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ABSTRACT

We consider an incremental optimal label placement in a
closed-2PM model where labels are disjoint axis-parallel
square-shaped of maximum length each attached to its cor-
responding point on one of its horizontal edges. Our goal is
to efficiently generate a new optimal labeling for all points
after each point insertion. Inserting each point may require
several labels to flip or all labels to shrink. We present
an algorithm that generates each new optimal labeling in
O(lg n + k) time where k is the number of required label
flips, if there is no need to shrink the label lengths, or in
O(n) time when we have to shrink labels. The algorithm
uses O(n) space in both cases.
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1. INTRODUCTION
Automated label placement is an important problem in
map generation and geographical information systems
(GIS). This is to attach one or more labels (regularly in
text) to each feature of the map, which may be a point, a
line, a curve, or a region. The point feature label place-
ment has received considerable attention. There are two
basic requirements of any labeling: labels should be pair-
wise disjoint, and each label should have a common point
with its feature [9, 19, 6]. Other variations of the problem
let the features to receive more than one labels [2, 10, 14],
or use specific shapes for labels [1, 8, 17, 16]. There are also
two labeling models: fixed model, where some fixed posi-
tions given as possible label positions [9], and slider model,
where the labels can be placed at any position while touch-
ing the feature[15, 7]. Optimal labeling of a set of points is
generally an NP-Complete problem, but with some restric-
tions, it can be solved in polynomial time like the problem
stated in [13] or the elastic labeling introduced in [4, 5].

We consider labeling of a set of points in the closed-2PM
model, a variation of the well known 2P model [1], where
labels are disjoint equal-length axis-parallel squares each
attached exclusively to its corresponding point on the mid-
dle of one of its horizontal edges (‘M’ in 2PM comes from

this property). In a closed-2PM labeling, two labels with
intersecting edges are not disjoint. A closed-2PM labeling
with the maximum label length is referred here as an opti-
mal labeling. We will show that the time required to gen-
erate an optimal labeling in closed-2PM model is Ω(n lg n)
in algebraic computational tree model.

In this paper, we study the problem of incremental labeling
where the goal is to insert a series of points, one at a time,
in an initial optimal labeling, such that an optimal labeling
is computed efficiently after each point insertion. A naive
strategy to achieve this goal is to generate a new optimal
labeling from scratch whenever a new point is inserted.
This can be done by deciding for existence of a fixed-length
labeling for all the given points by a transformation to
an instance of 2SAT problem. Since there are at most
O(n) possible values for all label lengths [18, 3], an optimal
labeling can be found with a binary search in O(n lg n)
time, noting that any instance of 2SAT problem can be
solved in O(n) time [1]. So, inserting n points in an empty
point set and generating an optimal labeling after each
insertion needs O(n2 lg n) time with this strategy.

The outline of our algorithm, presented in Sect. 3, is as
follows. Given a set of n points P, we compute some data
structures in O(n lg n) time to build an initial optimal la-
beling in O(n) time with a sweep line algorithm, intro-
duced in Sect. 2. For each new point, we update our data
structures and then decide if an optimal labeling of the
same length, including the new point, exists. This deci-
sion, in addition to generating an optimal labeling, takes
O(lg n + k) time where k is the number of changes that
should be applied to previously optimal labeling. Other-
wise, we use our updated data structures to generate a
new optimal labeling in O(n) time again with the sweep
line algorithm. By this approach, inserting n points to an
empty point set and generating an optimal labeling after
each point insertion, requires O(n2) time in the worst case,
but we expect a much better performance on the average.

2. CLOSED-2PM LABEL PLACE-
MENT PROBLEM
Given a set of n points P = {p1, p2, . . . , pn}, we define
a valid labeling of P as a placement of equal-length axis-
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parallel square-shaped labels L = {`1, `2, . . . , `n} such that
`i is attached to pi on the middle of its horizontal edges
and with no pairs of intersecting labels1. The length of L,
denoted by σ(L), is the (same) length of all labels in L. A
valid labeling with the maximum value of σ(L) is referred
to as an optimal labeling. Given P, the problem of finding
an optimal labeling is referred to as the closed-2PM label
placement problem.

