimum
weighted cost as illustrated in Figure 1.

We will also restrict the result for un-
weighted regions and approximately solve a
general case of the TPP which polygons can
intersect and be non-convex (which Dror et al
in [3] have proved to be NP-HARD) with the
cost of being approximation algorithm with
high running time.

We will use several parameters in this pa-
per. W is the maximum weight in the plane.
L is the maximum edge in the plane. k is
the number of polygons to meet. R is the
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Figure 2: A WSP graph.

sum of the perimeters of the polygons. M
is the maximum perimeter of the polygons.
We don’t care about the number of vertices of
polygons. n is the number of region polygon
vertices. The algorithm will generate an ad-
ditive approximation solution with the cost at
most δ more than the optimal solution cost.

This paper follows with our algorithm for
TPP on weighted regions in Section 2. In Sec-
tion 3 we will analyze the running time of the
algorithm and we will also present error anal-
ysis to prove the approximation. Next, we will
present the query version of the algorithm in
Section 4. Section 5 will include applications
of the presented algorithms. Finally, section 6
includes usability of the algorithms, possible
future works, and summary of results.

1.3 Summary of Results

1. An approximation algorithm with
O(((n3LW +RW )k

δ )3) running time for
the touring a sequence of polygons in
weighted regions.

2. An approximation algorithm with
O(((n3LW + RW )k

δ )3) preprocess time
and O(M2W 2k3/δ2) query time for
touring a sequence of polygons prob-
lem in weighted regions, where query
can include start and target point, a
subset of polygons and order of them.

3. An approximation algorithm with
O(M2k3/δ2) running time for the gen-
eral case of touring a sequence of poly-
gons.

4. Solving touring a sequence of polygons
in weighted regions will result solving
“Zoo Keepers”, “Watchman Route” and
“Safari” problems in weighted regions.

2 TPP in Weighted Regions

The main idea in our algorithm is adding ce/δ′

Steiner points evenly spaced on each of the
regions and polygons edges, where ce is the
cost of edge. Later we will show that δ′ =
δ/3(k + 1)n2 is enough for region edges and
δ′ = δ/3(k + 1) is enough for polygon edges.
This will place points with distance at most
δ/3(k+1)n2 on region edges and with distance
δ/3(k+1) on polygon edges. Next we will join
the Steiner points inside each of the weighted
regions and construct a weighted graph and
solve the problem inside the graph. First we
will compute all-pairs shortest path. Then,
we will construct a weighted graph WSP in
which s is connected to all to point in the first
polygon with the shortest calculated path be-
tween them as weight of the edges. And all
point on the first polygon are connected to all
points on the second polygon with the shortest
path between them as the weight as the weight
of the edges. All the points on the last polygon
are connected to t with the shortest path be-
tween them as weight the weight of the edges.
The WSP is illustrated in Figure 2. We will
use all-pairs shortest path algorithm to cal-
culate the weights for WSP graph. Then we
will use a dynamic algorithm to evaluate the
shortest path between s and t in WSP . The
idea is to calculate the shortest path from s to



all of points in P1, then calculate the shortest
path from s to all of the points on Pi+1. Thus
for each point p in Pi+1 we need to find the
point p′ in Pi where the distance from s to p′

plus the distance from p′ to p is minimum. We
need to check each of the edges of WSP once,
so the running time of the algorithm will be
O(|E(WSP )|). In next section we will show
that there exists a path in WSP with cost at
most δ more than the optimal solution cost.

3 Analysis

First we will perform an error analysis and
then running time analysis. Suppose that
π∗(s, t) is the shortest weighted path from s
to t with polygon meet constraints. Let pi be
the point at which π∗(s, t) meets polygon Pi.
We use the notation d′(u, v) for the weight be-
tween u and v in WSP . Also d(u, v) means
the distance between u and v in π∗ if they be-
long to π∗. We use the term SP(u, v) for the
optimal shortest path between u and v. Since
the cost between points on each polygon is at
most δ

3(k+1) , there is a Steiner point p′i on Pi

which has distance at most δ
3(k+1) to pi.

Lemma 1 d′(u, v) < SP(u, v) + δ
3(k+1) .

Proof. Lemma 7.1 on [1] proves that the op-
timal shortest path between any two points
in a given weighted region with n vertices is
at most O(n2). Since there are points with
distance δ/3(k + 1)n2 at the boundaries of
the regions for each point in optimal path,
there is a Steiner point with distance at most
δ/(3k + 1)n2. Starting from a source point
choosing a Steiner point close to the optimal
path, when we reach the target point we will
find a path trough Steiner points with distance
at most δ/3(k+1) with the optimal path. So if
we choose any two points u, v ∈ WSP , there
is a path trough Steiner points from u to v
with cost at most SP (u, v) + δ

3(k+1) . Thus

d′(u, v) < SP(u, v) + δ
3(k+1) . ¤

Lemma 2 d′(s, p′i) < d(s, pi) + 2
3

δ
(k+1)

Proof. By triangular inequality we know that
SP(s, p′1) < d(s, p1) + δ

3(k+1) . By Lemma 1 we

know that the d′(s, p′1) < SP(s, p′1) + δ
3(k+1) .

