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Abstract. In this paper, we extend the Rent Sharing problem to the case that
every room must be allocated to a group of agents. In the classic Rent Sharing
problem, there are n agents and a house with n rooms. The goal is to allocate one
room to each agent and assign a rent to each room in a way that no agent envies
any other option. Our setting deviates from the classic Rent Sharing problem in a
sense that the rent charged to each room must be divided among the members of
the resident group.
We define three notions to evaluate fairness, namely, weak envy-freeness, aggre-
gate envy-freeness and strong envy-freeness. We also define three different poli-
cies to divide the cost among the group members, namely, equal, proportional,
and free cost-sharing policies.
We present several positive and negative results for different combinations of the
fairness criteria and rent-division policies. Specifically, when the groups are pre-
determined, we propose a strong envy-free solution that allocates the rooms to
the agents, with free cost-sharing policy. In addition, for the case that the groups
are not pre-determined, we propose a strong envy-free allocation algorithm with
equal cost-sharing policy. We leverage our results to obtain an algorithm that
determines the maximum total rent along with the proper allocation and rent-
division method.
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1 Introduction

Envy-freeness is a famous notion and a central concept studied extensively since 1960’s
in the literature of economics [1–8]. An allocation is envy-free, if every agent prefers
his allocated share to that of other players.

Envy-free resource allocation is studied for various types of resources. In the setting
we study, the resources are a set of indivisible goods (rooms) along with one divisible
bad (money). Although there are many different real-life applications that fit into this
setting, here, we use the terminology of Rent Sharing. In the well known Rent Sharing
problem, n agents are willing to rent a house with n rooms, and one seeks to some-
how allocate the rooms to the agents and determine the rent of the rooms so that each
agent prefers his own option. The challenge in this problem is that the rooms are het-
erogeneous and the agents have different valuations over the rooms. Thus, to maintain
fairness, the rent must be wisely divided.



Formally, let H be a house with n rooms and let vi,j be the value of room j for
agent ai. The utility of ai for renting room j at price rj is ui,j = vi,j − rj . Agent ai
(weakly) prefers room j to k, if ui,j ≥ ui,k. In the Rent Sharing problem, we would
like to charge a rent to each room and allocate one room to each agent, such that the
resulting allocation preserves envy-freeness, i.e., every agent prefers his option. The
most interesting aspect of the Rent Sharing problem is that with mild assumptions, an
envy-free solution is always guaranteed to exist.

The existence of an envy-free solution for the Rent Sharing problem is proved by
Su [8]. In addition, Aragones [9] proposed a polynomial time algorithm to find an envy-
free solution. The solution is not necessarily unique, and there may be several envy-free
allocations. Therewith, we can optimize other objectives among the feasible solutions.
For example, Gal, Mash, Procaccia, and Zick [6] consider the problem of finding an
envy-free solution that maximizes the value of agent with the minimum utility to his
room (maximin solution).

The basic assumption in the classic Rent Sharing problem is that every room must
be allocated to a single agent. However, there are situations that this assumption is no
longer applicable. For example in dormitories, each room is allocated to a group of
students. As another example (albeit, not in the terminology of Rent Sharing) think of
the following scenario: a set of n tasks that must be performed by a set of workers
having different skills and interests. In order to perform each task, we must assign it
to a group of workers. How can we fairly assign the tasks to the groups and pay the
agents? One can think of tasks as rooms and workers as agents and their salary as their
rent share.

In such situations, a new challenge arises: the agents within a group may have di-
verse valuations, i.e., a room might be acceptable to some of the agents in a group but
not by the others. In this paper, our goal is to discuss such situations.

Many previous studies consider the fair division problem among groups of agents
[10–17]. The groups can be either pre-determined or be formed by the algorithm. The
majority of the article focuses on the case that the groups are pre-determined. In this
model, there is a set G of groups, with each group gi consisting of mi agents and each
agent having a value function over the rooms. Our goal is to fairly allocate a room to
each group and divide the rent among the agents. We name this problem Group Rent
Sharing.

