
J Comb Optim manuscript No.
(will be inserted by the editor)

Euclidean Movement Minimization

Nima Anari · MohammadAmin Fazli ·
Mohammad Ghodsi · MohammadAli
Safari

Abstract We consider a class of optimization problems called movement min-
imization on euclidean plane. Given a set of m nodes on the plane, the aim is to
achieve some specific property by minimum movement of the nodes. We con-
sider two specific properties, namely the connectivity (Con) and realization of
a given topology (Topol). By minimum movement, we mean either the sum
of all movements (Sum) or the maximum movement (Max). We obtain several
approximation algorithms and some hardness results for these four problems.
We obtain an O(m)-factor approximation for ConMax and ConSum and ex-
tend some known result on graphical grounds and obtain inapproximability
results on the geometrical grounds. For the Topol problems (where the final
decoration of the nodes must correspond to a given configuration), we find it
much simpler and provide FPTAS for both Max and Sum versions.

1 Introduction

Consider a number of moveable robots distributed over a plane in a far-flung
manner. Each robot has an antenna with a limited maximum range, denoted
by rmax. Robot s can communicate directly with robot t if and only if their
distance is less than rmax. Robot s can also communicate indirectly with t

Nima Anari
Computer Science Division, University of California Berkeley E-mail: anari@berkeley.edu

MohammadAmin Fazli
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
E-mail: fazli@ce.sharif.edu

Mohammad Ghodsi
Department of Computer Engineering. Sharif University of Technology, Tehran, Iran
Institute of Research in Fundamental Sciences (IPM), Tehran, Iran
E-mail: ghodsi@sharif.edu

MohammadAli Safari
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
E-mail: msafari@sharif.edu

2 Nima Anari et al.

if there is an ordered set of robots s = r1, r2, · · · , rp = t so that each ri
can directly communicate with ri+1. With this explanation, we can form a
dynamic graph whose vertices are the moveable robots on the plane and edges
are formed by connecting each robot to every other robot residing in the disk
with radius rmax around it. These geometric graphs are called UDGs (Unit
Disk Graphs).

Definition 1 Given some points p1, ..., pm in the euclidean plane, the UDG
on these points is defined as a simple graph G = (V,E), where V = {1, ...,m}
and E = {{i, j} | |pi − pj |2 ≤ 1}

Suppose that robots are initially located at points p1, p2, · · · , pm. It is clear
that all robots can communicate directly or indirectly with each other if and
only if their corresponding UDG is connected. Our first aim is to have the
robots move in a way that they form a connected UDG after relocation (the
points p∗1, p

∗
2, · · · , p∗m). We also want to efficiently optimize the travel distance

of the robots before they reach their final locations. The term efficiently can be
defined in many ways. In this paper, we consider two of such measures: namely
Sum and Max. In Sum, the goal is to minimize the sum of the movements of
all robots, or formally to minimize SUM =

∑m
i=1 |p∗i − pi|2. This parameter

roughly measures the total energy consumed by the robots.
In Max, the goal is to minimize the maximum movement of all robots, i.e.

minimizing MAX = maxi∈{1,...,m} |p∗i − pi|2. This parameter measures the
amount of time needed to reach the final locations.

Using these two functions, we define two problems ConMax and ConSum
which have applications in Wireless Networks (See. Basagni et al. (2008b,a,
2009)).

Definition 2 In ConMax (resp. ConSum) we want to move the robots so
as to form a connected UDG and the optimization goal is Max (resp. Sum).

Each of these problems can be considered in both graphical or geometrical
settings.

Definition 3 In a graphical setting, robots move on a graph. At first, robots
are placed on some vertices of the graph and at each turn, each robot can move
to one of the adjacent vertices (each edge is considered to have one unit of
length). In geometrical settings, robots are points belonging to a geometrical
space (R2 in this paper) and are free to move in any direction in the space.

In the final part of this paper, we introduce a new kind of movement prob-
lems which is more constrained, in some sense, than the previously proposed
problems: TopolMax and TopolSum. In these problems, we want the move-
able robots to form a given topology. Different topologies with useful properties
such as cascading behavior (See e.g. Kleinberg (2007)), transitivity (See e.g.
Burda et al. (2004)), connectivity (See e.g.Philips et al. (1989)) and robustness
(See e.g. Callaway et al. (2000)) may be considered in this scenario in order
to empower the communication between the robots.

