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Abstract

In this paper, we present efficient algorithms for updating the labeling of a set of n points after the presence of a random obstacle
that appears on the map repeatedly. We update the labeling so that the given obstacle does not appear in any of the labels, the new
labeling is valid, and the labels are as large as possible (called the optimal labeling). Each point is assumed to have an axis-parallel,
square-shaped label of unit size, attached exclusively to that point in the middle of one of its edges. We consider two models: (1) the
2PM model, where each label is attached to its feature only on the middle of one of its horizontal edges, and (2) the r4PM model,
where each label is attached to its feature on the middle of either one of its horizontal or vertical edges (known in advance). We
assume that a sequence of point-shaped obstacles appear on the map on random locations. Three settings are considered for the
behavior of the obstacle: (1) the obstacle is removed afterwards, (2) it remains on the map, and (3) it receives a similar label and
remains on the map. Only two operations are permitted on the labels: flipping one or more labels, and/or resizing all labels. In the
first setting, we suggest a data structure of O(n) space and O(n 1gn) time in the 2PM model, and of O(n2) time in the r4PM model,
so that the updated labeling can be constructed for any obstacle position in O(lgn + k) time, where & is the minimum number of
operations needed. For the second and third problems, we suggest an O(n) space and O(n Ign) time data structure that can place
each obstacle (possibly with a label) on the map in O(lgn + k) time, if k label flips are sufficient to make room to place the new
obstacle. Otherwise, two O(n) time algorithms are suggested when a relabeling of all points is required.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Computational geometry; Map labeling; Label updating

1. Introduction and problem definitions

Automated label placement is an important problem in map generation and geographical information systems. This
is to attach one or more labels (regularly in text) to each feature of the map, which may be a point, a line, a curve,
or a region. The point feature label placement has received considerable attention. There are two basic requirements
of any labeling; labels should be pairwise disjoint, and each label should have a common point with its feature [8].
Other variations of this problem let the features receive more than one labels [2], or use specific shapes for the labels
[1,6,7,18]. There are also two labeling models, fixed and slider model. In the former, some fixed positions of each label
are given as the possible locations for feature placements [8], and in the latter, the labels can be placed at any position
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while touching the features [7,17,5]. The optimal labeling of a set of points (with different optimality measures) is
generally an NP-Complete problem, but with some restrictions, it can be solved in polynomial time, like the special
point labeling in 1P and 2P models [14], the elastic labeling introduced in [4], and the line labeling in special cases
[10,16].

In this paper, we consider the point labeling problems in the fixed model, where each of the point-shaped features
receives a unit-length axis-parallel square-shaped label. More formally, the input is assumed to be a labeling composed
of points P = {p1, p2, ..., pn} and unit-length labels £ = {¢{, £2, ..., £,}, where ¢; is attached to p; on the mid-point
of one of its edges. We consider two labeling models: (1) the 2PM model, where one label is attached to each feature
on the middle of one of its horizontal (or similarly vertical) edges, and (2) the r4PM model, a restricted version of
the 4PM model, where a label can be attached to its feature point only on the middle of either one of its horizontal or
vertical edges. ! The restriction here is that this choice is given in advance for each point p, which is called its label
direction and denoted as d(p). A point with horizontal (resp. vertical) label direction should be attached to the middle
of one of its horizontal (resp. vertical) edges of its label. A labeling that is valid with the largest possible label size is
called the optimal labeling.

We are interested in fast algorithms to update an optimal labeling when one or more point-shaped obstacles appear
on the map at random locations, so that the new optimal labeling does not contain the obstacles.

This problem is considered in the following three settings:

POAR Point-obstacle-arrive-then-removed, where one obstacle appears randomly on the map, stays for a while and
is then removed. This may happen when the latest position of a moving obstacle is repeatedly reported (like in a radar
aviation system or in graphic games). When the obstacle is present, a new optimal labeling is to be constructed that
avoids the obstacle. The labeling goes back to its original state after the obstacle is removed. This may happen quite
often, thus a fast updating algorithm is needed.

POAS Point-obstacle-arrive-and-stay, where obstacles are introduced incrementally and remain on the map forever.
We should update the labeling after each obstacle arrival.

LOAS Labeled-obstacle-arrive-and-stay, this is the same as POAS, but each obstacle should also receive a label of
the same length and in the same model as others. The labeled obstacle remains on the map forever. This problem can
also be thought of as an incremental labeling where points are introduced incrementally and all points should have
optimal labeling after each new arrival. In the r4PM model, each new point has its label direction, known in advance.

The updated labeling should be valid in a way that all points preserve their disjoint labels, but some labels may flip
or all may resize to make room so that the obstacle can be inserted, and if needed, receives a similar label as other
points.

Precisely, only two updating operations are allowed on the labels: (a) flipping ¢; over the edge containing its
corresponding point p;, and (b) resizing all labels to any length « < 1, as long as any p; remains on the mid-point of
its edge. The flipped version of ¢; is denoted as f(¢;) and the resized version of ¢; to length « is denoted as r(¢;, o).
Moreover, all labels in the new updated labeling should have the same length with the biggest possible size. To construct
the new labeling, we should also perform the fewest number of operations on the labels.

Avoiding a single obstacle in the r4PM and the 2PM models have first been introduced in [11,12]. Also, an incremental
labeling for the 2PM model was presented in [13].