In Section 2.1, we introduce three notions for evaluating fairness: aggregate envy-
freeness, weak envy-freeness, and strong envy-freeness. Recall that every solution for
the Group Rent Sharing problem must determine a method by which the rent is divided
among the residents of a room. We name this dividing method cost-sharing policy. In
Section 2.2, different possible policies and their relations to various fairness criteria are
discussed. We define three policies: equal, proportional and free and study the consis-
tency of these policies and fairness notions.

After all we consider the case where the groups are not pre-determined. In this case,
the allocation algorithm must also partition the agents into groups. We propose a strong
envy-free allocation with an equal cost-sharing policy in Section 4.

As in the classic rent sharing problem, along with fairness, we can consider optimiz-
ing other objectives. Here, we seek to maximize the total rent. Note that the allocation



must be individually rational, i.e., the utility of every agent in the final solution must be
non-negative. The summary of our results for different fairness criteria and cost-sharing
policies can be found in Table 2.

1.1 Related Works

Previous works that are related to ours fall into two categories: a stream of studies on
the Rent Sharing problem and the works that consider fair division among groups.

Fair division of resources is widely studied in the context of economics and mathe-
matics where the problem mostly considers cases with either single divisible item (also
known as cake-cutting)[18, 19, 5, 4, 7, 20, 21], or a set of indivisible items [22–28]. In
addition, a combination of these two settings is studied, where there is a set of indivisi-
ble items together with a single divisible resource. The rent division problem is, in fact,
a combination of a divisible resource (money) and a set of indivisible items (rooms).

The problem of fairly dividing indivisible items with money was firstly introduced
by Alkan, Demange, and Gale [22]. They show that for a sufficiently large amount of
money, an envy-free allocation exists. They also suggest optimizing other objectives
over myriad possible envy-free solutions. Specifically, they introduce the money Rawl-
sian solution in which the goal is to maximize the minimum money taken from every
agent. Aragones [9], suggests an algorithm for computing a money Rawlsian envy-
free solution in polynomial time. He also shows that every envy-free solution preserves
envy-freeness if we re-allocate the rooms by the welfare-maximizing allocation.

Su [8] explains the Sperner’s Lemma and describes its applications to fair divi-
sion problems. Especially, he investigates the Rent Sharing problem and used Sperner’s
Lemma to show the existence of an envy-free allocation. Procaccia, Velez, and Yu [29]
extend the classic rent sharing problem by considering a budget for each agent. They
study the conditions under which an envy-free allocation with given budget constraints
is possible and propose an algorithm to find one. Gal, Mash, Procaccia, and Zick [6]
have recently conducted a study on finding equitable and maximin envy-free alloca-
tions. The former is the envy-free allocation that minimizes the disparity (the maximum
difference) of the agents’ utilities and the latter aims to maximize the minimum utility
of the agents. They show that a maximin allocation is also equitable. Then, they propose
an LP-based method to compute these allocation in polynomial time.

Some works consider the fair allocation problem among groups or families, for
example Segal-Halevi and Nitzan [11] consider the proportional allocation for the case
that the resource must be divided among families. They introduce three notions to evalu-
ate fairness for this case, namely, Average, Unanimous and Democratic proportionality
and show various results for these notions. Chan et.al. [10] consider the Rent Sharing
problem for the case where every room must be allocated to 2 agents. In their model,
the groups are not known in advance. They define various solution concepts and study
the complexity of their corresponding search problem. In contrast to our work, they do
not consider any cost-sharing policy.

From a practical point of view, there are a considerable number of empirical studies
that consider notion of fairness between groups rather than individuals [12–15, 30],
mostly in the context of ultimatum games.