Euclidean Movement Minimization 3

Definition 4 In problems TopolMax and TopolSum, we are given m ini-
tial points p1, . . . , pm ∈ R2 and a set of edges E ⊆ {{i, j} | i, j ∈ {1, . . . ,m}}.
We are supposed to determine m points p∗1, . . . , p

∗
m ∈ R2 in such a way that

the UDG defined on p∗1, . . . , p
∗
m contain all of the edges in E. The objective

function we are trying to minimize can be either MAX or SUM which results
in two different problems we call TopolMax and TopolSum.

1.1 Other Works

Demaine et al. (2009a) first introduced movement problems in graphical set-
tings and extensively studied them. They defined 15 types of movement prob-
lems (borrowing from their terminology, from here on we use the words robot
and pebble interchangeably). They consider five properties: connectivity, di-
rected connectivity, path, independent set and matching and consider three
objective functions: maximum movements, total movement and number of peb-
bles that move. This results in the following 15 problems: ConMax, ConSum,
ConNum, DirConMax, DirConSum, DirConNum, PathMax, PathSum,
PathNum, IndMax, IndSum, IndNum, IndMax, IndSum, IndNum.

Most of their salient results were proven in the context of graphs. They
proposed an O

(√
m

OPT

)
-factor approximation algorithm for ConMax and

PathMaX(m is the number of pebbles) and proved Ω
(
n1−ε

)
inapproximabil-

ity result for ConSum and DirConMax (n is the number of vertices in the
ground graph) in graphical settings. They also gave an O (1)-approximation
for IndMax with an additive error of O (1) in geometrical settings.

Note that all the algorithms presented in Demaine et al. (2009a) are in
fact polynomial in n, the number of the nodes in the base graph, which makes
them inefficient when n � m which is a realistic assumption. Dealing with
this, given that the number of mobile agents is typically much smaller than
the complexity of the environment, in Demaine et al. (2009b) the authors
turned to fixed-parameter tractability. They characterized the boundary be-
tween tractable and intractable movement problems in a very general set up
and showed that many movement problems of interest have fixed parameter
tractable algorithms.

Later Berman et al. (2011) found a constant factor approximation for
PathMax and ConMax problems in graphical settings. They also introduced
a generalized version of PathMax and proposed and approximation algorithm
for it.

1.2 Our Results

Our results include algorithms for ConMax, ConSum, TopolMax, Topol-
Sum and an inapproximability result for ConMax.

4 Nima Anari et al.

In Section 2.1 we prove (2 −
√
2
2)-inapproximability for ConMax in geo-

metric settings which extends the hardness result of Demaine et al. (2009a)
about ConMax in graphical settings.

In Section 2.2 and 2.3, we give approximation algorithms for ConMax
and ConSum on geometrical grounds. We present O(m)-factor approximation
algorithm for both problems.

Finally, we consider TopolMax and TopolSum problems and prove that
there exist FPTAS for them.

Our results are stated in two dimensions, most of them can be easily ex-
tended to higher dimensions. In particular all of our approximation algorithms
work for higher dimensions too.

2 ConMax and ConSum

2.1 Hardness Results

In this section, first, we prove that ConMax is 2-approximable on UDGs
(graphical ground) only if P=NP. Then, with minor modifications, we prove
the inapproximability result about ConMax. Our main idea is a proof of
Demaine et al. (2009a) for hardness of ConMax problem in graphical settings,
but our case is more involved and needs many modifications.

For this, we reduce the hamiltonian cycle problem on 3-regular planar
graphs which is known to be NP-Hard (Garey et al. (1976)). Let us call this
problem 3PHP.

We first start with a useful way of embedding planar graphs:

Lemma 1 (Valiant (1981)). A planar graph G with maximum degree 4 can
be embedded in the plane using O(|V |) area in such a way that its vertices are
at integer coordinates and its edges are drawn so that they are made up of line
segments of the form x = i or y = j, for integers i and j.

