
Common-Deadline Lazy Bureaucrat Scheduling
Problems

Behdad Esfahbod, Mohammad Ghodsi, and Ali Sharifi

Computer Engineering Department
Sharif University of Technology, Tehran, Iran,

{behdad,ghodsi}@sharif.edu, ali@bamdad.org

Abstract. The lazy bureaucrat scheduling is a new class of scheduling
problems that was introduced in [1]. In these problems, there is one
employee (or more) who should perform the assigned jobs. The objective
of the employee is to minimize the amount of work he performs and to
be as inefficient as possible. He is subject to a constraint, however, that
he should be busy when there is some work to do.
In this paper, we focus on the cases of this problem where all jobs
have the same common deadline. We show that with this constraint,
the problem is still NP-hard, and prove some hardness results. We
then present a tight 2-approximation algorithm for this problem under
one of the defined objective functions. Moreover, we prove that this
problem is weakly NP-hard under all objective functions, and present a
pseudo-polynomial time algorithm for its general case.

Keywords: Scheduling Problems, Approximation Algorithms, Dynamic
Programming, NP-hardness.

1 Introduction

In most scheduling problems, there is a number of jobs to be performed by some
workers or employees. Studies have looked at these problems with the objective
to perform the assigned jobs as efficient as possible and to maximize the number
of completed jobs. This is the employer’s point of view. We can also look at
these problems from employee’s point of view, some of whom do not have enough
motivation to do their jobs efficiently. Some may even want to be as inefficient
as possible while performing their duties. We call such employees lazy, and such
scheduling problems has been classified as Lazy Bureaucrat Scheduling Problems
(LBSP). LBSP was introduced in [1] and some results were presented there. A
summary of some of them is presented here.

More specifically, we are given a set J of n jobs j1, . . . , jn. Job ji has process-
ing time of ti, arrival time of ai , and deadline of di (ti ≤ di − ai). It is assumed
that ti, ai, and di are nonnegative integers. Jobs have hard deadlines, that is, ji

can only be executed during its allowed interval wi = [ai, di], called its window.
It is also assumed that there always exists some job which arrives at time 0. The
maximum deadline time is also denoted by D.

F. Dehne, J.-R. Sack, M. Smid (Eds.): WADS 2003, LNCS 2748, pp. 59–66, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: ¡M RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile (¡M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

60 B. Esfahbod, M. Ghodsi, and A. Sharifi

We study the non-preemptive case of this problem and restrict ourselves to
off-line scheduling in which all jobs are known to the scheduler beforehand. We
also assume that there is only one processor (employee) available to do the jobs.
Some results on preemptive case and also cases with multiple bureaucrats can
be found in [1,4].

Definition 1. (Executable Job) A job ji is called executable at some time t, if
and only if it has been arrived, its deadline has not yet passed, it is not processed
yet, and if it is started now, it will be fully processed before its deadline (that
is, ai ≤ t ≤ di − ti).

Definition 2. (Greedy Requirement) At any time, the bureaucrat should
work on an executable job, if there is any such job.

The bureaucrat is asked to process the jobs within their windows satisfying
the above greedy requirement. His goal is to be as inefficient as possible. This is
captured by any of the following objective functions that is to minimize.

1.1 Objective Functions

Four objective functions have been defined for this problem [1].

1. [min-time-spent]: Minimize the total amount of time spent working. This
objective naturally appeals to a lazy bureaucrat.

2. [min-weighted-sum]: Minimize the weighted sum of completed jobs. This
objective appeals to a spiteful bureaucrat whose goal is to minimize the fees
that the company collects on the basis of his labors, assuming that the fee
is collected only for those tasks that are actually completed.

3. [min-makespan]: Minimize the makespan, the maximum completion time of
the jobs. This objective appeals to an impatient bureaucrat, whose goal is
to go home as early as possible, at the completion of the last job, when he
is allowed to leave. He cares only about the number of hours spent at the
office, not the number of hours spent doing work (productive or otherwise).

4. [min-number-of-jobs]: Minimize the total number of completed jobs. This
can be meaningful when the overhead of performing a job is too high for the
bureaucrat.

Clearly, the objective function 1 is a special case of 2, as we can define the
weight of each job to be equal to its length. Objective function 4 is also a special
case of 2, when the weights are all equal. Also, if all jobs have the same arrival
time, the objective functions 1 and 3 are equivalent.

1.2 Previous Related Results

The main related results in [1] are summarized below:

– LBSP is strongly NP-hard [2] under all objective functions and is not ap-
proximable to within any fixed factor.

Common-Deadline Lazy Bureaucrat Scheduling Problems 61

– LBSP with the same arrival times for the jobs, is weakly NP-hard, and can
be solved by a pseudo-polynomial dynamic programming algorithm.