So we will have SP(s, p′1) < d(s, p′1) + 2
3

δ
(k+1) .

¤

Lemma 3 There is a point p′i+1 on Pi+1

where d′(p′i, p
′
i+1) < d(pi, pi+1) + δ

(k+1)

Proof. There is a point p′i+1 on Pi+1 which
has a distance of δ

3(k+1) from pi+1. By us-
ing triangular inequality twice, we will have
SP(p′i, p

′
i+1) < d(pi, pi+1)+ 2

3
δ

(k+1) , and by ap-
plying Lemma 1, we will have d′(p′i, p

′
i+1) <

d(pi, pi+1) + δ
(k+1) . ¤

Lemma 4 d′(p′k, t) < d(pk, t) + 2
3

δ
(k+1)

Proof. Similar to Lemma 2, by triangular in-
equality we know that SP(p′k, t) < d(pk, t) +

δ
3(k+1) . By Lemma 1 we know that the

d′(p′k, t) < SP(p′k, t) + δ
3(k+1) . So we will have

SP(p′k, t) < d(p′k, t) + 2
3

δ
(k+1) . ¤

Lemma 5 There is a path π′ in WSP which
has length at most π∗ + δ.

Proof. We will choose π′ the path starting
from s, traversing through p′is, and ending in
t. We will have:

d′(s, p′1) < d(s, p1) +
2
3

δ

(k + 1)

d′(p′i, p
′
i+1) < d(pi, pi+1) +

δ

(k + 1)

d′(p′k, t) < d(pk, t) +
2
3

δ

(k + 1)

d′(s, p′1) +
k−1∑

i=1

d′(p′i, p
′
i+1) + d′(p′k, t) <

d(s, p1) +
k−1∑

i=1

d(pi, pi+1) + d(pk, t) + δ

So π′ < π∗ + δ which will complete the
proof. ¤



Since π is the shortest path inside WSP ,
we have π ≤ π′ for any π′. Merging the results
we will have:

π < π′ < π∗ + δ

.
For the running time analysis we first

count the number of vertices. The num-
ber Steiner points on the region edges is
O(n3kLW/δ). The number of Steiner points
on the polygons are O(RWk/δ). So total
number of vertices are V = O((n3LW +
RW )k

δ ). Running all-pairs shortest path re-
sult O(V 3) running time. The dynamic pro-
gramming part is O(|E(WSP )|). |E(WSP )|
can be bounded to O(M2W 2k2/δ3) in worst
case. Usually this is negligible by O(V 3). The
overall running time of the algorithm will be-
come O(V 3 + Mk3/δ). If we change the way
weights of WSP are computed (in fact we
need just the edges of WSP not all pairs) as
followed, the running time of the algorithm
will be O(V M2W 2k3 log V/δ2). For computa-
tion of each of the edges of WSP , we perform
the Dijkestra algorithm once. This algorithm
will run faster than the former algorithm for
small M .

4 Query Version

The query version of the algorithm can be im-
plemented by the same way as solving one
instance of the problem. The preprocess is
computing the all-pairs shortest path. Then
we can answer any query including the start-
ing point, target point, order of the polygons,
and subset of polygons in O(|E(WSP )| +
kMWV log V/δ) time. First we will com-
pute the distances from s to all points on P1,
then we will compute the distances from all
points on last polygon to t. We have weight
for other edges of WSP . Next we will use
the dynamic algorithm mentioned earlier for
calculation the shortest path. The number
of edges from s to points in P1 is at most
kMW/δ. Calculating distance between s to
any point takes O(V log V ) time so it takes

O(V kMW log V/δ) to compute the distances
to s. The same holds for t. The remaining of
the algorithm takes O(|E(WSP )|) time.

5 Other Applications of the
Algorithm

5.1 TPP in Unweighted Regions

In this section we will apply our algorithm to
unweighted version of the TPP. One of the
strengths of our algorithm is that not only it
works for concave polygon which can intersect
with each other but also works for polygonal
and non-closed shapes.

The general case of TPP can be solved
in O(|E(WSP )|) running time. We will put
Steiner points on polygons with distance δ/2k.
Since the edges of WSP now correspond to
Euclidean distance between points, comput-
ing the edges of WSP will take O(1) running
time with no error. The dynamic algorithm
which mentioned earlier will find the answer,
the running time will be O(|E(WSP )|) which
is O(M2k3/δ2).

The error evaluation is similar to weighted
problem. We will prove that there is a path
π′ in WSP which has distance at most π∗ +
δ. The prove technique is the same as the
weighted version. For each point pi on π∗,
there is point p′i which has distance at most δ

2k
from pi. By using triangular inequality twice,
we can show that the distance between p′i and
p′i+1 is at most δ

k plus distance between pi

and pi+1. Starting from s, using p′is, and end-
ing at t, a path π′ will be constructed which
has distance at most δ from π∗. Having the
fact that π is shortest path in WSP implies
π < π′ < π∗ + δ.