2 Model Definition and Preliminaries

We refer to the rooms by their indices and denote the set of Groups by G = {g1, g2, . . . , gn}.
Furthermore we suppose that each group gi consists of mi agents and denote the j’th
agent of gi by ai,j . The value of room k for agent ai,j is denoted by vi,j,k. In this paper
we suppose that the valuations are normalized, so that for each agent ai,j ,

∑
k vi,j,k =

1
mi

. Hence, the total value of each group for the house is 1. In the Group Rent Sharing
problem, we seek to find a triple S = (A,R,D) where:

– A : G → [n] III is a bijection that allocates one room to each group.
– R : [n]→ R≥0 is a rent division function that determines the rent of each room.
– D : (N , [n]) → R IV, is a cost-sharing function where D(ai,j , k) determines

the cost assigned to agent ai,j for living in room k. Each cost-sharing function
must have the property that the total amount of cost assigned to each group a
room must be exactly equal to the rent determined for that room, i.e., for all i,∑mi

j=1D(ai,j , k) = R(k) for every k. We use di,j,k to refer to the value ofD(ai,j , k).

We refer to such a triple as allocation-triple. Roughly, in every allocation-triple, one
should determine the room that must be allocated to each group (A), the rent charged
to each room (R) and the way that rent is divided among the agents in each group for
each room (D).

When the groups are not pre-determined, we suppose that N is the set of agents
and the allocation algorithm must determine a quadruple S = (B,A,R,D), where B
is a function that allocates a group to each agent. The allocation function B has the
restriction that each group must contain exactly m agents. Functions A, R, and D are
defined similar to the Group Rent Sharing problem.

2.1 Fairness Criteria

Our goal in this section is to extend the notion of envy-freeness to the case that every
room must be allocated to a group of agents. For this, we define three notions to evaluate
fairness: aggregate envy-freeness, weak envy-freeness, and strong envy-freeness. Fix an
allocation-triple S = (A,R,D) (or quadraple S = (B,A,R,D) when the groups are
not pre-determined). Denote by ui,j,k, the utility of agent ai,j , if room k is allocated to
group gi, regarding cost-sharing function D, i.e., ui,j,k = vi,j,k − di,j,k. In this paper,
we consider the allocation triples which are individual rational, meaning that every
agent recieves a non-negative utility.

Definition 1. S is weak envy-free, if for every k, there exists at least one agent in room
k that does not envy any other option.

In other words, S is weak envy-free if for each group gi, at least one agent ai,j in
gi does not envy any other room, which means for all k 6= A(gi) we have ui,j,A(gi) ≥
ui,j,k.

III [n] refers to the set {1, 2, . . . , n}.
IV N =

⋃
i,j ai,j



One shortcoming of this notion is that it does not consider the preferences of every-
one and hence, an allocation may be unfair to all the agents in a group except one. Our
next notion seeks to somehow resolve this issue.

Definition 2. S is aggregate envy-free, if the total utility of agents in each room is at
least as large as their total utility for any other room, i.e., for every group gi,∑

j

ui,j,A(gi) ≥
∑
j

ui,j,k ∀k.

To put it simply, if we consider each group gi as an agent ai with value
∑

j vi,j,k for
each room k, we want to find an envy-free solution for the classic Rent Sharing problem
with agents {a1, a2, . . . , an} and rooms in H. In fact, this notion takes the aggregate
utility of a group into account, instead of considering only one agent from each group.
However, the aggregate utility of a group does not capture the utility of every individual,
i.e., some of the agent may still be unsatisfied. In the strong envy-free notion, we desire
to satisfy all the agents.

Definition 3. S is strong envy-free, if for each agent ai,j and every k 6= A(gi),

ui,j,A(gi) ≥ ui,j,k.

2.2 Cost-sharing

Recall that in the classic Rent Sharing problem, we desire to charge a rent to each room.
For the Group Rent Sharing problem, in addition to a method for dividing the rent, we
need to formulate a policy to split the rent among the agents in each room. As mentioned
before, we denote such a policy by D. In this section, we discuss on different possible
polices for dividing the rent of a room among the resident agents.

The first and the easiest solution that immediately bears in mind, is to split the rent
equally among the agents in each group. We name such a cost-sharing policy, equal
cost-sharing.

