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Abstract

We consider a pricing game in which two competing sellers offer two similar products
on a social network among agents (communities). Each agent chooses, in an iterative
manner, between the two products depending on what his neighbours do. This intro-
duces two separate games; one between the agents and one between the two sellers.
We show that the first game is a full potential game and providea polynomial time
algorithm to compute where the game converges to. We also study various properties
of the second games such as its equilibrium points and its convergence.

Keywords: Social Networks, Pricing, Bounded Rationality, Game Theory, Algorithm

1. Introduction

How can a seller make profit out of a social network? One reasonable policy for
monetizing social networks is to spread the product in a population through the network
of individual interactions. Because of the rapid growth andpopularity of on-line social
networks, the topic has attracted interest among researchers seeking clever policies. For
example, several papers have studied agents’ behaviours insocial markets [1, 2, 3, 4].

Most of these studies focus on a single seller. This work, however, considers two
competing sellers and studies various related questions such as the behaviour of buyers,
the strategies of the two sellers, and so on. In our model, twocompanies are competing
within a social network. Like the classic approach, the social network is modeled by
a graph whose edges represent the interaction between people. The main difference,
however, is that the nodes of the graph represent communities in the society rather than
individuals. Each community consists of a continuum of potential small agents which
interact anonymously. So, the market is modeled based on population games [5].

In our model, the two companies (sellers) announce their prices first and then,
agents within communities choose which company to buy from.An agent’s utility
depends basically on the fraction of neighbours that are buying the same product as
that agent. In our model, agents behave cooperatively in a sense that they tend to buy
the same product as most of their friends do. Our aim is to study the behaviour of both
agents (as consumers) and two competing companies in this game.
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To make the setting more realistic, we consider a repeated game in which agents
repeatedly revise their decisions. For this, we consider the noisy best-response, logit-
response, dynamics for the evolution of the market. In this setting, agents revise their
strategies asynchronously. Each agent plays its best-response strategy with some prob-
ability close to1; hence, allowing a slight probability of making mistakes. This may
happens in reality when agents’ information about the environment are incomplete,
when they may make mistakes in their computations, or when agents are not fully ra-
tional. The noisy best-response dynamics have been suggested as a method for refining
Nash equilibria in games [6, 7, 8, 9, 10].

1.1. Our Results
We consider two separate games in our model. The first one is between agents

(buyers) who choose between the two products and the second one is between the two
companies that announce their prices and sell their products. For the first game, we
show that with the logit-response dynamic, the market always converges to an equilib-
rium point. We show in Section 3 that the game will be afull potential gameand its
equilibrium point is the global maximum of some potential function. We also prove that
agents within the same community buy the same product in the equilibrium. Using this
observation, we propose, in Section 5.1, a polynomial-timealgorithm for computing
the unique equilibrium.

As for the game between the two companies, we study the behaviour of the two
companies and obtain several results. We show, in Section 4,that the game has either
no pure Nash equilibrium or has a unique one. Furthermore, the best-response dynamic
between companies converges to this unique equilibrium. Wealso prove the existence
of such equilibrium for some graph classes such as preferential attachment graphs and
regular graphs. We finally present, in Section 5.2, a polynomial-time algorithm for
computing the best response strategy for the companies.

1.2. Related Work
In the traditional game theory, we make strong assumptions about knowledge of

individuals and consider them fully aware of others. Evolutionary dynamics, on the
other hand, are introduced for relaxing these assumptions.Several works (e.g., [6, 7, 8,
9, 10]) have extensively studied these dynamics and pointedout that introducing per-
turbations to deterministic processes would create distinctive differences in behaviour
of dynamics. In a seminal work, Kandori et al. [7] investigate evolutionary noisy best-
response dynamics and prove that the dynamics converges to an equilibrium in which
all agents adopt the same strategy. This strategy is the one which would be chosen by
an agent who has no information about his neighbours or, his neighbours would play
completely random. This strategy is namedrisk dominantby Harsanyi and Selten [11].

Blum [8] investigates statistical aspects of various strategy revision protocols. He
considers local interaction among a large population of agents in which each agent
interacts directly with limited number of agents and interacts indirectly with others
through a path in network. He introduces logit-response dynamics and characterizes
stationary distribution of related Markov process.

Ellison [9] studied the effect of the underlying graph structure on the game; he
specifically discussed convergence time for certain graph classes. Following this work,
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Montanari et al. [10] studied the logit-response dynamics and made a general and pre-
cise connection between the convergence time and the structure of the graph. Our
model is inspired by these works with one major difference. Unlike the previous mod-
els in which each vertex in these models represents a single agent, vertices in our model
correspond to communities. This means that we are not dealing with individuals, rather
considering the behaviour of a large groups each containingseveral individual.