5.2 Applying the Algorithm for
Other Problems

On some version of TPP, there is a constraint
that the path from Pi to Pi+1 should remain
inside a fence. These version can be handled
by performing a separate Dijkestra for each of
the edges between Pi and Pi+1 with edges out



of fence removed. Another way is perform-
ing k times all-pairs shortest path where each
time the edges are limited t by a particular
fence.

Solving this version will help up solve
other TPP problems in weighted regions in-
cluding “Zoo Keepers”, “Watchman Route”
and “Safari”. “Watchman Route” problem
includes unweighted versions which edges of
the pockets(Polygons) are curve(Some angu-
lar constraints usually cause these cases). As
mentioned earlier, our algorithm works for
cases were the inputs consists of polygonal ob-
jects, so our algorithm will solve these versions
of “Watchman Route” problem.

6 Conclusion and Future
works

Although the proposed algorithm has not
polynomial running time in size of given input
bits and depends on the lengths of edges, on
the other hand it is the first result in “TPP
in weighed regions”. It is simple to imple-
ment. In practice for maps with long edges,
big numbers for δ are acceptable, so the run-
ning time of the algorithm will not depend on
the length of edges. Also we showed that our
result is useful for special cases on unweighted
regions.

Proposed algorithm’s running times does
not seem to be optimal. Other techniques
mentioned on the introduction part of the pa-
per maybe applicable on the problem to im-
prove the running time and may result (1+ε)-
approximation algorithms. Algorithms inde-
pendent of perimeter of the polygons are more
applicative. Finding such algorithms is an-
other way for improvement.

Other improvement is to limit the con-
straints to make a problem having exact so-
lution with polynomial running time.

Summary of Results:

1. An approximation algorithm with
O(((n3LW +RW )k

δ )3) running time for
the touring a sequence of polygons in
weighted regions.

2. An approximation algorithm with
O(((n3LW + RW )k

δ )3) preprocess time
and O(M2W 2k3/δ2) query time for
touring a sequence of polygons prob-
lem in weighted regions, where query
can include start and target point, a
subset of polygons and order of them.

3. An approximation algorithm with
O(M2k3/δ2) running time for the gen-
eral case of touring a sequence of poly-
gons.

4. Solving touring a sequence of polygons
in weighted regions will result solving
“Zoo Keepers”, “Watchman Route” and
“Safari” problems in weighted regions.

7 Acknowledgment

The authors gratefully acknowledge Ramtin
Khosravi and Mojtaba Noori for their fruit-
ful comments.

References

[1] J.S.B. Mitchell and
C.H.Papadimitriou.“The weighted
region problem: Finding shortest paths
through a weighted planar subdivision.”
journal of the ACM, 38(1):18-73, Jan.
1991.

[2] C.Mata and J.Mitchell. “A new algo-
rithm for computing shortest paths in
weighted planar subdivisions”.In pro-
ceedings of the 13th Annual ACM Sym-
posium on Computational Geometry,
pages 264-273, 1997.

[3] Moshe Dror, Alon Efrat, Anna Lubiw,
and Joseph S. B. Mitchell: “Touring a
Sequence of Polygons”, Proc. 35th ACM
Symposium on Theory of Computing
(STOC 2003), San Diego, CA, June 9-11,
2003, pp. 473–482.

[4] L.Aleksandrov,
M.Lanthier,A.Maheshwari, and J.-
R.Sack. “An ε-approximation algorithm



for weighted shortest paths on polyhe-
dral surfaces”. In proceedings of the 6th
Scandinavian Workshop on Algorithms
Theory, volume 1432 of Lecture Notes in
Computer Science, pages 11-22 ,1998.

[5] L. Aleksandrov, A. Maheshwari, and J.-
R. Sack. “Approximation algorithms for
geometric shortest path problems”. In
Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing,
pages 286-295, 2000.

[6] M. Lanthier, A. Maheshwari, and J.-
R. Sack. “Approximating weighted short-
est paths on polyhedral surfaces”. In
Proc. 13th Annu. ACM Sympos. Com-
put. Geom., pages 274–283, 1997.

[7] J.S.B. Mitchell. “Geometric shortest
paths and network optimization”. In J.-
R.Sack and J. Urrutia, editors, hand-
book of Computational Geometry, pages
633-701. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000.

[8] J. Reif and Z. Sun. “An efficient ap-
proximation algorithm for weighted re-
gion shortest path problem”. In Proceed-
ings of the 4th Workshop on Algorithmic
Foundations of Robotics, 2000.

[9] J. Reif and Z. Sun. “On Finding Approx-
imate Optimal Paths in Weighted Re-
gions” unpublished.