The existing brute-force solution for the above problems is based on the 2-SAT algorithm [3,9]. This method is
independent of the existing valid labeling, and it basically solves the decision problem of whether there exists a valid
labeling of size o for all points. The main idea of this solution is to assign variables x; and x; to two possible label
locations for each point. If the obstacle falls into a label, then the corresponding literal is forced to be true or false. For
each possible label conflict, we can write a clause of two literals. The whole labeling is then an instance of the 2-SAT
problem which can be decided in O(n) time. Since there are at most O(n) possible label lengths for each instance of
our problem, we can call the 2-SAT decision problem O(lgn) times as a binary search on the possible values of «. This
results in an O(n 1g n) time solution to generate the optimal labeling after each insertion of the obstacle. It is clear that
this solution is unacceptable if the frequency of the obstacle appearance is quite large. For these problems, there exists
no solution more efficient than the brute-force algorithm.

In this paper, we first deal with the POAR problem in Section 2. We define a data structure used in this problem and
present the optimal algorithms for both 2PM and r4PM models. Overall, in the r4PM model, with a preprocessing of

1M’ in these models comes from ‘middle’.
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0(n?) time and O(n) space, our algorithm places an obstacle in O(Ign + k) time where k is the number of required
flip operations (may be zero), or to decide on a new length for all labels to shrink to, needed to make room to insert the
obstacle. We use specific properties of the 2PM model to reduce the preprocessing time to O(n Ign).

LOAS and POAS problems are handled in Section 3 where two new data structures are first introduced. Our algorithm
for LOAS uses O(n) space and O(n Ig n) preprocessing time. The algorithm can then place and label a new obstacle in
O(lgn + k) time, where k is the number of label flip operations to make free room for the new obstacle and its label.
If the new obstacle cannot be labeled merely by flipping, we do overall labeling (discussed in Section 4) to find the
optimal new labeling with shrunk labels in O(n) time. The algorithm for POAS is actually a restricted version of that
for LOAS which is explained in Section 3.4.

In Section 4, we propose two algorithms to optimally relabel all the points in O(n) time and space using O(n Ign)
preprocessing time.

2. POAR problem

Here we want to preprocess a given optimal labeling £ of points P, so that for any obstacle ¢, the new optimal
labeling that avoids g is calculated efficiently. Conflict graph is a data structure used for preprocessing and is explained
next. POAR algorithms for both 2PM and r4PM models are presented afterwards.

2.1. Data structure used: conflict graphs

A conflict graph G = (P U {pg}, D U B), is an edge-weighted directed multi-graph. The domino edge set D,
representing all possible label flips, contains all edges (p;, p;) where f({;) intersects with £;. There may be labels
that have no intersections with other labels when flipped. To model these cases and simplify the definitions, we add an
auxiliary point pg and include edges from all points to pg in D. The blocking edge set B contains the directed edges
(pi, pj) where f(¢;) intersects with f(£;). Intuitively, the blocking edges blocks the flippings. More formally,

D = {(pi, ppIf &) NL; #BYU{(pi, po)l Vpi € P}
and
B = {(pi, pp)If&) N f(L;) # 0}

A sample labeled map is shown in Fig. 1(a) and its corresponding conflict graph is shown in Fig. 1(b).

The edge weight function w(p;, p;) is based on the function g(£,, £;) which returns the largest possible label length
resolving, with resize operations only, any possible intersection between £, and £;. The value of g(¢,, £;) for any pair
of non-intersecting labels is assumed to be one (unit length). For intersecting £, and ¢, g(£,, {p) is the maximum
value of A< 1 where r({,, ) is disjoint from r (£, 4). The weight of a domino edge (p;, p;) € D is formally defined

L]
L]
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Fig. 1. (a) Initial labeled map. (b) The conflict graph: D edges are solid and B edges are dual-headed arrows. Edges ending at p( are not shown for
simplicity.

(a (b)
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Fig. 2. For a given labeling and an obstacle ¢ (inside ¢;), three cases are shown: (a) G{ and the domino edge bounding the maximum value of o; (b)
the set of flipped labels and the pair of resized labels; and (c) the final optimal labeling with ¢. Note that p( and its edges are not drawn for simplicity.

as w(p;, pj) = g(f(£;), £;) and that for a blocking edge (p;, p;j) € B is defined as w(p;, pj) = g(f(£;), f(£;)).
We also define the weight of all domino edges to pg as one.

Lemma 1. Given a valid labeling of n points in the r4PM model, its conflict graph G can be built in O(nlgn) time
and O(n) space.

Definition 2 (Domino-reachable edge). (p;, p;) € D is a domino-reachable edge from py in G, if there is a directed
simple path 7 : px~-p; with all edges in D.

Definition 3 (o-Terminating edge). (p;, pj) € D is an o-Terminating edge from py, if (p;, p;) is a domino-reachable
edge from p; with a path 7, where for each edge e € n, w(e) < o and w(p;, p;) > a. The path py~p; is also defined
as an a-terminating path from py.

An a-terminating path 7 tells us that all labels on 7 can flip and the last one can resize to a size « without any
intersection among these labels.