Definition 4. A cost-sharing policy D is equal, if the cost assigned to each agent for
a room equals to his roommates, i.e., for each group gi and each room k and agents
aj , aj′ we have di,j,k = di,j′,k.

Even though this policy seems natural, considering the fact that the agents in one
group may have diverse interests in a room, rent discrimination would be more rea-
sonable. One idea is that each agent pays a price proportional to his valuation for that
room.

Definition 5. A cost-sharing policy D is proportional, if for each group gi, agent ai,j
pays the rent di,j,k =

vi,j,k
Vi,k
R(k) for room k, where Vi,k =

∑
j′ vi,j′,k. V

V Note that if Vi,k = 0, by individual rationality,R(k) = 0 and no agent has to pay any cost.



As we discuss in Section 3, the proportional cost-sharing policy is inconsistent to
strong envy-freeness, i.e., there are cases that no strong envy-free allocation exists with
respect to proportional cost-sharing policy.

The final policy we introduce considers no restriction on the rent charged to each
agent for each room. We call such a method free cost-sharing policy. The only criterion
for a free cost-sharing policy is that the total payment of the agents in each group for
a specific room must sum up to the rent fixed for that room. The main results of this
paper are concerned with the strong envy-freeness and free cost-sharing policy. Prior to
explaining our main results, we will justify the model and subsequently introduce some
possible and impossible results in pertaining to our model.

3 Pre-determined Groups

As elaborated earlier, our model comprises two essential ingredients: the fairness crite-
rion and the cost-sharing policy. In this section, we shed light on the relation between
these two components. To do so, we define the concept of consistency.

Definition 6. A fairness criterion F is consistent with cost-sharing function D, if for
every instance of the Group Rent Sharing problem, an allocation-triple S with cost-
sharing function D exists, such that S preserves F .

In Lemmas 1 and 2, we show, through counter-examples, that some fairness criteria
and some cost-sharing policies are inconsistent.

Lemma 1. For the case that the groups are pre-determined, the equal cost-sharing
policy and strong envy-freeness are inconsistent.

Proof. Consider the following instance: let |G| = 2n, gi = {ai,1, ai,2} and there are
2n rooms. Furthermore, suppose that the valuations of the agents in each group gi are
as follows:

vi,1,k =

{
1
3n k ≤ n
1
6n k > n

vi,2,k =

{
1
6n k ≤ n
1
3n k > n

Consider an arbitrary rent division function R. Due to the symmetric construction
of the valuations, we can observe w.l.o.g. that the room 1 is the one with the maximum
rent and is assigned to g1. Let p = R(1) be the maximum rent. Considering the fact that
the cost-sharing policy is equal, the utility of the agents in g1 would be u1,1,1 = 1

3n −
p
2

and u1,2,1 = 1
6n −

p
2 . Note that the rent assigned to room i ≤ n must exactly equal p.

Otherwise, agent a1,1 envies that room. Now, suppose thatR(2n) = q. Thus, the utility
of the agents in group g1, when room 2n is allocated to g1 would be u1,1,2n = 1

6n −
q
2

and u1,2,2n = 1
3n −

q
2 . Since we intend our allocation to be strong envy-free, we have:

u1,1,1 ≥ u1,1,2n ⇒
1

3n
− p

2
≥ 1

6n
− q

2
(1)

u1,2,1 ≥ u1,2,2n ⇒
1

6n
− p

2
≥ 1

3n
− q

2
(2)

(1), (2)⇒ q ≥ p (3)



As p is the maximum rent:

⇒ q = p (4)

(2), (4)⇒ 1

n
≤ 0

Which contradicts n > 0.

The counter-example described in the proof of Lemma 1 is independent of R which
means even for a very large amount of rent, a strong envy-free allocation-triple with
the equal cost-sharing policy is impossible. In Lemma 2, we show that the proportional
cost-sharing policy and strong envy-freeness are also inconsistent.