The problem of designing a pricing strategy for a company on asocial network
is extensively studied in literature (See, e.g., [1, 2, 3, 4]). All these works consider
a monopolistic situation in which one single company sells its product and tries to
maximize his profit by employing a clever strategy. Hartlineet al. [1] and Akhlaghpour
et al. [3] assume naive behaviour for consumers. In fact, they study the market with
consumers who act myopically and buy the product as soon as they can afford to buy
it. They don’t make any reasoning about future reaction of their neighbours and their
long-term utility. In [1], the seller uses an adaptive pricediscrimination strategy. In
their model, the monopolist visits consumers in some order and offers private prices to
each of them; each consumer may accept or reject the offer based on the reactions of
her other friends. Akhlaghpour et al. [3] consider a market where the seller iteratively
posts a price for the product at several time steps. The priceis visible to all buyers
at each time step and a buyer may buy the product at a time or wait for a later time.
The utility of each buyer depends on the price and the set of her neighbours who have
bought the product before her.

In order to consider more intelligent agents, Ahamdipour etal. [2] and Bimpikis et
al. [4] model the market as a game. Ahamdipour et al. [2] consider a situation in which
different prices are publicly announced over the time. Thenthe agents choose the time
in which they want to buy the product. In these models, agents–who are supposed to be
fully rational–strategically choose their best strategy based on full information regard-
ing all future states of the market. They study agents’ reactions in Nash equilibrium
situation. Bimpikis et al. [4] studied a two stage pricing problem. In this problem the
seller first offers the prices for a divisible good and then, the agents simultaneously de-
cide about the amount of purchase. In these studies, agents assumed to be fully rational
and do not make mistakes. It seems that the correct model of agents’ behaviour prob-
ably lies somewhere between these two extremes of myopic agents and fully rational
agents.

2. Our Model

In our model, we study a society that consists of several large mutually influencing
communities1. Let n be the number of communities andmi be the mass of people
in the ith community. For a subsetT of communities, letmT =

∑

i∈T mi be the
mass of people inT . Letm =

∑

im
i be the total mass of the society. We model the

interaction between different communities by an undirected graphG = (V,E) whose
nodes correspond to communities and an edge{i, j} represents an interaction between
communitiesi andj. We call this graph themarket graph. We also allow loops, i.e.

1We may use the terms community and population interchangeably.
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Figure 1: The payoff matrixU

edge{i, i}, in G to emphasize that agents in a same community influence each others
as well. LetN(i) be the set of neighbours of communityi including itself. For two
subsetsX andY of communities we defineδ(X,Y ) =

∑

i∈X

∑

j∈Y,(i,j)∈E mimj

which represents the amount of interaction between the communities inX andY . Note
thatX andY may have non-empty intersection. We will also useδ(X) for δ(X,X)
for simplicity.

Assume there are two productsA andB offered by two competing companies with
pricespA andpB, respectively. Each agent chooses eitherA orB; so, its strategy space
is the setS = {A,B}. Letxi

s, wheres ∈ S, be the fraction of people in the community
i that buy products. Thus,xi

A + xi
B = mi andx = (xi

s) is a vector of2× n elements
representing the strategy profile of the game. We definems(x) =

∑

i x
i
s to be the

mass of population who use products ∈ S. LetDi
s(x) =

∑

j∈N(i) x
j
s be the mass of

neighbors of communityi that use products, for s ∈ S. Also, for everys ∈ S, define
Ds(x) =

∑

i∈V xi
sD

i
s(x). The utility of every person is obtained by aggregating its

utility against every single agent that he interacts with. LetU (illustrated in Fig. 1) be
the payoff matrix for two players. Then, the utility of a person in communityi that
playss in a game with strategy profilex would be

F i
s(x) = U(s, A)Di

A(x) +U(s,B)Di
B(x) − ps (1)

We assume in our model thatU is symmetric, i.e.c = d and the game defined by
matrixU is a coordination game, i.e. the players obtain a higher payoff by adopting
same strategy. In other words, we havea > d andb > c. Without loss of generality
and throughout the paper, leta > b. Also, for the rest of this paper, we assume that
c = d = 0; we will prove, in Theorem 1, that this assumption does not hurt the
generality of our results.