Definition 4 (a-Critical). (p;, pj) € D is an a-critical edge from py, if (p;, p;) is an a-terminating edge from py and
w(pi, pj) = o

The graph G7 represents all labels that may be affected when ¢; is flipped and the label size is assumed to be o.
We define G = (P7, DY) as a subgraph of G containing all a-terminating paths from p;. That is, P and D} are,
respectively, the set of point vertices and domino edges on all a-terminating paths from p;. It is obvious that G7 is
unique. Also, G¥ is a DAG in the 2PM model but may not be a DAG in r4PM. Fig. 2 depicts an initial labeling and an
obstacle g that appears in ¢; for which G? is also shown.

It is easy to see the following property.

Lemma 5. Ifa<f<1 then G C Glﬁ.

Definition 6 (Z and B}). The set of internal nodes (not including the zero out-degree vertices) of G? is denoted as
T?. The set of boundary edges (all edges that end in a zero out-degree vertex) of G is denoted as 7.

As defined, the weights of all domino edges with end-points in Z are less than « and those for edges in B} are at
least o. We are only concerned with valid G} to be defined below.

Definition 7 (Valid G}). G is said to be valid iff for all p;, p; € 7 and (p;, p;) € B, we have w(p;, p;) >o.
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Fig. 3. (a) An instance of G7 for a labeling of 2PM model. Solid edges have weights < o, dashed edges are B} with weights > o, and dotted edges
are blocking edges with different weights of f5. Solid vertices are T}. G} is valid iff each value of pis >a. Dy is the set of all solid and dashed
edges. pg and all edges to this node are not shown. (b) G ;‘ can be cyclic in r4PM model.

Fig. 3 depicts different properties of G7 graphs.
It is not hard to see the following lemma.

Lemma 8. If there is no valid G?, then there is no valid Gl[}for all f > o.

There are two possibilities when an obstacle intersects £;: (a) £; (and all other labels) can shrink to resolve the
intersection (this case will be considered later) and (b) ¢; is flipped causing some other labels to flip or resize
recursively.

Focusing on the latter case, to find an optimal labeling with ¢; flipped, we will see that we need to find a valid G7
with the maximum value of o. From any valid G we can construct a labeling of length o denoted by L7, as follows:
(1) Flip label £; for each domino edge (p;, pr) € Di“.

(2) Resize £; and ¢ to length w(p;, px) for each boundary edge (p;, px) € Bf‘.

(3) Resize one or both labels £; and ¢ to length w(p;, pi) for each blocking edge (p;, px) with both ends in Z*.
(4) Resize all labels to the minimum label length of shrunk labels.

We will show that £ is an optimal labeling if and only if its corresponding G} is valid and the value of its « is
maximum.

2.2. POAR in r4PM model

The following is the main property of the optimal solution in the r4PM model.
Lemma 9. L? is valid if and only if G? is valid.

The proof is given in the following lemmas:

Lemma 10. A L? constructed from a valid G? is also valid. Moreover, the label length in LY is o iff at least one of the
following conditions holds:

(1) There exists an o-critical edge in GY.

(2) There exists a blocking edge with both ends in T} and with the weight of a.

Proof. The generated label lengths are, by the given construction method, at least o.. These labels cannot have inter-
sections with each other, since in such cases, we have already resized the overlapping labels to remove intersections.
So, the produced labeling is valid. Any of the conditions mentioned in the lemma produces a label with the length of
exactly o. The other side of the proof is obvious. [
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(b)

Fig. 4. The maximum number of edges from a given label (shown as the darker label) in (a) and (b), respectively.

Lemma 11. Forany valid labeling of L; with label size of o and assuming that £; is flipped, there exists a corresponding
valid GY.

Proof. We construct a valid G? as follows. Enlarge all labels of £; to at most unit length without generating intersecting
labels. Define P* as the set of all points whose labels have been flipped or resized, compared to the main £ (including
po). Let E* = {(pj, p)lpj. pk € P*, (pj, pk) € D} be the set of domino edges of G with both ends in P*. Consider
an o-terminating path from p; in G. This path is a subset of E* since otherwise a label of length < o must exist in
L;. So, the vertices and edges of G7 are subsets of P* and E*, respectively. Since £; is valid, then there is no pair of
intersecting flipped labels, or in other term, there is no blocking edge with both ends in P* of length less than «. Hence,
the G exists and is valid. [J

From Theorem 9, we conclude what we claimed is true that flipping ¢; will generate an updated labeling of length
o if and only if a valid G? exists. Lemma 12 proves that we only need to check this for at most O(n) values of «’s, and
this can be searched more effectively from the fact given in Lemma 8.

Lemma 12. The optimal label length belongs to the set W = {w(p;, pi)|(pj, px) € D U B}, which has at most O(n)
elements.

Proof. For the first part, assume that the optimal label length « is not in W. So, there should be a label, say £;, with
length o in the optimal labeling. This label is resized to « to resolve an intersection with some other label, say ¢.
Obviously, the best resizing for these labels is w(p;, pxr) > « and hence the value of « is not optimal, which is a
contradiction.