Lemma 2. For the case that the groups are pre-determied, the proportional cost-sharing
policy and strong envy-freeness are inconsistent.

Due to lack of space, we omit the proof of Lemma 2VI but, to give an intuition, take into
account the following instance: let |G| = 3 and let gi = {ai,1, ai,2}. Moreover, suppose
that the valuation functions of the agents are as in Table 1. As we illustrate in the
proof of Lemma 2, for this instance, no allocation of rooms can guarantee strong envy-
freeness with the proportional cost-sharing policy. To show this, we consider different
allocation possibilities and show that in each of them, at least one agent envies another
choice.

Table 1: Valuation of the agents
1 2 3

a1,1 0 3/8 1/8
a1,2 3/8 0 1/8
a2,1 0 0 1/2
a2,2 1/2 0 0
a3,1 0 1/4 1/4
a3,2 0 1/4 1/4

Observation 1 Aggregate envy-freeness is implied by strong envy-freeness . Further-
more, aggregate envy-freeness implies weak envy-freeness.

In Lemmas 3 and 4, we show that both equal and proportional cost-sharing policies
are consistent to aggregate envy-freeness. Moreover, Considering Observation 1, both
the policies are consistent to weak envy-freeness as well.

Lemma 3. The equal cost-sharing policy and aggregate envy-freeness are consistent.

Lemma 4. The proportional cost-sharing policy and aggregate envy-freeness are con-
sistent.

The general idea behind proving both Lemmas 3 and 4 is to build a classic Rent
Sharing problem by aggregating the valuations of the agents in each group and then
showing that dividing the rent by each of these two policies preserves aggregate envy-
freeness for every group.
VI We refer the reader to the full version of the paper for this proof.



3.1 Strong Envy-freeness and Free Cost-sharing

This section deals with the results surrounding the strong envy-free allocations with
the free cost-sharing policy. As described in Section 3, proportional and equal cost-
sharing policies are not consistent with strong envy-freeness. Here, we show that with
the free cost-sharing policy, one can find a strong envy-free allocation (Lemma 3). Our
assumption in this section is that the groups are known in advance. However, the results
can be trivially extended to the case that the groups are not pre-determined.

We start this section with Observation 2, which indicates that increasing the rent for
all the agents preserves envy-freeness. We use Observation 2 as a basis upon which the
proof of Theorem 3 is obtained.

Observation 2 Let S = (A,R,D) be a strong envy-free allocation-triple and let c be
a constant. Furthermore, let S∗ = (A,R∗,D∗) be an allocation-triple such that for all
k, R∗(k) = R(k) + c and for every agent ai,j , d∗i,j,k = di,j,k + c

mi
. Then, S∗ is also

strong envy-free.

Theorem 3. Strong envy-freeness is consistent with the free cost-sharing policy.

Proof. Consider a proxy agent ai for each group gi and set the valuation of ai for room
k as vi,k =

∑mi

j=1 vi,j,k. Now, consider the classic Rent Sharing problem instance
with agents a1, a2, . . . , an and house H. We know that the utility of ai for room k
is ui,k = vi,k − R(k). On the other hand, we know that an envy-free allocation for
this instance always exists [8]. Thus, we can find an allocation A∗ and a rent division
function R∗ such that for each proxy agent ai and any k 6= A∗(gi), ui,A∗(gi) ≥ ui,k,
which means vi,A∗(gi)−R∗(A∗(gi)) ≥ vi,k−R∗(k). By definition, for all k 6= A∗(gi),

mi∑
j=1

vi,j,A∗(gi) −R
∗(A∗(gi)) ≥

mi∑
j=1

vi,j,k −R∗(k). (5)

Now, consider the allocation-triple S∗ = (A∗,R∗,D∗), where the cost-sharing func-
tion D∗ is determined as follows:

d∗i,j,k = vi,j,k −
∑mi

t=1 vi,t,k −R∗(k)
mi

(6)

Note that
∑

j d
∗
i,j,k = R∗(k). We claim that S∗ is strong envy-free. To show this, take

an arbitrary agent ai,j . We have ui,j,k = vi,j,k − d∗i,j,k, which means

ui,j,k = vi,j,k − (vi,j,k −
∑mi

t=1 vi,t,k −R∗(k)
mi

).