Our game is in category ofpopulation gameswhich provide a general framework
for studying the strategic interactions in which society consists of several populations.
The behaviour of agents in each population are the same. In these games, the num-
ber of agents is large, impact of each individual agent is small, and agents interact
anonymously, i.e., each agent’s payoff depends solely on the distribution of opponents’
choices. For more details on population games see [5].

2.1. Market Dynamics

As mentioned before, two competing companies are offering productsA andB
with pricespA andpB respectively. In a normal situation, agents update their strategies
by looking at their neighbours and buy a product that maximizes their benefit. In our
model, we considernoisy best-response dynamicsin which agents adopt their best
response at each iteration with probability close to one. Therefore, there is a slight
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possibility of making mistakes by agents. More specifically, we studylogit dynamics.
For specific treatment of these dynamics in the context of evolutionary game theory,
one can refer to [5].

In our model, the noisy best response dynamics is specified bya parameterβ ∈ R+

representing how noisy the system is. In fact,β = ∞ represents the noise-free or best-
response dynamics, andβ = 0 represents the full noisy dynamics in which agents play
with no preference. We assume that each agent in a community revises its strategy by
arrival of Poisson clock of rate 1. We consider logit-response as revision protocol. So,
the probability that an agent in communityi takes actions is:

Pi,β(s|x) =
eβF

i
s(x)

∑

s′∈S eβF
i
s′
(x)

(2)

This defines a reversible Markov chain with vectorsx as its states. As we see later,
this game is afull potential game, with some potential functionf . So, the stationary
distribution of the Markov chain is

µ(x) ∝ eβf(x) (3)

It is immediate that asβ → ∞ the dynamic spends most of its time on the global
maximum off . We name the global maximum off thestationary stateof the market.

We can now prove that assumingc = d = 0 does not make any difference in our
results.

Theorem 1. Supposew ≤ min(a, b, c, d). Agents’ decisions in game defined on ma-
trix U is equivalent to agents’ decisions in game with matrixU − w, in whichU− w
is computed by subtractingw from all the entries ofU.
Proof : By equation (1), an agent’s payoff in communityi for strategys using the
payoff matrixU− w is

F̂ i
s(x) = (U(s, A) − w)Di

A(x) + (U(s,B) − w)Di
B(x)− ps

= F i
s(x)− w(Di

A(x) +Di
B(x))

It is obvious that bothF andF̂ result in identical behaviour i.e. give the same proba-
bility Pi,β(s|x) in (2). 2

Given pA andpB, we represent the stationary state of the market byx(pA, pB)
meaning that the game will eventually converge to the strategy profilex(pA, pB). We
will later see thatx(pA, pB) depends solely on the difference ofpA andpB; i. e., if
pA − pB = p′A − p′B thenx(pA, pB) = x(p′A, p

′
B). We say that profile(pA, pB) falls

in the regionRy
A = Rm−y

B , if mA(x(pA, pB)) = y andmB((pA, pB)) = m− y; i.e.,
the massy of the society is using technologyA at the stationary statex(pA, pB). It
is easy to see that increasingpA decreasesy (as depicted in Fig. 2) and sincea > b,
x(0, 0) ∈ Rm

A .

2.2. Market Pricing Game

Our model introduces a game/competition between the two companiesA andB.
If x(pA, pB) ∈ Ry

A = Rm−y
B then the utility (profit) of companiesA andB are
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Rk
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Rj
A
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A

Figure 2: A game with four regionsR0

A
, Rj

A
, Rk

A
, andRm

A
, where0 < j < k < m.

UA(pA, pB) = ypA andUB(pA, pB) = (m − y)pB, respectively. The best response
for the companyA is the pricep which maximizeUA(p, pB); i. e., brA(pB) =
argmaxpUA(p, pB). Similarly,brB(pA) = argmaxpUB(pA, p).

In theMarket Pricing Game, we study the game between the two companies and
its properties such as its best response behaviour and existence of equilibria. We also
consider the convergence of the best response dynamics of the game.

3. Market Behaviour

In this section we analyse the behaviour of communities whenthe two companies
set prices topA andpB. This will later help us study the market pricing game. First,
we show that our game is afully potential game, as defined in [12], and has various
nice properties. So, the maximizer of potential function will characterize the market
stationary state whenβ → ∞. We then use this property to find the market stationary
state. We show that the stationary state is very simple whenpA ≤ pB. In this case, in
the stationary state all agents playing strategyA. But the problem is not trivial when
pA > pB. In this case, we design a polynomial time algorithm that characterizes the
stationary state of the market.