There is also a polynomial time algorithm to compute such an embedding (Itai
et al. (1982)).

We are now ready to prove the NP-hardness of the ConMax problem on
UDG grounds.

Theorem 1 There is no polynomial algorithm for ConMax on UDG graph-
ical grounds with approximation factor less than 2 unless P = NP

Proof We prove this by reducing 3PHP. Assume that we have an instance of
3PHP problem; a 3-regular planar graph G in which we want to check for the
existence of a hamiltonian path between two specified vertices s and t. See
Fig. 1(a) for an example.

First, we use Lemma 1 to get an embedding of G with integer coordinated
vertices and horizontal or vertical edges (Fig. 1(b)). Then we put a vertex
on each integer point which resides on this embedding’s edges and name the
resulted graph H (Fig. 1(c)).

Euclidean Movement Minimization 5

s

t

s

t

s

t

(a) (b) (c) (d)

t

s

Fig. 1: Graph G and its transformation process.

We build an embedding H ′ of H by scaling up all H’s vertices’ coordinates
by 6.0 to make each edge six times longer. The length of every edge e = (u, v)
in H ′ is now a multiple of 6.0. We build another graph G′ from H ′ by taking
two following steps:

– We put new vertices on every integer-coordinated point between u and v.
So, the edge e = (u, v) inH ′ is replaced by a path P e = u = v0, v1, · · · , v6k−1, v6k =
v (notice that the distance between vi and vi+1 is exactly one). We color
vertices u = v0, v3, v6, ..., v3i, ..., v6k−3, v6k = v as black and the remaining
vertices as white. See the resulting graph G in Fig. 1(d) (in this figure we
have scaled up everything by 3 and not 6 for clarity and better understand-
ing).

– Since the degree of each vertex in the resulting UDG is at most 3, we
can attach a new leaf to each black vertex via a unit length vertical or
horizontal edge. We color these new leaves as gray.

Finally, we place one pebble on s and t and each gray vertex of G′. We
also place two pebbles on each black vertex of G′ except s and t. We show
that G has a hamiltonian path between s and t if and only if the answer of
ConMax on G′ is 1. If there is a hamiltonian path between s and t in G, we
can move the pebbles on each gray vertex to its neighboring vertex in V (G′)
and move pebbles on each black vertex to its neighboring vertices along the
path corresponding to G’s hamiltonian path that induce a connected subgraph
in G′. For the reverse side, we show that if G does not have a hamiltonian path
between s and t then the value of ConMax is at least 2.0.

We show that when G is not hamiltonian, then establishing connectivity in
G′ requires a pebble in a gray vertex to move to a white vertex which requires
a movement of 2.0.

Consider the optimal connectivity establishment in G′. This induces a con-
nected subgraph of G which is not a hamiltonian path and, therefore, has a
maximum degree at least 3. Let u be a vertex with degree 3. It has only 2

6 Nima Anari et al.

2 22

2

1

1
1

1 T �

u

v

Fig. 2: The 3-degree vertex in minimum maximum degree spanning tree viewed in G′.

pebbles. So, one of its neighboring white vertices, say v, can not be covered
by the pebbles on it. If we remove the edge between u and v, we would have
a subtree T ′ in which we need at least 2 moves to connect its pebbles to u’s
pebbles. This completes the proof. It is clear that nothing would be changed
in this proof if we replace general UDGs with their specific type grids because
we used only vertical/horizontal edges and integer coordinated vertices.

We can also use the above proof for the (2 −
√
2
2)-inapproximability of

ConMax on geometrical grounds.

Theorem 2 There is no polynomial algorithm for ConMax in geometrical

settings with an approximation factor of less than 2−
√
2
2 , unless P = NP

Proof The proof structure is almost identical to the proof of Theorem 1. In
Fig. 2, the distance between vertex u and vertex v is 3. In the proof of Theorem
2, we had to move pebbles only in integer units of length and the uv path was
not covered by the pebbles placed on u. So to connect T ′’s pebbles to u’s
pebbles, we had to move them 2 units and the approximation factor was at
least 2.