Notice that ui,j,A∗(gi) = vi,j,A∗(gi) − d∗i,j,A∗(gi). Regarding Equation (6),

ui,j,A∗(gi) = vi,j,A∗(gi) −
(
vi,j,A∗(gi)

−
∑mi

t=1 vi,t,A∗(gi) −R∗(A∗(gi))
mi

)
=

∑mi

t=1 vi,t,A∗(gi) −R∗(A∗(gi))
mi

≥
∑mi

t=1 vi,t,k −R∗(k)
mi

≥ vi,j,k − (vi,j,k −
∑mi

t=1 vi,t,k −R∗(k)
mi

)

≥ vi,j,k − d∗i,j,k = ui,j,k

Thus far, we’ve shown that S∗ is strong envy-free. However, in S∗, there may be agents
with negative utilities. Let umin = mini,j vi,j,A∗(gi)−d∗i,j,A∗(gi) and let Z = maxi |gi|.
Note that if umin > 0, then the individual rationality constraint has already fulfilled.
Otherwise, let R∗∗ be the rent function such that for every room k, r∗∗(k) = r∗(k) +
umin · Z and let D∗∗ be a function such that for all i, j, k, d∗∗i,j,k = d∗i,j,k + Z·umin

|gi| .

By Observation 2, D∗∗ is also strong envy-free with nonnegative utilities and hence
guarantees individual rationality. In summary, value of d∗∗i,j,k would be

vi,j,k −
∑mi

t=1 vi,t,k −R∗(k)
mi

+
Z · (minw,t vw,t,A∗(gw) − d∗w,t,A∗(gw))

|gi|
.

In light of Theorem 3, we can present an algorithm for computing a strong envy-free
allocation-triple. We already know that a solution to the classic rent sharing problem
can be found in polynomial time. All the other steps described in Theorem 3 can be
easily implemented in polynomial time. Thus, a strong envy-free solution with the free
cost-sharing policy can be found in polynomial time.

The idea to find a solution with maximum possible total rent is inspired by [6]. Let
A∗ be an allocation, which is welfare-maximizing. In [6], it is shown that if an envy-free
solution exists with arbitrary allocation function A and rent sharing function R, then
the pair A∗ and R is also envy-free. In Theorem 4, we use a generalized form of this
statement to obtain a strong envy-free allocation. In fact, we show that if S = (A,R,D)
is a strong envy-free allocation-triple, then so is S ′ = (A∗,R,D).

Theorem 4. A strong envy-free allocation-triple with the free cost-sharing policy that
maximizes total rent can be found in polynomial time.

Proof. Recall the definition of proxy agent from the proof of Theorem 3 . An allocation
A is welfare-maximizing, if it maximizes value of the following expression:

|G|∑
i=1

mi∑
j=1

vi,j,A(gi) =

|G|∑
i=1

vi,A(ai).



Such an allocation can be found in polynomial time by finding a maximum weighted
matching in the bipartite graph representing the tendency of the proxy agents to the
rooms, i.e. the weight of the edge between proxy agent i and room k is

∑mi

j=1 vi,j,k.
Now, consider the pseudo-code described in Algorithm 1. The algorithm begins with
computing a welfare-maximizing allocation of the rooms to the proxy agents. Let A
be the welfare-maximizing allocation. we find the desired allocation-triple by solving a
linear program described in Algorithm 1, which computes the envy-free allocation with
the maximum possible price. In this LP , the first set of constraints ensures that the sum
of the costs assigned to the agents in each group is equal to the room rent. The second
set of constraints guarantee strong envy-freeness and the third set ensures the individ-
ual rationality condition. Theorem 3 ensures that the LP described in Algorithm 1 is

ALGORITHM 1: Strong envy-free allocation with maximum rent
(1) Let A be a welfare-maximizing allocation
(2) Compute a rent divisionR and cost-sharing function D by the linear program

max

n∑
k=1

mk∑
j=1

dk,j,A(k)

s.t.