3.1. Full Potential Games

Our main result of this section is that our game is a fully potential game. We use
the following definition fro [12]. For more details and useful intuitions, refer to the
main article.

Definition 1. LetF : Rn
+ → R

n represent a population game. We callF a full poten-
tial game if there exist a continuously differentiable functionf : Rn

+ → R satisfying

∇f(x) = F (x), ∀x ∈ R
n
+ (4)
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In potential games we can capture all information about agents incentives in a scalar
valued function, calledpotential function. Existence of such function provides us with
many nice properties and enable us to derive various resultsabout our model. In our
model, the functionF takes a vectorx of 2n values (xi

s’s) and output the utilities, i.e.,
the vector ofF i

s ’s. We prove that our game is full potential by simply finding an f that
satisfies equation (4).

Theorem 2. The functionf defined below is the potential function for the gameF
defined on graphG = (V,E) with payoff matrixU:

f(x) =
1

2
(aDA(x) + bDB(x)) − pAmA(x)− pBmB(x) (5)

Proof : We have

f(x) =
1

2





∑

i∈V

∑

j∈N(i)

axi
Ax

j
A +

∑

i∈V

∑

j∈N(i)

bxi
Bx

j
B





− pA
∑

i∈V

xi
A − pB

∑

i∈V

xi
B

Note that, as mentioned before,N(i) includesi itself. The partial derivative off with
respect to arbitraryxi

A is

∂f(x)

∂xi
A

=
1

2



2
∑

j∈N(i)

axj
A



− pA = aDi
A(x)− pA = F i

A(x)

Comparing with (1) the proof is complete. 2

3.2. Market Stationary State
In this section we study the stationary state of the market. First we provide a lemma

that relates global maximum of potential function to the stationary state of the market.
Then we characterize the global maximum of potential function f for the case that
pA ≤ pB. Finally, We will study the casepA > pB which is more complicated.

As stated before, we consider noisy best response dynamics.So, strategies are
updated with respect to probability in (2). In this case, potential games have a nice
property described in the following lemma. It is worth mentioning that this lemma is
a succinct result of a more detailed description in [5], where the number of agents in
each population is infinite.

Lemma 3. LetF be a potential game with potential functionf . Then invariant distri-
bution of Markov chain defined on logit-response dynamics isµ(x) ∝ eβf(x).

Whenβ → ∞ the dynamic converges to the global maximum off . Speaking more
precisely, the dynamic spends most of its time around the global maximum off . So,
finding the global maximum off , market stationary state, is important to estimate the
outcome of the game.

First, we show in Proposition 4 that the stationary state is the state of all agents
playing strategyA, whenpA ≤ pB.
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Proposition 4. The logit-response dynamic will converge to the state of allagents
playing strategyA, if pA ≤ pB andβ → ∞.
Proof : Let y be the state of all agents playing strategyA andx be any other state. By
equation (5), we can rewritef(y) as:

f(y) =
1

2
aDA(y)− pAmA(y) =

1

2
a
∑

i∈V

∑

j∈N(i)

mimj − pAm

We boundf(x) as follows:

f(x) =
1

2
(aDA(x) + bDB(x)) − pAmA(x) − pBmB(x)

≤
1

2
(aDA(x) + aDB(x)) − pAmA(x)− pAmB(x)

=
1

2
a
∑

i∈V

∑

j∈N(i)

(xi
Ax

j
A + xi

Bx
j
B)− pAm

Now by knowing thatxi
Ax

j
A + xi

Bx
j
B ≤ (xi

A + xi
B)(x

j
A + xj

B) = mimj , we can
concludef(x) ≤ f(y). So, the maximum off happens aty and, therefore, the dynamic
converges to the state of all agents playingA by Lemma 3. 2

Computing the stationary state is more complicated whenpA > pB. In order to
solve the problem in this case, we observe, in Lemma 5, that inthe long run each
community will behomogeneous, i.e. all people within same community buy same
product. This fact helps us to predict the stationary state of the market in polynomial
time in Theorem 6. The idea is to build a weighted graph whose minimum cut char-
acterizes the stationary state. The proofs are omitted hereand appear separately in
Section 5.1

Lemma 5. In the logit-response dynamic each community will be homogeneous in the
long run, whenβ → ∞.

Theorem 6. We can predict the stationary state of the market in polynomial time in
the logit response dynamic, whenβ → ∞.

4. Market Pricing Game

In this section we study the game between the two competing companies. First,
using the results of previous section, we resolve the best-response price for each com-
pany. We show that the game has either no pure Nash equilibrium or has a unique one
in which pB = 0. Then we consider the best-response dynamic and prove that if the
game has a pure Nash equilibrium then the best-response dynamics will converge to it.