For the second part, we count the number of edges in G. It is obvious that for each p; € P, there is at most three
edges in D (Fig. 4(a)) and at most six edges in B (Fig. 4(b)) starting from p;. Therefore, |D U B|<9n and hence the
set W has O(n) members at most. [

Now, assume that £; intersects with the obstacle, and G?‘ with the maximum value of « is constructed. Obviously, if
the obstacle is outside of square r(¢;, o), then a single resize of ¢; to an appropriate value to resolve the intersection
is the optimal labeling. Otherwise, if the obstacle is inside r(¢;, «), it should not intersect any of the flipped labels
(which are at most two) generated from G¥. We find and store these intersecting flipped labels in the preprocessing
phase and store it along with the maximum value of « at each node p;. Equally, the locus of the obstacles that force
¢; to flip, which is an orthoconvex polygon and is denoted by flipping region, can be computed and stored in the
processing phase. Using this data at pg, the algorithm is able to decide between flipping or resizing ¢; in O(1) time.

2.2.1. The optimal algorithm

The key routine in the optimal algorithm is CONSTRUCT(G?) that generates G with the maximum value of o for
any given label ¢;. This routine has two purposes: in the preprocessing phase, it is used to find the flipping region
and in the query part of the algorithm, we extract the required flip and resize operations from the calculated subgraph.
We will show that this routine finds G in O(k) amortized time where k = |G7|.

The preprocessing phase: This phase consists of the following steps.
(1) Build the conflict graph G.
(2) Create a sorted list of all edge weights o;; = w(e), where o <o < --- < 1.
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(3) Construct a point location data structure for the initial labels [15].
(4) For each ¢;, construct G¥ with the maximum value of o, and calculate and store the flipping region of ;.

Lemma 13. The preprocessing phase needs O(n?) time and O(n) space.

Proof. The conflict graph can be constructed using a simple vertical sweep line algorithm keeping track of all inter-
secting labels with the sweep line in O(n 1gn) time. The value of w(e) can also be computed in O(1) time for each
edge. Steps 2 and 3 also take O(n 1gn) time. To calculate the flipping region in Step 4, we have to build G? that needs
O(n) time for each of n label. So, this step takes O(n?) time total. Thus, the overall time required in the preprocessing
phase is on?).

The conflict graph has O(n) vertices and edges and there are O(n) different values for « (Lemma 12), hence, the
first three steps require O(n) space. The point location data structure also uses O(n) space and the cost of saving the
flipping region for any given point is O(1) space. So, the overall required space is O(n). U

CONSTRUCT(G?‘) routine: Given a label ¢;, this routine starts with building the subgraph G?” . Then, at each iteration,
the routine builds G?Cj *! by adding some vertices and edges (possibly empty) to ij . The following properties are used
in constructing G, "',

(1) G € G € G C --- (definition of G,”),

(2) anedges in G?'i - G?'/ which is connected to a leaf vertex of ij , has a weight of at least o; (due to the definition
of oj-terminating path from p; in Definition 3),

(3) the value f§ 1= min({w(u, v)|(u, v) € Il.“j H }) is an upper bound of the optimal label length (due to Definition
7,if Bj41 < oj+1 the subgraph is not valid),

4) Gi.xj ! is valid if and only if j+1=j+1 (Definition 7), and

(5) by considering G?(j A G?j , the recursive definition of G?j “ (definition of G?j *! and Definition 7) is as follows:
G =G UG (pr pr) € B w(pr, pr) = o).

Using the above recursive definition of G?’ ! the following simple incremental algorithm is proposed.

CONSTRUCT(G?)

Input: A conflict graph G, and a label ¢;,
Output: The subgraph G? with the maximum value of «
Algorithm:

Let j = 1, build G{".

while true do

(a) Compute {G,""'|(p1, pr) € B,”, w(ps, pr) = o;} and build G,’*".

(b) Compute sets B;xj A If" ' and B Jay

(c) if ;1 <oj41 then

return G?j and terminate.
(d) Letj=j+1.
end while

o . . . .
Lemma 14. G,’ for all values of o can be constructed in the ascending order of o; in overall O(n) time.

Proof. Any edge in the conflict graph is visited at most a constant number of times: a domino edge is visited at most
once, and a blocking edge is visited at most twice (a blocking edge is checked whenever one of its ends is added to the
internal vertex set). With an appropriate data structure for maintaining the sets Z and 3, each visit to an edge can be
implemented in O(1) time. [
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Main body of the algorithm: Using the CONSTRUCT(G?) routine, the label updating algorithm is as follows.

The Optimal POAR Algorithm in r4PM Model

For an obstacle ¢ = (x, y) do the following steps:
(1) Locate the label ¢; containing g.
(2) if no such label exists then L is the optimal labeling and terminate.
(3) if ¢ is not in the flipping region of ¢;, then resize ¢; to obtain the optimal labeling.
(4) Call CONSTRUCT(G?) and write the required operations to construct LY.

The above algorithm along with Lemma 14 yields the following theorem:

Theorem 15. Anoptimal updated rAPM labeling to avoid a single obstacle can be constructed in O(1g n+k) time, where
k is the minimum number of update operations. The algorithm uses O(n?) time and O(n) space for the preprocessing.

2.3. POAR in 2PM model

Obviously, 2PM is a restricted version of the r4PM model and the previous algorithm can also be used in this case.
However, using some specific properties of the conflict graph in the 2PM labeling, we will show that the preprocessing
phase takes O(n lgn) time and O(n) space, instead.