Rk =

mi∑
j=1

di,j,k ∀i, k

vi,j,A(gi) − di,j,A(gi) ≥ vi,j,k − di,j,k ∀i, j, k
vi,j,A(gi) − di,j,A(gi) ≥ 0 ∀i, j

feasible. However, we still must overcome a technical hurdle: we did not show that the
allocation-triple suggested by Algorithm 1 is the one that maximizes the total rent. In
fact, by Algorithm 1 we find a solution that maximizes the total rent among the solu-
tions with welfare-maximizing allocation functions. But the allocation-triple with the
maximum possible total rent may be obtained by some other allocation functions. Let
S = (A,R,D) be the optimal strong envy-free solution and let A∗ be the welfare-
maximizing allocation. By strong envy-freeness we know

vi,j,A(gi) − di,j,A(gi) ≥ vi,j,k − di,j,k ∀i, j, k. (7)

By summing over all agents in group gi, for all i, k we have:

mi∑
j=1

vi,j,A(gi) −R(A(gi)) ≥
mi∑
j=1

vi,j,k −R(hk). (8)



Since Equation (7) holds for all k 6= A(gi), it also holds for room A∗(gi). Therefore,
for all gi we have:

mi∑
j=1

vi,j,A(gi) −R(A(gi)) ≥
mi∑
j=1

vi,j,A∗(gi) −R(A
∗(gi)). (9)

Summing Inequality (9) over all the groups yields:

|G|∑
i=1

mi∑
j=1

vi,j,A(gi) −
|G|∑
k=1

R(A(gi))

≥
|G|∑
i=1

mi∑
j=1

vi,j,A∗(gi) −
|G|∑
k=1

R(A∗(gi)).

Since both A and A∗ are bijections, we have

|G|∑
k=1

R(A(gi)) =
|G|∑
k=1

R(A∗(gi)). (10)

Hence,
|G|∑
i=1

mi∑
j=1

vi,j,A(gi) ≥
|G|∑
i=1

mi∑
j=1

vi,j,A∗(gi). (11)

By definition of welfare-maximizing allocation,

|G|∑
i=1

mi∑
j=1

vi,j,A(gi) ≤
|G|∑
i=1

mi∑
j=1

vi,j,A∗(gi),

|G|∑
i=1

mi∑
j=1

vi,j,A(gi) =

|G|∑
i=1

mi∑
j=1

vi,j,A∗(gi). Inequality (11)

Regarding Equation (10),

|G|∑
i=1

mi∑
j=1

vi,j,A(gi) −
|G|∑
i=1

R(A(gi))

=

|G|∑
i=1

mi∑
j=1

vi,j,A∗(gi) −
|G|∑
i=1

R(A∗(gi)). (12)

Equality (12) together with Inequality (9) results in the following expression for all i:
mi∑
j=1

vi,j,A(gi) −R(A(gi)) =
mi∑
j=1

vi,j,A∗(gi) −R(A
∗(gi)),

mi∑
j=1

vi,j,A(gi) −
mi∑
j=1

di,j,A(gi) =

mi∑
j=1

vi,j,A∗(gi) −
mi∑
j=1

di,j,A∗(gi). (13)



In addition, since Inequality (7) holds for every room k,

vi,j,A(gi) − di,j,A(gi) ≥ vi,j,A∗(gi) − di,j,A∗(gi) ∀i, j. (14)

Equation (13) together with Inequality (14) yield:

vi,j,A(gi) − di,j,A(gi) = vi,j,A∗(gi) − di,j,A∗(gi) ∀i, j.

Hence, for all i, j, k, we have

vi,j,A∗(gi) − di,j,A∗(gi) ≥ vi,j,k − di,j,k.