It is important to point out here, for the market pricing game, we can compute
each player’s best response in reasonable amount of time. InSection 5.2 we have
introduced a polynomial time algorithm in number of communities, in which each
company knowing its opponent’s price, can compute the most profitable response.
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It is worth mentioning that, in this setting, we can model monopolistic societies by
just settingb and the price of productB to zero. So it is just one company in the market
who should decide the best price for its product.

Given the results of previous sections, the game between thecompanies could be
simplified as follows. Two companies announce two pricespA andpB. The maximum
of f is computed. As stated in Lemma 5, every community would be homogeneous
in the long run. LetSA be the set of communities who buyA andSB = V − SA

be those who buyB. The utilities of the two communities arepAmSA andpBmSB ,
respectively.

4.1. Pure Nash Equilibrium

We now study equilibrium aspects of pricing game. In homogeneous state of the
market, we can writef as follows.

f(x) =
1

2
(aδ(SA) + bδ(SB))− pAm

SA − pBm
SB

= fδ − fv − C

wherefδ = 1
2 (aδ(SA) + bδ(SB)), fv = (pA − pB)m

SA andC = pBm. SinceC
is a constant independent ofSA, maximizingf is equivalent to maximizingfδ − fv.
Note thatfδ is independent ofpA andpB, and solely depends on the structure of the
graph. Letfy

δ = maxmSA=y fδ. Assumefy
δ = 0, if there is no setSA with mSA = y.

Therefore, whenpA and pB is fixed, maximizingf is equivalent to findingy that
maximizesfy

δ − yα, in whichα = pA − pB.
Let (pA, pB) be a strategy profile of the pricing game. Whenα = 0 then by

Proposition 4 all communities adoptA and, hence,SA = m. As α increases, less
communities buyA. Letαni

be the very first point that whenα = αni
then the mass

of communities that buyA changes to some new valueni. Let the set of threshold
points beαn1

< αn2
< · · · < αnk

. For convenience we addαn0
= 0. It is clear that

m = n0 > n1 > · · · > nk = 0. So, whenpA − pB ∈ [αnj
, αnj+1

) thenmSA = nj

and the utility of companyA is nipA. See Fig. 3 for illustration.

Lemma 7. If (pA, pB) be a Nash equilibrium then,α is slightly less thanαn1
and

pB = 0.
Proof : If αnj−1 < α < αnj

for somej ≥ 1 thenB increases his price untilα = αnj

(See Fig. 3). This increasesB’s payoff as it will not affect the communities that buyB.
If α = αnj

for some1 ≤ j < nk thenA increases his price until it is slightly less than
αnj+1

. This increasesA’s payoff as it will not affect the communities that buyB. If
α = αnk

, i.e. no one buysA, thenA can decrease his price until at least one community
buysA and brings more utility toA. So, we must haveα < αn1

. If the strategy domain
of companies is continuous then we don’t have any Nash equilibrium as companyA
wants to makeα as close toαn1

as possible which gives no Nash equilibrium. But, if
we discretized the strategy domain then the only possibleα is the largest value (in the
discrete domain) less thanαn1

. Let this value beα−
n1

. We argue thatpB = 0 as if not
B can decrease its price to0 and the newα would be at leastαn1

which means some
communities buyB andB gets more utility. 2
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pA

pB

αn1
αnj

αnj+1
αnk

Figure 3: The action of companyA (B) has been shown by green(red) line.

So, the only possible Nash equilibrium is(α−
n1
, 0). At this point,B is obviously

playing best response as he does not get any utility no matterhow he plays. However,
A necessarily is not playing best response as he may gain more profit by increasing his
price.

Theorem 8. If the strategy domain of companies is continuous then we have no Nash
equilibrium. Otherwise,(α−

n1
, 0) is the unique Nash equilibrium if and only ifα−

n1
∈

brA(0).

4.2. Market equilibrium on special graphs

In this section we show that pure Nash equilibrium exists forsome special graphs
such as regular and preferential attachment graphs.

We first obtain the following sufficient condition for havinga Nash equilibrium and
then prove it for the above class of graphs. Recall thatfy

δ = maxmSA=y fδ.