2.3.1. Properties of the conflict graph 2PM model

The simple but important property of the 2PM conflict graph is that its edges are all in “upwards” or “downwards”
directions, assuming that the vertices of the graph are located on a plane each on the coordinates of its point. We denote
the upwards edges by E' and the downwards edges by E¥. The following lemmas immediately hold.

Lemma 16. All domino-reachable edges from any point p; € P belong to either E' or E¥.
Lemma 17. The edges of any G either belong to E" or EV.

Lemma 17 also shows that the edges D of the conflict graph are acyclic. So, when an ¢;-intersecting obstacle is
inserted, no flipped label generated by the respective G} will intersect the obstacle. Therefore, the flipping region can
be discarded and the decision between cases of resizing or flipping ¢; is simplified. The maximum value of o where
pi has a valid G7 can be stored in the conflict graph as the vertex weight of p;, denoted by w(p;). Besides, we can
calculate the vertex weight of all vertices in G at each vertex without explicitly building the related G}. We define the
weight of pg, the only vertex with no outgoing D edge, as one.

For vertices with some outgoing D edges, consider an edge (p;, p;) € E T and assume that ¢; is flipped. There are
two alternatives to remove the intersection between f(¢;) and £;: (1) resize both intersecting labels to some smaller
length or (2) flip £; and resolve the newly introduced intersection recursively (if applicable). In the former case, the
minimum generated label length is w(p;, p;) (according to the edge weight definition), and in the later case is w(v;),
recursively. We summarize the above description in a function, denoted by #, as follows:

o Jmax(w(pi, pj), w(pj)), (pi,pj) €D,
hivi,vj) = { 1, T G es.

Using above function, the vertex weights can precisely be defined as

1 i =0,

wipi) = {rr;in{h(pi, p)Ipi, pj) € DUB}, i >0.

Using the above recursive definition of the vertex weight, it is easy to verify that a simple bottom-up algorithm is able
to calculate all vertex weights in O(n) time. This bottom-up procedure reduces the O(n?) time used by the Step 2.2.1 of
the preprocessing phase in the r4PM model to O(n) time, hence the overall preprocessing time is reduced to O(n Ign)
time.
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The updating algorithm in the 2PM model uses the same CONSTRUCT(GY) subroutine as in the r4PM model and is
given below:

The Optimal POAR Algorithm in 2PM

For a given obstacle ¢ = (x, y) do the following steps:
(1) Locate the label ¢; containing g.
(2) if no such label exists then L is the optimal labeling and terminate.
(3) if r(¢;, w(p;)) does not intersect ¢, then resize ¢; to resolve its intersection with ¢ and terminate.
(4) Call CONSTRUCT(G?) and write the required operations according to G7.

Theorem 18. An optimal updated 2PM labeling to avoid any single obstacle can be constructed in O(Ign + k) time,
where k is the minimum number of update operations using O(nlgn) preprocessing time and O(n) space.

3. LOAS and POAS problems

In this section, we present and solve the LOAS and POAS problems. The algorithms provided to solve these problems
uses a relabeling algorithm whenever a relabeling of all points is required. Two relabeling algorithms are presented in
Section 4.

For these algorithms, either enough room for insertion of the obstacle is created by some label flips or all points
are relabeled in the presence of the obstacle. That is why we only need the unweighted version of the conflict graphs
which we call domino graphs and denoted by DG. To update the domino graph we need another data structure called
adjacency graphs to be defined below.

3.1. Data structures used: adjacency graphs

The adjacency graphs are used to both update the domino graphs, and to relabel all points whenever required.
The distance between two points p; = (x;, y;) and p; = (x;, y;) isdefined as A(p;, p;) = max(|x; —x;|, |yi —y;|)
(i.e., the distance in L, metric).

Definition 19 (Local neighbors). Assuming a valid labeling of size o over P exits, the local neighbors of a point p; is
defined as the set of points with the distance less than 2 from p;.

Lemma 20. There are at most 11 local neighbors for any point in P.

Proof. In a valid labeling of length o, label candidates of a point p, form a « by 2o rectangle. Obviously, a label
intersecting any of these candidates, must reside completely inside a 3o by 4a rectangle around the o by 2o rectangle.
The area of the 3o by 4o rectangle is 126> and has room for 12 labels. Hence at most 11 local neighbors may exist for
any p. U

An adjacency graph H = (P, &) is a weighted directed graph with P as its vertices. A directed edge (p;, p;) belongs
to £ if and only if p; is a local neighbor of p;. The weight of (p;, p;), denoted by w(p;, p;), is defined as A(p;, p;)
(i.e., the distance between p; and p;).

Lemma 21. Given a set of n points, H can be built in O(n lgn) time and O(n) space.
To update H when a new point p is introduced, we construct and use a nearest neighborhood data structure on all
points using L, metric. With this, all local neighbors of p can be found in O(Ign) time. But, inserting p may change

the local neighbor set of its neighbors which can be updated in O(1) time since p has O(1) local neighbors at most.