This is different on geometrical ground as u’s two pebbles can move to every
point of the plane without any limitation. So, there would be a movement of
them in which the minimum coverage of these pebbles over all 3 outgoing paths

of u is
√
2
2 (For example when they move in north-west and south-east direction

with 45 degree slope). So the maximum of minimum coverage over these 3

paths by u’s pebbles is at most
√
2
2 and again suppose that this minimum

coverage is being happened for uv path. This completes the proof because in

this situation the movement of T ′’s pebbles would be at least 3−1−
√
2
2 = 2−

√
2
2

and this leads to the approximation factor 2−
√
2
2 .

Euclidean Movement Minimization 7

2.2 O(m) approximation for ConMax

In this section, we propose an O(m) approximation algorithm for ConMax.
The proposed algorithm uses a simple geometrical transformation called ho-
mothety.

Definition 5 Given a positive real number α and a point o ∈ R2, the α-
homothety with respect to o is defined as the mapping Hα

o : R2 → R2 where

Hα
o (x) = o+ α(x− o)

The following two lemmas will help us in the explanation and analysis of
the algorithm.

Lemma 2 An α-homothety multiplies all lengths by α. In other words |Hα
o (x)−

Hα
o (y)|2 = α|x− y|2.

Lemma 3 An α-homothety with respect to the center o, displaces the point x
by at most |1− α| · |x− o|2.

Algorithm 1 O (m)-approximation algorithm for ConMax

1: Compute the values eij = max(0, (|pi − pj | − 1)2/2) for all i, j ∈ {1, . . . ,m}.
2: Put the pairs (i, j) in a non-decreasing order according to the values eij .
3: Let the ordered pairs be (i1, j1), . . . , (ik, jk).
4: G← ({1, . . . ,m}, ∅) (the empty graph on 1, . . . ,m).
5: for l← 1 to k do
6: G← G ∪ (il, jl)
7: if G is connected then
8: α← 1

1+2eij

9: For each 1 ≤ r ≤ m Move the robot r to p∗r = Hα
p1

(pr).
10: return
11: end if
12: end for

For a pair of pebbles (i, j), define the excess of the edge (i, j) as the value
eij = max(0, (|pi− pj |2− 1)/2). Clearly for pebbles i and j to become directly
connected, one of them must at least travel a distance of no less than eij . This
simple observation leads to Algorithm 1.

Now let’s prove that Algorithm 1 works and obtains aO (m)-approximation
of the optimum solution.

Theorem 3 There is an O (m)-factor approximation algorithm for ConMax
on geometrical grounds.

Proof Algorithm 1 starts with an empty graph on vertices {1, . . . ,m} and
iteratively adds edges to this graph. In each step the edge with the smallest
excess which hasn’t been covered yet, is added to the graph.

8 Nima Anari et al.

The algorithm stops as soon as the graph becomes connected. Then a
proper homothety is found and it is applied to the robots’ initial locations to
obtain their final locations. The homothety is centered on one of the initial
robot locations and has a coefficient just small enough to shrink the lengths
of the edges covered by the algorithm to one.

Since after the application of the homothety, all edges covered by the algo-
rithm become edges of the UDG, the resulting UDG is connected and hence
a valid solution to the problem.

Let (i, j) be the last edge added by the algorithm. Clearly using edges
with excess smaller than eij , we can not form a connected graph, because
the algorithm didn’t stop until it reached (i, j). So the optimum solution has
at least one edge with excess greater than or equal to eij , which proves that
OPT ≥ eij .

Let pl be an arbitrary robot. There is a path of at most m − 1 edges,
each having an excess of at most eij , connecting pl and p1. So |pl − p1|2 ≤
(m− 1)(1 + 2eij). Using lemma 3, we have

|p∗l − pl|2 ≤ |1−
1

1 + 2eij
| · (m− 1) · (1 + 2eij)

= 2(m− 1)eij ≤ 2(m− 1)OPT

Hence, the solution produced by the algorithm is at most 2(m − 1) times
worse than the optimum solution. A step-by-step explanation of the algorithm
can be presented in Algorithm 1.

2.3 O(m) approximation for ConSum

The algorithm is slightly more complicated than the one used to approximate
ConMax, but the two have similarities.

We will use the following lemma.