The time needed to decide for existence of a labeling of a
given length for P is Ω(n lg n), since we can reduce the ε-
closeness problem to this problem as follows. Given a real
number ε and n real numbers φ1, φ2, . . . , φn, two numbers
φi and φj satisfying |φi−φj | < ε exist if and only if no valid
labeling of length ε for a set of n points P = {(φi, 0)|1 ≤
i ≤ n} exists.

2.1. Preliminaries
We define τ↑i (γ) (resp. τ↓i (γ)) as the label of length γ
attached to pi on the middle of its top (resp. bottom)
edge. Besides, τ↑i (resp. τ↓i ) is an abbreviation of τ↑i (σ(L))
(resp. τ↓i (σ(L))).

Assuming xi and yi are the coordinates of pi, we define the
distance of two points pi and pj as ∆(pi, pj) = max(|xi −
xj |, |yi − yj |). Moreover, η(pi) is denoted as the minimum
distance between pi and all points below pi. If there is no
point below pi then η(pi) is +∞. Obviously, the value of
η(pi) is also the maximum length of `i when τ↑i labels pi.
It is easy to verify that, if a valid labeling of length η(pi)
for all points below pi exists, then `i may intersect at most
four other labels, where their corresponding points are not
farther than 2η(pi) from pi.

We introduce a weighted and directed adjacency graph G
to look for possible label intersections when assigning a
label to a given point. Precisely, G = (V, E) where vi ∈ V
corresponds to pi ∈ P (1 ≤ i ≤ n) and a directed edge
(vi, vj) ∈ E exists if we have, (a) pi lies above pj (i.e.,
yi > yj), and (b) ∆(pi, pj) ≤ 2η(pi). Given a labeling
for all points below pi, τ↑i (or equally τ↓i ) may intersect at
most four other labels, so we only store four edges starting
at vi in E that corresponds to four nearest neighbors of
pi. Clearly, G has O(n) vertices and edges and can be
constructed in O(n lg n) time.

Our algorithm assigns labels to all points, one at a time,
and generates an optimal labeling after each label assign-
ment. Label candidates of each new point, may intersect
previous labels. To make room for the new label, we can
flip a series of labels, shrink all labels to a smaller length

1Recall that in closed-2PM model, two labels with touching
edges are intersecting.

Figure 1: A given labeled map and the conflict graph:
B edges (dashed), directed edges (solid).

or both. Maintaining the 2PM property, all points must
remain at the middle of one of horizontal edges of their
labels after doing each shrink or flip operation. A flipped
version of `i is denoted by f(`i) and `i resized to length α
is denoted by r(`i, α).

We present another special weighed and directed graph
called conflict graph to represent all possible flip and resize
operations of a given labeling [11, 12]. For clarity, we define
the conflict graph precisely and briefly in the following.

For a given L, the conflict graph H = (W,F ∪ B) is a
weighted and directed graph where each wi ∈ W corre-
sponds to pi ∈ P (1 ≤ i ≤ n). There is a directed edge
(wi, wj) if f(`i) intersects `j . Moreover, (wi, wj) ∈ B if
f(`i) also intersects f(`j) and (wi, wj) ∈ F if f(`i) is dis-
joint from f(`j). A directed path of edges in F represents
a series of label flips and an edge in B represents when no
more flipping is reasonable. Since all edges in B are re-
flective (i.e., if (wi, wj) ∈ B then (wj , wi) ∈ B), we show
and treat edges in B as undirected edges. An example of a
conflict graph is shown in Fig. 1.

The weight of (wi, wj) ∈ F ∪B, which is the optimal label
length resolving the intersection of f(`i) and `j is denoted
by te(wi, wj) without any further label flips. If no flipping
is allowed, the intersection of f(`i) and `j can be resolved
by shrinking both labels to a suitable length. te(wi, wj) is
the maximum value of ρ where r(f(`i), ρ) does not intersect
r(`j , ρ).

The vertex weight of wi in H, denoted by tv(wi), is the
length of an optimal labeling, if `i is forced to flip. To
define tv(wi) precisely, we consider these three cases:

1. If wi has no outgoing edge, then tv(wi) is σ(L) since
f(`i) has no intersection with other labels.



2. If wi has no outgoing edge in F , then flipping `i causes
no more label flips. Hence tv(wi) is the minimum edge
weight among all edges in B attached to wi.