Lemma 9. If mfy
δ < yfm

δ + (m− y)f0
δ for everyy < m, thenbrA(0) = α−

1 and the
market has a unique equilibrium
Proof : We prove that under the above conditions there is only one single threshold
point, i.e., asα increases the situation changes fromall playing Ato all playing B. Let
α be a point at which|SA| = y in the maximum off . At this point we havefy

δ − yα ≥

f0
δ − 0×α = f0

δ andfy
δ − yα ≥ fm

δ −mα. So, we havef
m
δ −f

y

δ

m−y
≤ α ≤

f
y

δ
−f0

δ

y
which

meansmfy
δ ≥ yfm

δ + (m − y)f0
δ ; this contradicts the lemma condition. Therefore,

either all or no communities buyA. Obviously,A’s best response at this situation is to
playα−

1 . So we have a unique Nash equilibrium by Theorem 8. 2

We conclude this section by showing that several real world market graphs satisfy
the condition of Lemma 9 and have pure Nash equilibrium. For the theorem below
we consideruniform markets, in which we assume the that all populations masses are
similar i.e. we have a uniform distribution of agents among populations. In fact, we
assume there aren communities in the market withmi = 1. So the total mass of

10



society ism = n. This game is important when we want to focus on the structureof
the market graph.

Theorem 10. For the uniform markets, if market graph is a regular or preferential
attachment then it has a Nash equilibrium.
Proof : It suffices to prove the condition of Lemma 9.

Regular graph: Assume we have a regular graph of degreed with e = nd/2 =
md/2 edges. Note thatfm

δ = ae, f0
δ = be andfy

δ < (ady + bd(m − y)/2. So
mfy

δ < md/2(ay + b(m− y)) = e(ay + b(m− y)) = yfm
δ + (m− y)f0

δ

Preferential Attachment Graphs: Assume we have a preferential attachment
graph with parameterd with e = nd = md edges. In this model each new node
creates exactlyd edges to the previous nodes. Note thatfm

δ = amd andf0
δ = bmd.

On the other hands, consider an induced sub-graphG′ with y vertices. NoteG′ is con-
nected to theG−G′ with at least one edge. So,G′ has less thanyd edges. Therefore
fy
δ < ayd+ b(m− y)d, which impliesmfy

δ < yfm
δ + (m− y)f0

δ .
2

5. Algorithmic Aspects

In this section we propose polynomial time algorithms for two problems. First, we
consider the problem of computing the stationary state in Section 5.1. The main result
is the proof of Lemma 5 and Theorem 6 that we have stated in Section 3. Second, we
propose a polynomial time algorithm for computing best response for companies in the
market pricing game in Section 5.2.

5.1. Computing the Stationary State

Let pA andpB be fixed. As we know from Lemma 3, the market converges to the
maximum of the potential functionf . Note that, we have shown in Proposition 4 that in
the stationary state, all agents will play strategyA, whenpA ≤ pB. So, we focus on the
casepA > pB and propose a polynomial-time algorithm to compute such a maximum.
Our solution is based on an algorithm for theMaximum Weighted Set Problem. This
problem has been defined below.

Definition 2. Maximum Weighted Set Problem (MWSP):we are given a directed
grpahG = (V,E) with (possibly negative) weightsIi on vertices, and non-negative
weightswij on edges. The aim is to find a subsetS ⊆ V so as to maximize

WS =
∑

i∈S

Ii +
∑

(i,j)∈E
i,j∈S

wij (6)

Lemma 11. The MWSP can be solved in polynomial time.
Proof : The idea is to build a weighted graph whose minimum cut is the solution
to the MWSP. For every nodei, let hi = Ii +

∑

j∈N(i) wij . We build a graphG′

out of G as follows. Add two new nodess andt. For everyi with hi < 0 add an
edge with weight−hi from i to t. For every vertexi with hi ≥ 0 add an edge from

11



s to i of weight hi. The value of the out-cut from any setS which containss is:
∂+(S) =

∑

hi>0
i∈T

hi +
∑

hi<0
i∈S

−hi +
∑

(i,j)∈E
i∈S,j∈T

wij , whereT = V (G′) − S. Let

W =
∑

hi>0 hi =
∑

hi>0
i∈S

hi +
∑

hi>0
i∈T

hi. We can rewriteW − ∂+(S) as:

W − ∂+(S) =
∑

hi>0
i∈S

hi +
∑

hi<0
i∈S

hi −
∑

(i,j)∈E
i∈S,j∈T

wij

=
∑

i∈S

hi −
∑

(i,j)∈E
i∈S,j∈T

wij

=
∑

i∈S

(Ii +
∑

j∈N(i)

wij)−
∑

(i,j)∈E
i∈S,j∈T

wij

=
∑

i∈S

Ii +
∑

(i,j)∈E
i,j∈S

wij

SinceW is a constant independent ofS, we conclude that maximizing
∑

i∈S Ii +
∑

(i,j)∈E
i∈S,j∈T

wij is equivalent to minimizing∂+(S) which could be done in polynomial

time. 2

Lemma 5 helps us to find a connection between MWSP and computing the station-
ary state. So, we first prove this lemma. Then, we use the algorithm for the MWSP and
compute the stationary state of the market and prove Theorem6.