Lemma 4 Any connected UDG has a spanning tree for which the degree of
any vertex is at most 5.

Proof It can be shown that a depth-first search obtains such a tree. Assume
that T is a spanning tree generated by a depth-first search on a given UDG
and u is a vertex with more than 5 neighboring vertices. Define S as the set
of u’s neighboring vertices in T . Consider a unit circle C with center u. Since
|S| ≥ 6, C contains at least 7 vertices, so by the pigenhole principle, there exist
at least two vertices x, y ∈ S whose distance is less than 1 and thus they are
connected in the UDG. Assume that the depth-first search visited x sooner.
Since y is one of x’s neighbors in the UDG, the edge xy is discovered sooner
than the edge uy and thus y is a neighbor of x in T . So this is a contradiction.

Euclidean Movement Minimization 9

The algorithm, uses the same notation, excess of the edge, as the one used to
describe the O(m)-approximation for ConMax. That is eij = max(0, (|pi −
pj |2 − 1)/2).

The first step of the algorithm is to find a Minimum Spanning Tree (MST)
in a complete weighted graph defined on the vertices {1, . . . ,m} where the
weight of the edge between i and j is the same as eij .

The observation that leads to this choice for the algorithm is the following.

Lemma 5 Given a spanning tree T on vertices {1, . . . ,m}, with maximum
vertex-degree ∆, the sum of the distances the robots move needs to be at least
the following amount in order to have T as a subgraph of the resulting UDG.

2

∑
(i,j)∈T eij

∆
Proof Let di be the distance robot i travels in an optimal solution. For an
edge (i, j) ∈ T , using the triangle inequality we have

di + dj ≥ 2eij

Adding all equations of the above form, each di appears at most ∆ times on
the left hand side. So we get

∆
∑
i

di ≥ 2
∑

(i,j)∈T
eij

Together with Lemma 4, this shows that OPT is at least two fifths of the
weight of the chosen MST.

Now using operations that we call edge-contractions, we can find an ad-
missible solution with the sum of movements at most O(m)OPT .

Definition 6 A contraction on edge (i, j) of a tree T can be defined as the
following operation.

Removing the edge from the tree gives us two connected components T1
and T2. The contraction is defined as translating the vertices of T1 and T2
along the line segment pipj , each by a distance of eij . Note that the directions
of translations are chosen in a way that pi and pj become closer to each other.

Note that after a contraction, the edge (i, j) becomes part of the UDG,
and other edges of the tree will remain in the UDG if they were so already.

Another noteworthy point is that a contraction on edge (i, j) contributes
at most meij to the value SUM because each vertex is moved by at most eij .

Now the algorithm is clear (See Algorithm 2). On the MST obtained, we one
by one contract all edges. After all contractions are done, we get an admissible
solution because the MST becomes a subgraph of the UDG. The parameter
SUM is at most

SUM ≤ m
∑

(i,j)∈MST

eij ≤
2m

5
OPT

which proves that the algorithm is an O(m)-approximation.

Theorem 4 There is an O(m)-factor approximation algorithm for ConSum
on geometrical grounds.

10 Nima Anari et al.

Algorithm 2 O(m)-approximation algorithm for ConSum

1: Let eij be defined as max(0, (|pi − pj |2 − 1)/2).
2: Let G be the complete graph with vertices {1, . . . ,m} and edge weights eij .
3: Compute a Minimum Spanning Tree of G. Name it T .
4: for each edge (i, j) in T do
5: Let T1 and T2 be the components of T that appear after a removal of (i, j). Assume

that i ∈ T1 and j ∈ T2.
6: Let u1 be a 2-dimensional vector with the same direction as pj − pi but with a

magnitude of eij .
7: Let u2 be a 2-dimensional vector with the same direction as pi − pj but with a

magnitude of eij .
8: Translate all pebbles in T1 by the vector u1.
9: Translate all pebbles in T2 by the vector u2.

10: end for

3 Predetermined Topology

Assume that we are given m different points p1, . . . , pm ∈ R2. The goal is to
make the UDG defined on these points have certain properties. One of the
properties that might be desirable for the UDG to have, is to have it contain
a certain predetermined topology.