Lemma 22. Given an adjacency graph H, a new point can be inserted into H in O(Ign) time. Also, the edges of H
can be updated in the same time bound.
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The adjacency graph is used to update the domino graph after a set of labels is flipped. We know that DG is a subgraph
of H, so the update procedure is as follows. First, all edges attached to the points with flipped labels in DG are deleted.
Then, all edges attached to these points in #H are checked and inserted into D or B of DG, if the edge definitions are
satisfied. Since there are O(k) edges in H for a set of k flipped labels (according to Lemma 20), this update takes O(k)
time. Therefore,

Lemma 23. Updating the domino graph DG after k label flips requires O(k) time, using the adjacency graph H.
3.2. The main ideas of the algorithms

We know thatif (p;, p;) € D, then flipping ¢; may cause flipping a set of labels whose points are reachable from p;
via domino edges. Here, we denote the domino reachable points from p; as P; and the induced subgraph of D edges
on P; as G;. Note that G; is the same as Gl.1 in the conflict graph of G if the optimal label length is 1. Obviously, ¢; can
flip if and only if there is no blocking edge with both ends in P;. Using a simple BFS-like algorithm, we can easily see
that, for any point p;, G; can be constructed in O(]G;|) time.

Given a point p, and its label direction d(p) in LOAS, there are two label candidates for p, denoted by K‘I’, and El;,.
These are a pair of top/bottom candidates if d(p) is horizontal, or a pair of left/right candidates if it is vertical. Since
all labels are squares with the same size, using a point location data structure [15], all intersecting labels with K?, and
Z?] can be found in O(Ign) time. To label p with K?J without shrinking any labels, all labels intersecting E?, should be

flipped. So, we define G‘;, (resp. G'?,) as the union of all G;’s where ¢; intersects with Z?, (resp. E'?,). Moreover, similar
to the conflict graph, G, is said to be valid if: (a) there is no blocking edge with both ends in G, (i.e., no pairs of

intersecting flipped labels) and (b) £, has no intersection with the flipped version of the labels in G7,. It is then easy to
see the following lemma.

Lemma 24. A new point p can be labeled by €', iff G, is valid. Moreover, G, can be found and validated in O(|G))
time.

Both GZ and Gg should be constructed and checked for validity. To generate the minimum number label flips, the
smaller subgraph (the one with the smaller number of vertices) should be chosen for generating the final label flip
sequence. But, since the sizes of G, and Gi’, are not known in advance, both should be processed simultaneously such
that the first validated candidate terminates the decision process.

Lemma 25. Given a new point p, d(p), and DG of the current labeling, p can be labeled in O(lgn + k) time with
the same label length, if possible, where k is the minimum number of label flip operations. Moreover, DG is updated
in O(k) time for further point insertions.

3.3. LOAS: incremental labeling

By summarizing the lemmas given in the previous sections, LOAS optimal updating algorithm can be constructed
in two phases: a preprocessing phase and a query phase. The following data structures should be built in the first
phase:

(1) The domino graph H.
(2) The adjacency graph DgG.
(3) A nearest neighborhood data structure on all points.

For each new point p arrival with its label direction d(p), the following steps are taken in the query phase:

(1) Insert p into the nearest neighborhood data structure.

(2) Update H.

(3) Generate and validate G‘I‘, and G}l’7 in parallel.

(4) If both G?, and GZ fail, then relabel all points, otherwise, generate the flipping sequence.

(5) Update DG.
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As shown in the previous sections, the preprocessing phase takes O(n Ign) time and O(n) space. Also, inserting and
labeling each new point takes O(Ign + k) time, if there exists a series of k label flips to label the new point, and O(n)
time (to be explained in the next section) if a relabeling is required.

3.4. POAS in r4PM model

The solution to POAS in r4PM comes from the solution to LOAS with minor modifications. The basic idea here is to
consider a point obstacle as a new point with a zero-length label. There are also regular non-obstacle points as before
that take labels with optimal length. Since all properties of the LOAS are also satisfied in POAS, one can modify this
algorithm and develop a solution to POAS in the r4PM labeling. Obviously, the response time of the POAS algorithm
would be the same that for LOAS. In the rest of this section, we only consider the required modifications to LOAS as
follows.

In POAS, each point in P carries a special flag to show if it is a point obstacle (i.e., it should be labeled by a
zero-length label) or a labeled obstacle.

There is no special note in building of the domino graph or adjacency graph, but we consider some useful properties
as follows:

(1) In the domino graph, if an obstacle point p;, is inside ¢;, we assume that £ intersects with both £; and f(¢;).

(2) There is no edge between two obstacle points in the domino graph.

A consideration should be taken in the construction of the adjacency graph in POAS (which is used in relabeling).
Local neighbors of a point p, consists of two sets of points: (a) the 11 nearest labeled obstacles and (b) the nearest point
obstacle in each of half planes above, right, below and left of p. This way, we will have at most 15 local neighbors for
each point, and the relabeling results are hold for POAS.

Theorem 26. Given a set of points P, and its optimal labeling L in the r4PM model, using an O(n) space and O(n1gn)
preprocessing time, an obstacle points can be inserted into P in O(1g n + k) time, when k label flips makes this possible.
Otherwise, an O(n) time algorithm is needed to optimally relabel the map with a smaller label length.

4. Overall relabeling

In this section, we present two algorithms to relabel all points in O(n) time. Both algorithms require O(nlgn)
preprocessing time and O(n) space. The first algorithm, named incremental relabeling, needs a valid labeling of all
points except the arriving one, say p. Incremental algorithm modifies the valid labeling by flipping some labels and
resizing all labels so that at least one label candidate of p can be placed without any label intersection. This way, most
of the labels remain on their old places and just shrink in size.