3. Otherwise, we need to consider any label intersection
corresponding to an outgoing edges of wi. We de-
fine a function h(wi, wj) representing the optimal la-
bel length resolving the intersection of f(`i) and `j .
If (wi, wj) ∈ B, h(wi, wj) is te(wi, wj) which is the
maximum shrink length to make f(`i) and `j dis-
joint. But if (wi, wj) ∈ F , we can either shrink all
labels to te(wi, wj) or flip `j and generate a label-
ing of length tv(wj). Hence, h(wi, wj) for F edges
is max(te(wi, wj), tv(wj)). Finally, tv(wi) is the min-
imum value of h function over all outgoing edges of
wi.

2.2. Properties of 2PM Label Placement
Let L be an optimal labeling of P with length γ = σ(L) and
pn+1 = (xn+1, yn+1) be an unlabeled point that lies above
all points in P. Also, let L+ be an optimal labeling of P+ =
P ∪ {pn+1} with length γ+. The following lemmas, which
are concluded directly from the vertex weight definition of
H, form the main ideas of our algorithm.

Lemma 1 There exists an optimal labeling for P+ in
which τ↓n+1(γ

+) is attached to pn+1.

Lemma 2 If all labels intersecting τ↓n+1(γ) have vertices
of weight greater than or equal to γ, then there exists an
optimal labeling of length γ where τ↓n+1(γ) is attached to
pn+1.

Obviously, if τ↓n+1(γ) intersects `i where tv(wi) < γ, then
γ+ < γ. To resolve this intersection, we can either shrink
all labels to a length ∆(pn+1, pi) or flip `i to generate a
labeling of length tv(wi). So, the length of the resulting is
h′(pn+1, pi) = max(∆(pn+1, pi), tv(wi)). Therefore,

Lemma 3 If τ↓n+1(γ) intersects a label with vertex of
weight less than γ, then γ+ is the minimum value of h′

function over all such intersecting labels.

The above lemmas give a bottom-edge labeling scheme for
labeling a set of points from bottom to top. Lemma 1
and 2 give the clue to attach each new label on its bottom
edge to its corresponding points and, Lemma 3 reveals the
required conditions for flipping down a series of labels. The
key property of the above scheme is that no label will be
flipped twice, since by flipping up a label (i.e., the second

flip of a label), a series of label flips is generated that may
introduce some intersections with other labels, that can
only be resolved with further label shrinks. So:

Lemma 4 In the bottom-edge labeling scheme, no label
flips more than once.

Doing a series of label flips to make room for the label
of the newly inserted point, invalidates some previously
calculated vertex weights in the conflict graph. Lemma 5
and Lemma 6 show that these invalidated vertex weights
are not required to be re-calculated.

Lemma 5 In the bottom-edge labeling scheme, the vertex
weights of flipped labels are not required to be updated.

Proof. According to Lemma 4, a flipped label will not be
flipped any further. Hence its vertex weight will never be
used during the calculation of h′ function in Lemma 3. ¤

Lemma 6 Given an optimal labeling L, if there is a di-
rected downward path from wi to wj with F edges, then
after flipping `j, tv(wi) requires no update.

Proof. Considering L, if flipping `i does not force `j to
be flipped to generate an optimal labeling, then flipping `j

has no effect on tv(wi). Otherwise, consider a path π of
edges in F from wi to wj . The last edge of π, say (wk, wj),
will be removed from F after flipping `j . Hence, the value
of tv(wk) may increase since a constraint in calculation of
tv(wk) is removed. The vertex weights of all vertices on π
from wk to wi may also increase, if tv(wk) is increased. De-
note the new weight of tv(wi) by t′v(wi). If tv(wi) = t′v(wi)
then the flipping of `j has no effect on tv(wi). Otherwise,
it is easy to see that tv(wi) = tv(wj). So, we already have
an optimal labeling of length at most tv(wj) after flipping
`j . This way, updating tv(wi) to a value greater than the
current label length is not necessary. ¤

2.3. The Closed-2PM Label Placement
Algorithm
The basic idea of the bottom-edge labeling scheme is to
stop a horizontal sweep line at y-coordinate of each point
in the ascending order and label that point with the cur-
rent optimal label length (Lemma 1 and Lemma 2). This
may cause other intersecting labels to flip down which may
occur at most once per label (Lemma 4), or all labels to
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Figure 2: (a) Inital placement of the new label. (b)
Labeling after resolving the intersection.

shrink (Lemma 3) without the need to have other vertex
weights updated (Lemma 5 and Lemma 6).