Clearly one can assume that the given topology E is connected; otherwise,
the problem can be solved for each connected component separately, and the
solutions can be combined together. Hence, from now on we will assume that
E is connected.

The main result we obtain is that there is a FPTAS for each one of these
problems. Our FPTAS’s use the Ellipsoid method as a blackbox.

Remark 1 The Ellipsoid method works with a separation oracle defined on
a convex set; that is an oracle which when given a point p determines whether
it’s inside the convex set, and if the answer is false, returns a hyperplane
separating the point and the convex set. Given a convex body C ⊂ Rn and
an initial ellipsoid E0 containing C, and an arbitrary positive number V, the
Ellipsoid method either finds a point in C, or finds out that the volume of C
is less than V. The time it takes for the Ellipsoid method to run is bounded
by a polynomial in n and log(Vol(C)/V).

3.1 FPTAS for TopolMax

In this section, we will show how TopolMax can be approximated using the
Ellipsoid method. Our algorithm uses some of the results and tools from the
O (m) approximation algorithm for ConMax, including the definition and
properties of the geometrical transformation homothety.

For two given points pi and pj to become at most 1 unit apart (in the
Euclidean metric), one should be moved by at least eij = max(0, (|pi − pj |2 −
1)/2). Now given an instance of TopolMax define O to be max{i,j}∈E eij .
Clearly O is a lower-bound for OPT . The main idea used behind the proof is

Euclidean Movement Minimization 11

exactly the same as the one used in ConMax, namely the use of homotheties.
Let’s formulate TopolMax as a linear programing. This linear programing is
exact, but unfortunately has infinitely many constraints. The following simple
lemma forms the basis of this linear programing.

Lemma 6 For a vector v ∈ R2, the inequality |v|2 ≤ d holds if and only if for
each unit vector u ∈ S1 (S1 is the unit circle), the inequality u · v ≤ d holds.

Now let’s formulate our problem as a non-linear programming, and then
convert it to a linear programming. We can define the variables x1, . . . , xm
and y1, . . . , ym to be the final coordinates of the points; i.e. p∗i = (xi, yi). Our
problem can be formulated like the following

Minimize s

Subject To |pi − p∗i |2 ≤ s, ∀i ∈ {1, . . . ,m}
|p∗i − p∗j |2 ≤ 1, ∀{i, j} ∈ E.

Note that this formulation can be completely written in terms of x1, . . . , xm
and y1, . . . , ym; we can simply replace each p∗i by (xi, yi). Now applying the
previous lemma to this formulation, we can rewrite it like the following

Minimize s

Subject To (p∗i − pi) · u ≤ s, ∀i ∈ {1, . . . ,m}, u ∈ S1

(p∗i − p∗j) · u ≤ 1, ∀{i, j} ∈ E, u ∈ S1.

The new formulation is a linear programming (although, with infinitely many
constraints), since inner product is a bilinear operator. To use the Ellipsoid
method on this new formulation, we should first remove s. For each s ∈ R≥0,
define Ls to be the convex set in R2m defined by the constraints

(p∗i − pi) · u ≤ s, ∀i ∈ {1, . . . ,m}, u ∈ S1

(p∗i − p∗j) · u ≤ 1, ∀{i, j} ∈ E, u ∈ S1.

Ls is the intersection of infinitely many half-planes. Hence, it is convex. The
optimum solution of TopolMax is the minimum s for which Ls is nonempty.

Because of the constraints (p∗i −pi)·u ≤ s, we can find a sphere surrounding
Ls. This sphere is centered at the point (p1, . . . , pm) ∈ R2m, and its radius is√
ms. That is because

|(p∗1, . . . , p∗n)− (p1, . . . , pm)|2 =√ ∑
i∈{1,...,n}

|p∗i − pi|22 ≤
√
ms2 =

√
ms.

Since this sphere can be surrounded by a hypercube with a side length of
2
√
ms, the volume of this sphere is at most (2

√
ms)2m.

Note that using the previous lemma, existence of a separation oracle for
Ls becomes obvious. In fact, we just have to check the unit vectors u which
are parallel to the vectors (p∗i − pi) and the vectors (p∗i − p∗j).