The second algorithm, the fotal relabeling, assigns labels from scratch to all points and do not rely on a previous
labeling. So, a significant difference is expected for the outcome of these two algorithms, which is the price for the
generality of the second algorithm.

4.1. Incremental relabeling

Given a set of labeled points, assume that a new point p, arrives and there is no sequence of label flips making free
space to label p. p has two label candidates, say £7, and Zl[’,. The optimal label length in each case, as defined in POAR
in r4PM, is equal to the vertex weight of p. But, the problem is that the domino graphs are unweighted. G, and G’I’,
can be constructed but, due to the definition given in 3.2, are both invalid. But if edge and vertex weight functions are
used temporarily, the optimal value of the label length can be computed as follows.

Assume that £9 is fixed on the labeling, and is only allowed to shrink. We insert p and its corresponding edges to
the domino graph. Now, we construct G, and use the bottom up recursive definition, given in Section. 2.1, to compute
the vertex weight of p. Obviously, this weight equals to the optimal label length, if £7) is fixed, and can be computed in

O(]GY 1) time. Using the same routine, the optimal label length can also be computed for labeling p by Zg by spending

another O(|Gll’,|) time. Obviously, the label candidate generating the greater label length, say «, is the optimal choice
to label p. Using the edge weight function, we can use the CONSTRUCT(G?) idea for p and compute the set of flipping
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o

Fig. 5. Touching cases in the 2PM model.

labels. It is obvious that by flipping these labels and shrinking labels to length «, p can be safely labeled by at least one
of its candidates.

Theorem 27. Given a P, its optimal labeling L, and its domino and adjacency graph, an optimal labeling of P and
a new given point p, can be constructed in O(n) time and space, with O(nlgn) preprocessing time. Moreover, the
domino graph of P U {p} can be updated in O(n) time.

There is only one implementation issue here: the domino graph needs a refresh after a label shrink, since some
previously intersecting labels may not be intersecting anymore. Removing these edges is an O(n) time step after a label
shrink. But, to speed up the shrink process, this time consuming step can be delayed to a later time, as explained in the
next paragraph.

We define an edge as valid if it meets its definition criteria. Upon visiting an edge, we check its validity and remove
each invalid edge from the graph. In this scheme, there may exist more than O(n) invalid edges in the domino graph.
Since an invalid edge will never be validated, it can be removed by spending the O(1) amortized cost saved when we
do not remove it after a label shrink. So, Theorem 27 still holds but with the amortized times.

4.2. Total relabeling

Given an optimal labeling, labels can be categorized into two sets of forced and free labels based on the following
definition. Assume that y; is the location of ¢; in an optimal labeling of P. We define ¢; as a forced label if in every
optimal labeling, ¢; is located at y;, and it is said to be free, otherwise. In some labeling models (i.e., like 1P, 2P, 2PM
and r4PM), if the optimal label length is known in advance, the set of forced labels can be found easily. For example,
in a 2PM labeling of length o, the labels of every pair of points with distance less than « are forced. Consider a point
p, which one of its label candidates has an intersection with a forced label. Clearly, the other label candidate of p is
also forced. So, the set of forced labels can simply be calculated using a recursive algorithm.

The main idea of the total relabeling is as follows. First, construct a set of optimal label length candidates. Start with
the minimum candidate and construct the set of forced labels. Then, grow the label length, according to the candidates
list, and expand the set of forced labels until an unavoidable label intersection between forced labels occurs. Decrease
label length to remove the intersection and take this length as the optimal label length. Finally, relabel the unlabeled
points, which are not very close to each other, with a greedy algorithm. In this section, we consider the total relabeling
in the 2PM model in detail but, this method, with minor changes, can be applied to the 1P, 2P and r4PM models.

Consider an edge (p;, p;) in the edges of the adjacency graph with weight of 6 (i.e., 4(p;, p;) = 9). Labels of p;
and p; may touch each other in a valid optimal labeling only in the following two cases, referred to as touching cases:

(a) atlabel length 6, when both labels are attached on above or below of their related points and
(b) at label length ¢/2, where the lower point is attached to its label from bottom, and the other point is attached to
the top of its label.
Fig. 5 depicts these two cases.

In any optimal labeling, there is at least one pair of touching labels. So, this observation gives two possible candidates

for the optimal label length for each edge of £. For an edge (p;, p;) € £, denote these two candidates as 5141, ;j and 5,% j

where 51-1’ i< 5% j- Let I' be a sorted sequence of all possible label length candidates in ascending order.

The second case of the touching labels, as defined above, gives another clue: for any labeling with length greater
than A(p;, p;)/2, both p; and p; have only one valid way to be labeled, hence their labels are forced.

Moreover, if a forced label ¢; of length o intersects a label candidate of an unlabeled point, say ¢, then g looses the
intersecting candidate and hence its other label candidate will be forced. Obviously, this new forced label may force
other labels of its local neighbors, recursively. Assuming that the label length is o, let L(¢;, «) denote the set of all
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forced labels after forcing ¢;, and P (¢;, o) denote all points with forced labels in L(¢;, o). L(¢;, o) is called valid if it
has no pair of intersecting labels and also causes no intersection with other previously forced labels.