The inputs to the closed-2PM label placement algorithm
are a sequence of n points sorted according to their y-
coordinates in ascending order, and the adjacency graph
G of P. Without loss of generality, we assume y1 ≤ y2 ≤
. . . ≤ yn. Initially, an optimal labeling of the first three
points (i.e., p1, p2 and p3) is calculated. Assuming that
Li−1 = {`1, `2, . . . , `i−1} is an optimal labeling for Pi−1 =
{p1, p2, . . . , pi−1}, a sweep line stops at each yi (i > 3),
and generates an optimal labeling Li for Pi as follows:

1. Let γi = min{{γi−1}∪{h′(wi, wj)|τ↓i (γi−1)∩`j 6= ∅}}
(Lemma 1, 3).

2. If γi = γi−1 then pi can be labeled by τ↓i (γi−1)
(Lemma 2).

3. Else generate a labeling of length γi [12].

4. Add pi to Hi−1 and build Hi.

In the first step, building the set of labels intersecting
τ↓i (γi−1) can be done in O(1) time by visiting the edges
in G attached to vi. Other steps are done in O(1) amor-
tized time since no label flips more than once (Lemma 4).
Hence, the algorithm needs O(n) time to generate an op-
timal labeling. Fig. 2 shows the algorithm in action.

The following theorem states the main result of this sec-
tion.

Theorem 1 For a given sequence of points sorted by their
y-coordinates and the adjacency graph G of P, an optimal
labeling L can be found in O(n) time.

3. INCREMENTAL ALGORITHM
Given P, we build the adjacency graph G of P in O(n lg n)
and build an optimal labeling of P in O(n) with the closed-
2PM label placement algorithm.

Suppose a new point pn+1 is inserted in P . This point
should be optimally labeled and the previously optimal
labeling L should also be updated to L+. It is easy to
see that a new vertex can be inserted in both G and H
graphs and updated graphs can be constructed in O(lg n)
time after each insertion.

We now show that in O(lg n + k) time we can verify the
existence of a series of k label flips that makes room for
the new label of the same length. This can be done by
checking each label candidate (i.e., τ↑n+1 and τ↓n+1) of pn+1.

To check a candidate, say τ↑n+1, we should find and flip all

labels intersecting with τ↑n+1. These label flips may cause
intersections with other labels and force them to flip and
this may cause domino effect. If all these flips are possible,
then we have found a series of label flips that makes room
for τ↑n+1. This can be done in time proportional to the
number of flipped labels. The same procedure can be used
to check τ↓n+1.

Since there are two candidate labels for each new point,
we need to check both of them that may need O(n) total
time in the worse case. So, we need to concurrently check
both candidates with a BFS-like algorithm such that the
number of processed labels for each candidate differ in at
most one (i.e., process one label from the BFS queue of each
candidate, alternatively). Hence, we can stop the checking
procedure(s) when one of them finds a series of label flips.
Therefore, we can generate a labeling of the same length
in time O(k) where k is the number of flipped labels.

If no such labeling exists, (i.e., σ(L+) < σ(L)), a new opti-
mal labeling can be generated in O(n) time with the 2PM
label placement algorithm discussed above. Therefore:

Theorem 2 Given an optimal labeling in closed-2PM
model and a new unlabeled point, the algorithm generates
an optimal labeling of the same length in O(lg n + k) time
where k is the number of label flips, if such a labeling ex-
ists. Otherwise a new optimal labeling can be found in O(n)
time.

4. CONCLUSION
In this paper, we considered an incremental optimal la-
bel placement in a closed-2PM model where labels are
non-intersecting axis-parallel square-shaped of maximum
length each attached to its corresponding point on one of its



horizontal edges. Given an initial point set, we presented
an algorithm that efficiently generates a new optimal label-
ing for all points which is capable of optimally label a series
of new points, one at a time. Using O(n) space, our algo-
rithm generates each new optimal labeling in O(lg n + k)
time where k is the number of required changes to the orig-
inal labeling, if there is no need to shrink labels, or in O(n)
time otherwise.
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