Proof of Lemma 5: Fix communityi. As we saw in the proof of Lemma 3,
whenβ → ∞, the dynamic converges to the global maximum off . The part off that
depends on populationi (i.e. involvesxi

A andxi
B) is:

g(xi
A) =

1

2

(

axi
Ax

i
A + bxi

Bx
i
B

)

+ xi
A

∑

j∈N(i)
i6=j

axj
A + xi

B

∑

j∈N(i)
i6=j

bxj
B

−pAx
i
A − pBx

i
B

Sincexi
B = mi − xi

A, g(xi
A) will be quadratic inxi

A and the coefficient ofxi
A

2
is

C = 1
2 (a + b) > 0. Therefore,g(xi

A) takes its maximum on extreme points, i.e.
xi
A = 0 or xi

A = mi. Sincexi’s are independent, the maximum off happens when for
everyi, xi

A = 0 or xi
A = mi. 2

Proof of Theorem 6: We know from Lemma 5 that each population is homoge-
neous, so it is suffices to find each population’s strategy. Wereduce this problem to the
MWSP as follows. As proven before, the dynamic of the game converges to the global
maximum of the potential functionf . Let SA andSB be the set of communities inG
that playA andB, respectively. We can write potential function (5) for thisstate of the
game as below:

f =
1

2
(aδ(SA) + bδ(SB))− pAm

SA − pBm
SB (7)
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By replacingmSB bym−mSA andδ(SB) by δ(V )−δ(SB, SA)−δ(SA, SB)−δ(SA)
we have:

f =
1

2
(aδ(SA) + bδ(V )− bδ(SB, SA)− bδ(SA, SB)− bδ(SA))

−pAm
SA +mSB − pBm

By omitting constant terms that do not affect the maximization, the problem reduces to
the following:

max
SA

f =
1

2
((a−b)δ(SA)−bδ(SA, V −SA)−bδ(V −SA, SA))+(pB−pA)m

SA (8)

We show that the above value is the solution to the MWSP on somegraphsGW

that is constructed fromG as follows. The vertex set ofGW is that ofG. The weight
Ii of every vertexi is (pB − pA)m

i − bmi
∑

j∈N(i) m
j andwij , for every edge(i, j)

is 1
2 (a+ b)mimj .
For every setS ⊆ V we have

WS =
∑

i∈S



(pB − pA)m
i − bmi

∑

j∈N(i)

mj



+
∑

(i,j)∈E
i,j∈S

(

1

2
(a+ b)mimj

)

= (pB − pA)m
S − bδ(S, V ) +

1

2
(a+ b)δ(S)

=
1

2
((a− b)δ(S)− bδ(S, V − S)− bδ(V − S, S)) + (pB − pA)m

S

It is clear that finding a maximum weighted set inGW is equivalent to finding a set
SA that maximizes (8) and, hence, maximizes the potential function f . 2

5.2. Best-response Pricing

An interesting and important question that we can resolve isthe best response strat-
egy of companies in the market pricing game. Given the price of companyB, pB, what
pricepA should the companyA set so as to benefit most?

Let us fixpB. We first obtain lower and upper bounds for the best response of A and
then compute it by using binary search. We know from Proposition 4 that ifpA ≤ pB
then all populations will playA. So the minimum ofpA is obviouslypB. Also the
maximum ofpA is the point where no one playA. The following lemma characterizes
this point.

Lemma 12. Global maximum of potential functionf is the state of all agents playing
strategyB, if for all i ∈ V we havepA > pB+ 1

2 (a−b)
∑

j∈N(i) m
j . So the maximum

of pA is at mostpmax
A = pB +maxi(

1
2 (a− b)

∑

j∈N(i) m
j).
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Proof : Let y be the state of all agents playing strategyB, andx be an arbitrary state.
We have:

f(x) =
1

2
(aDA(x) + bDB(x)) − pAmA(x) − pBmB(x)

≤
1

2
(aDA(x) + bDB(x)) − pBm−

1

2
a
∑

i∈V

∑

i∈N(i)

xi
Am

j +
1

2
b
∑

i∈V

∑

i∈N(i)

xi
Am

j

=
1

2
a
∑

i∈V

∑

j∈N(i)