This shows that we can change the allocation of the optimal solution to the welfare-
maximizing allocation, without violating the strong envy-freeness condition. Thus, the
solution offered by LP maximizes the total rent amongst all admissible allocation-
triples.

4 Not Pre-determined Groups

In this section, we consider the case that the groups are not known in advance. As
regards the dormitories, for instance, it is more realistic to assume that the students
request for a room individually.

For this case, we show that a strong envy-free allocation with the equal cost-sharing
policy always exists. Assume that we have a house with n rooms with capacity of
m agents per room. In addition, we further suppose that the set of agents is N =
{a1, a2, . . . , an} and value of i’th room for agent aj is vi,j . The goal is to provide a
strong envy free quadruple S = (B,A,R,D) as defined in Section 2.

Theorem 5. For the case that the groups are not pre-determined, Strong envy-freeness
is consistent with equal cost-sharing.

Proof. First, we construct an instance of the classic Rent Sharing problem as follows:
let H′ = {r1,1, . . . , r1,m, r2,1, . . . , r2,m, . . . , rn,1, . . . , rn,m} be a house consisting m
copies of every room inH. Furthermore, let ri,j be the j’th copy of the i’th room inH.
Now, we solve the classic Rent Sharing problem instance considering H and N . First
note that for this case Observation 6 holds.

Observation 6 For every i, j, j′, the rent charged for room ri,j is the same as ri,j′ .

Observation 6 is because of the fact that the agents in rooms ri,j and ri,j′ must
not envy each other. Let A∗ be the allocation function that allocates a room to each
agent and let R∗ be the function that assigns a rent to each room. Now, let S∗ =
(B∗,A∗,R∗,D∗) be an allocation quadraple where the cost sharing function D∗ is
equal and the rent charged for i’th room of H is

∑m
j=1 ri,j . Moreover, we define the

i’th group of B∗ as the agents located in one of the copies of i’th room and the allocation
function A∗ allocates i’th room to gi.

By observation 6, every agent pays the same rent in S∗ as in the calssic rent sharing
instance. Thus, envy-freeness of the classic instance implies strong envy-freeness of
S∗. In addition, the agents in the same group pay equal price for their room. Hence, the
allocation quadraple S∗ is strong envy-free with the equal cost-sharing policy.



Table 2: Predetermined groups
Weak Envy-free Aggregate Envy-free Strong Envy-free

Equal XObs. 1 XLem. 3 × Lem. 1

Proportional XObs. 1 XLem. 4 × Lem.2

Free XObs. 1 XObs. 1 XThm. 3

Table 3: Not pre-determined groups
Strong Envy-free

Equal XThm. 5

Free XLem. 3, 4

Recall that in Section 3 we proved that when the groups are pre-determined, no
allocation-triple can guarantee strong envy-freeness with the equal cost-sharing policy.

5 Conclusion and Future works

In this paper, we considered the Group Rent Sharing problem, which is an extension of
the classic Rent Sharing problem to the case where each room must be allocated to a
group of agents. We generalized the envy-freeness notion for such situations. We also
defined the cost-sharing policy, which adopts the method by which the rent is divided
among the resident agents of a room.

We defined three fairness criteria (weak, aggregate, and strong envy-free) and three
cost-sharing policies (equal, proportional, and free). Our results encompass several pos-
itive and negative results regarding the consistency of different fairness notions and
cost-sharing policies. You can find a summary of these results in Tables 2 and 3.

We proposed two positive results regarding strong envy-freeness: consistency of this
notion with the free cost-sharing policy in the case that the groups are pre-determined
and consistency with equal cost-sharing in the case that the groups are not pre-determined.
For both of these cases, we can find the allocation with the maximum total rent. One
interesting open question is to give an upper-bound on the ratio of maximum total rent
in these two cases. Another direction would be the analysis of the problem in stochastic
settings where the valuation of the houses to the agents are drawn from a given distri-
bution.
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