12 Nima Anari et al.

We have all of the things we need for the Ellipsoid method, except V,
the lower-bound on the volume of Ls. Note that Ls ⊆ Lt for s ≤ t. So if we
obtain a lower-bound on the volume of Ls for one s, that lower-bound also
works for every Lt for which t ≥ s. Let OPT denote the optimum solution of
TopolMax. Let s∗ = (1 + δ)OPT . Our goal is to derive a lower-bound on
the volume of Ls∗ .

Lemma 7 The volume of Ls∗ is greater than or equal to (δOPT2m)2m.

Proof Since LOPT is nonempty, one can find a point (q1, . . . , qm) ∈ LOPT ⊆
Ls∗ ⊂ R2m.

Let Hα denote the α-homothety with respect to q1. Consider the points
Hα(q1), . . . ,Hα(qm). Since each qi can be reached from q1 by a path consisting
only of the edges in E, we have |qi − q1|2 ≤ m− 1. So

|Hα(qi)− qi|2 = (1− α)|qi − q1|2 ≤ (1− α)(n− 1).

Since |qi − pi| ≤ OPT , we have |Hα(qi)− pi| ≤ OPT + (1− α)(m− 1).
Because of the properties of homotheties, for each {i, j} ∈ E, we have

|Hα(qi)−Hα(qj)|2 ≤ α. Now let r1, . . . , rm be some arbitrary points for which
we have |ri −Hα(qi)|2 ≤ (1− α)/2. For each {i, j} ∈ E, we have

|ri − rj |2 ≤ |Hα(qi)−Hα(qj)|2 + |ri −Hα(qi)|2
+|rj −Hα(qj)|2

≤ α+
1− α

2
+

1− α
2

= 1.

We also have

|ri − pi| ≤ |ri −Hα(qi)|+ |Hα(qi)− pi|

≤ 1− α
2

+OPT + (1− α)(n− 1)

≤ OPT + (1− α)m.

This shows that there is a copy ofB(1−α)/2 × · · · ×B(1−α)/2︸ ︷︷ ︸
m

inside LOPT+(1−α)m,

where Bx shows a 2-dimensional ball of radius x. Since Vol(Bx) = πx2 ≥ x2,
we have

Vol(LOPT+(1−α)m) ≥ (
1− α

2
)2m.

We want α to be chosen in such a way that OPT + (1 − α)m ≤ s∗. This
can be obtained by setting α = 1 − (s∗ − OPT)/m. For this α, we have
1− α = (s∗ −OPT)/m = δOPT/m. Therefore

Vol(Ls∗) ≥ (
δOPT

2m
)2m.

Euclidean Movement Minimization 13

Using the lower-bound (δOPT2m)2m as the parameter V of Ellipsoid, one
can see that the ellipsoid method is able to find a point inside Ls∗ in time
bounded by a polynomial of m and

log
(2
√
m(1 + δ)OPT)2m

(δOPT2m)2m
= log(4m

√
m

1 + δ

δ
)2m

= 2m log(4m
√
n

1 + δ

δ
) = O (poly(m, 1/δ)) .

We don’t know OPT , so we can’t actually set the parameter V of Ellipsoid to
the above lower bound; this is not a problem, as we can just run the Ellipsoid
method for the time bound we have obtained (which depends only on m and
δ).

Using the previous lemmas it’s easy to see that Algorithm 3 is a (1 + ε)-
approximation for TopolMax. If OPT resides in an interval [(1 + δ)iO, (1 +
δ)i+1O], then s = (1 + δ)i+2O is definitely larger than s∗ = (1 + δ)O. Hence,
Ellipsoid finds a point of Ls in the time limit given. But we have the following
inequality (we’re assuming without loss of generality that ε ≤ 1)

s ≤ (1 + δ)2(1 + δ)iO ≤ (1 + δ)2OPT

= (1 + 2δ + δ2)OPT

≤ (1 + 2δ + δ)OPT = (1 + ε)OPT.

So the solution found by Algorithm 3 is a (1 + ε)-approximation.