(xi
Ax

j
A − xi

Am
j) +

1

2
b
∑

i∈V

∑

j∈N(i)

(xi
Bx

j
B + xi

Am
j)− pBm

≤
1

2
b
∑

i∈V

∑

j∈N(i)

mimj − pBm = f(y)

2

It is clear that the total mass of communities that playA decreases aspA increases.
Also, we know from Lemma 5 that each community is homogeneous. So there are
certain points at which if we increasepA a little more, at least one population will
change its strategy. We call these points asthreshold points. The following lemma
proves that by increasingpA no population will change its strategy fromB toA.

Lemma 13. Let SA andS′
A be the set of communities that playA in the stationary

state of the market when the price of companyB is pB and the price of companyA is
pA andp′A > pA, respectively. ThenS′

A ⊆ SA.
Proof : AssumeS′

A 6⊆ SA. Note that the set of communitiesSA play A in the the
stationary state of the market with pricespA andpB. Using proof arguments of The-
orem 6, we can conclude thatSA is the maximum weighted set of graphGW with
Ii = (pB − pA)m

i − bmi
∑

j∈N(i) m
j andwij = 1

2 (a + b)mimj . So the weight of
setSA is greater than or equal to the weight of setSA ∪ S′

A, which means:

∑

i∈SA

Ii +
∑

(i,j)∈E
i,j∈SA

wij ≥
∑

i∈SA∪S′

A

Ii +
∑

(i,j)∈E

i,j∈SA∪S′

A

wij

⇒ 0 ≥
∑

i∈S′

A−SA

Ii +
∑

(i,j)∈E

i∈S′

A−SA,j∈SA∪S′

A

wij (9)

Similarly, we can show thatS′
A is the maximum weighted set of graphGW ′ with

I ′i = Ii− (p′A−pA)m
i andw′

ij = wij . So the weight of setS′
A is greater than or equal

to the weight of setSA ∩ S′
A, which means:

∑

i∈SA∩S′

A

I ′i +
∑

(i,j)∈E

i,j∈SA∩S′

A

w′
ij ≤

∑

i∈S′

A

I ′i +
∑

(i,j)∈E

i,j∈S′

A

w′
ij

⇒ 0 ≤
∑

i∈S′

A−SA

I ′i +
∑

(i,j)∈E

i∈S′

A−SA,j∈S′

A

w′
ij (10)
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Becausep′A > pA, we haveI ′i < Ii, for every q ≤ i ≤ n. On the other
hands, we assumedS′

A 6⊆ SA, which means|S′
A − SA| > 0. So

∑

i∈S′

A−SA
I ′i <

∑

i∈S′

A−SA
Ii. Now using inequalities (9, 10) and the factw′

ij = wij , we conclude
∑

(i,j)∈E

i∈S′

A−SA,j∈SA−S′

A

wij is less than zero. This is a contradiction because we know

wij ≥ 0, for every0 ≤ i, j ≤ n. 2

So, one can fixy, as the total mass of populations who buyA and compute the
maximum possible value ofpA for which at least mass ofy people buyA. The latter
could be done by a simple binary search algorithm. This givesa profit of at leastypA.
Finally, we find this maximum over all values ofy and take the maximum.

Note that for each pricing Theorem 6 finds each population’s strategy in polynomial
time. So if we acceptǫ deviation, we can find each threshold point inO(n3 log

(pmax
A −pB)

ǫ
)

time. In whichO(n3) is for finding minimum-cut, in order to find each population’s
strategy, as described in proof of Theorem 6. As mentioned above we should take the
maximum over all threshold points. Using Lemma 13, we can conclude that number
of these points at most would be equal to number of communities. Hence, we have the
following theorem.

Theorem 14. In the market pricing game each company, knowing its opponent product
price, can determine the best price in polynomial time in number of communities.

6. Conclusion

We considered a network of communities through which two sellers compete on
selling a similar product. We analyzed both games (between communities and between
sellers) and obtained several results regarding the equilibria of the game, the conver-
gence problem in the dynamic market and their efficient computation.

One important research direction is to study convergence rates in the above settings:
how long does it take to get to or close to the convergence point? Are there some
general graph classes for which there exist rapid convergence?

Another interesting problem is to consider more than two sellers. This seems like
a challenging but very interesting question. Also, a similar problem is to different
treatments of communities. For example, a seller be able to offer different prices to
different communities.
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