A forced label ¢; of length o may have enough room to expand. Assume that § > o be the smallest value in I" such
that L(¢;, o) = L(¢;, p). If L(¢;, p) is valid, then the following lemmas hold.

Lemma 28. L(¢;, ) C L(;, p), if u < p.

Lemma 29. There exists a directed edge (p;, px) € € where pj € P({;, o) and py ¢ P({;, «). Moreover, one of the
5}’,( or 55’,C is equal to f.

Proof. Obviously, if nosuchedge exists, L(¢;, o) = L(¢;, ) which contradicts the assumption. Also, the edge (p;, pk)
does not force £ at length o, but forces ¢, at length f5. So, one of the touching cases should occur at this edge, hence
one of its optimal label length candidates should be equal to 5. [

Using the above lemma, L(¢;, ) can be built by checking all outgoing edges of P (¢;, o) with one of its ol or &
values equals to f3, and inserting their forced label sets into L(¢;, o).

Let I' = (d;, da, ...). Also, assume that 7(d;) is the set of all edges generating d;. Obviously, for the label length of
dy, there is no forced label and all points may receive either of their label candidates. In step i, it is assumed that the
label length is incremented by a small value ¢, where d; + ¢ < d; 1. A labeling of length d; + ¢ exists for all points
if any directed edge (p;, px) in 7(d;) can be verified as follows, meaning that p; and py can be labeled with sizes of
d; + ¢ with no problem.

(a) Check: If both £ and ¢ are forced and they have intersection with each other for length d; + ¢ (i.e., 53‘ v =di),
the verification fails.

(b) Expand: If £; is forced and intersects with a label candidate of py, then the other label candidate of py is forced.
Formally, L (€, d; + ¢) should be calculated and inserted into the set of forced labels. If the new forced labels
have intersection with other forced labels, the verification fails.

(¢) New: If neither p; nor py has a forced label but form a touching case at label length d;, then build the forced sets
for both p; and py. If the new forced labels has any intersection, the verification fails.

(d) Success: In all other cases, the verification of the edge (p;, px) succeeds.

If all edges in 77(d;) are successfully verified, then a labeling of length d; + ¢ exists and it is easy to show that a labeling
of length d; 1 also exists.

When above algorithm finds an intersection in the ith iteration, then there exists a set of forced labels of length d;
and a set of unlabeled points. Since all unlabeled points have distances of at least d; from their neighbors, they can be
labeled with a simple heuristic: place a label of length d; above all unlabeled points.

Lemma 30. Given an adjacency graph of a set of n points P, the optimal labeling of P can be calculated in O(n)
time and O(n) space.

Proof. Each edge has two candidates in I" and may be verified at most two times in the algorithm. Moreover, each
edge may be considered once more whenever one of its end vertices is processed. Since each point has at most 11 local
neighbors, then each edge is considered at most O(1) times. Therefore, the overall time is O(n). U

After building a new labeling for P, the domino graph should also be updated.

Lemma 31. Having P, the optimal labeling and the adjacency graph, the updated domino graph DG, can be con-
structed in O(n) time.

Proof. To build DG, it is sufficient to check all labels and see if the flipped version of that label may satisfy any
edge condition of DG. Using the adjacency graph, possible intersections between any flipped label and its local
neighbors can be found in O(1) time, hence all possible intersections for the flipped version of n labels can be tested in
O(n) time. [
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Since the sorted list of the optimal label length candidates can be updated in O(Ign) using a balanced tree, the
following theorem can be concluded.

Theorem 32. Given a P and its adjacency graph, an optimal labeling of P can be constructed in O(n) time, with
O(nlgn) preprocessing time and O(n) space. Moreover, the domino graph of P can be constructed in O(n) time.

5. Conclusion

In this paper, we introduced the problem of label updating when a series of point-shaped obstacles are introduced on
random locations in a given map. We considered this problem in the 2PM and r4PM labeling models in three settings:
(1) (POAR) each obstacle is removed afterwards, (2) (POAS) obstacles remain on the map, and (3) (LOAS) obstacles
receive similar labels and remain on the map. We assumed that labels are only permitted to flip or resize to avoid the
obstacle(s) while maximizing the label length. In the POAR setting, we proposed an O(n?) preprocessing time with
an O(n) space preprocessing algorithm for the r4PM model to place an obstacle in O(Ign + k) time, where k is the
minimum number of label updates in the map. Then, we showed that using the specific properties of the 2PM model,
the processing time can be reduced to O(n Ign) time.

The solution of the POAS is based on the solution of the LOAS by assuming that the obstacles are special points with
zero-length labels. Both LOAS and POAS solutions use O(n) space and O(n Ign) preprocessing time. A new point
(i.e., an obstacle), in both settings, can be inserted into the map in O(lgn + k) time if £ label flips can make enough
room to place and/or label the new point. Otherwise, we suggested two O(n) time and space relabeling algorithms with
O(n 1gn) preprocessing time that generate a new optimal labeling with smaller labels for all current points in the map.

This problem can also be considered when a point is removed from the map that may cause label expansions. Also, it
is challenging to consider both point arrival and removals and come up with o(n lgn) algorithms for the general case.
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