Algorithm 3 TopolMax

1: Calculate O using the formula max{(|pi − pj |2 − 1)/2 | {i, j} ∈ E}.
2: Let δ = ε/3. Divide the interval [O, 2(m−1)O] into O (logm/ log(1 + ε)) intervals of the

form [(1 + δ)iO, (1 + δ)i+1O]. Sort the interval endpoints in an increasing order.
3: for each interval endpoint like a do
4: Run the Ellipsoid method on La using the initial bounding sphere of radius

√
ma

around the origin. Run this method until it finds an answer or the upper-bound on
the execution time we found earlier passes.

5: If the Ellipsoid method finds a solution point, then stop the algorithm and return
that solution.

6: end for
7: If no solution is found, return the solution found from our previous O (m)-approximation

algorithm.

Theorem 5 There is a FPTAS for the problem TopolMax.

3.2 TopolSum

The same method used in the previous section can be slightly modified to
work for TopolSum. One can again find similar bounds on the volume of the
convex body and again show that the Ellipsoid method works in polynomial
time.

14 Nima Anari et al.

Theorem 6 There is a FPTAS for the problems TopolSum.

4 Concluding Remarks

In this paper, the hardness of the ConMax problem in geometrical settings is
proved and then O(m)-factor approximation algorithms for each of the Con-
Max and ConSum problems are proposed. Thereafter it is shown that a FP-
TAS for each of the problems TopolMax and TopolSum exists once the
target UDG is known, i.e. adjacent vertices are specified.

Considering other types of properties such as obtaining an independent set
of a given size or considering a bigger class of graphs like disc graphs are good
research directions to follow. We conjecture that both ConMax and ConSum
are approximable within constant factors. More than that, as an open problem
we conjecture that TopolSum and TopolMax are both NP-Hard problems.

References

Stefano Basagni, Alessio Carosi, Emanuel Melachrinoudis, Chiara Petrioli, and
Z Maria Wang. Controlled sink mobility for prolonging wireless sensor net-
works lifetime. Wireless Networks, 14(6):831–858, 2008a.

Stefano Basagni, Alessio Carosi, Chiara Petrioli, and Cynthia A Phillips. Mov-
ing multiple sinks through wireless sensor networks for lifetime maximiza-
tion. In MASS, pages 523–526, 2008b.

Stefano Basagni, Alessio Carosi, and Chiara Petrioli. Heuristics for lifetime
maximization in wireless sensor networks with multiple mobile sinks. In
Communications, 2009. ICC’09. IEEE International Conference on, pages
1–6. IEEE, 2009.

Piotr Berman, Erik D Demaine, and Morteza Zadimoghaddam. O (1)-
approximations for maximum movement problems. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques,
pages 62–74. Springer, 2011.

Zdzislaw Burda, Jerzy Jurkiewicz, and André Krzywicki. Network transitivity
and matrix models. Physical Review E, 69(2):026106, 2004.

Duncan S Callaway, Mark EJ Newman, Steven H Strogatz, and Duncan J
Watts. Network robustness and fragility: Percolation on random graphs.
Physical review letters, 85(25):5468, 2000.

Erik D Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Amin S Sayedi-
Roshkhar, Shayan Oveisgharan, and Morteza Zadimoghaddam. Minimizing
movement. ACM Transactions on Algorithms (TALG), 5(3):30, 2009a.

Erik D Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx. Minimizing
movement: Fixed-parameter tractability. In Algorithms-ESA 2009, pages
718–729. Springer, 2009b.

Michael R Garey, David S. Johnson, and R Endre Tarjan. The planar hamil-
tonian circuit problem is np-complete. SIAM Journal on Computing, 5(4):
704–714, 1976.

Euclidean Movement Minimization 15

Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton
paths in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

Jon Kleinberg. Cascading behavior in networks: Algorithmic and economic
issues. Algorithmic game theory, 24:613–632, 2007.

Thomas K Philips, Shivendra S Panwar, and Asser N Tantawi. Connectivity
properties of a packet radio network model. Information Theory, IEEE
Transactions on, 35(5):1044–1047, 1989.

Leslie G. Valiant. Universality considerations in vlsi circuits. Computers,
IEEE Transactions on, 100(2):135–140, 1981.

	Introduction
	ConMax and ConSum
	Predetermined Topology
	Concluding Remarks