– LBSP with all the jobs having unit lengths, can be solved in polynomial time
by the Latest Deadline First (LDF) scheduling policy.

– Assuming for each job i, di − ai < 2ti, LBSP can be solved in
O(nD max(n, D)) time.

– Even with a bound on δ (the ratio of the longest job to the shortest job),
LBSP is strongly NP-hard. It cannot be approximated to within a factor of
δ − ε, for any ε > 0, unless P = NP .

– Given bounds on R (the maximum ratio of window length to job length)
and δ, LBSP can be solved in O(Dn4R lg δ).

In [3], these results have been shown:

– LBSP with all jobs having unit lengths, can be solved in polynomial time
by the Latest Deadline First (LDF) scheduling policy, even with more than
one bureaucrat (worker, processor).

– Assuming di − ai < 2ti for each job i, LBSP can be solved in O(nD) time.

Hepner and Stein have studied the preemptive case [4] where they propose
pseudo-polynomial time algorithm to minimize makespan of such schedule. They
have also extended this scheduling problem to the multiple-bureaucrat setting
and provided pseudo-polynomial time algorithms for such problems.

1.3 Our Results

We consider a restricted case of LBSP where the deadlines for all jobs are the
same (denoted by D). We call these problems common-deadline LBSP, denoted
by CD-LBSP. This problem can be considered with any of the above objective
functions. We denote such cases by CD-LBSP[objective-function] and CD-
LBSP[*] is used to denote all these objective functions.

On the hardness of this problem, we first prove that CD-LBSP[*] is still
NP-hard and show that CD-LBSP[min-number-of-jobs]is not approximable
to within any fixed factor. But, for CD-LBSP[min-makespan], we provide a
tight 2-approximation algorithm. Finally, we prove that CD-LBSP[*] is weakly
NP-hard; we provide a pseudo-polynomial time dynamic programming algorithm
for the general case.

2 Hardness Results

In the following theorems we reduce the Subset Sum problem to prove that
CD-LBSP[*] is NP-hard, but existence of approximation algorithms is not the
same under different objective functions. We have found reasonable results for
[min-weighted-sum], [min-makespan], and [min-number-of-jobs] objective
functions, but not for [min-time-spent].

Theorem 1. CD-LBSP[*] is NP-hard.

62 B. Esfahbod, M. Ghodsi, and A. Sharifi

Proof. We reduce the Subset Sum problem to this problem. We are given S =
{x1, . . . , xn} of n positive integers with Σn

i=1xi = s, and an integer b (0 < b < s).
It is asked whether there is a subset T of S, satisfying Σx∈T x = b? Without loss
of generality, we assume that b ≤ � s

2� and xi < b for all i.
We construct an instance of CD-LBSP containing n + 1 jobs, all having

deadlines D = 2s. For each xi ∈ S, we define a job ji (1 ≤ i ≤ n) with arrival
time ai = 0 and processing time ti = 2xi. The last job jn+1 has arrival time
an+1 = 2b and processing time tn+1 = 2s − 2b − 1.

The bureaucrat is to avoid working up to time 2s, and to finish by 2s − 1.
This can be done if and only if he starts jn+1 at time of 2b and finishes it at
time 2s − 1. This is the case if and only if there is a subset of {j1, . . . , jn} with
total processing time 2b, which is equivalent to a solution for the Subset Sum
problem.

This argument is clearly correct for objective functions [min-time-spent],
[min-weighted-sum], and [min-makespan]. For [min-number-of-jobs], the
assumptions we made for the data in the Subset Sum problem is used to prove
this case. ��

Theorem 2. CD-LBSP[min-number-of-jobs] is not approximable to within
any fixed factor ∆ > 1, unless P = NP .

Proof. As in theorem 1, we reduce the Subset Sum problem to prove the hard-
ness. Assume by contradiction that there is an approximation algorithm with
fixed factor ∆ for CD-LBSP[min-number-of-jobs]. Using this assumption, we
will show that we can solve the Subset Sum problem leading to P = NP .

Let m = �∆� and D = b + m(n + 2)s. We construct an instance of CD-
LBSP[min-number-of-jobs] containing the following jobs, all with deadline
D. For each xi ∈ S, we define an element job ji (1 ≤ i ≤ n) having ai = 0, and
ti = xi. One long job, jn+1 with an+1 = b and tn+1 = D − b. We also define
m(n + 2) − 1 extra jobs, all having arrival times b, and processing times s.

The bureaucrat wants to do as few jobs as possible. We claim that the answer
to the Subset Sum problem is ‘yes’, if and only if the bureaucrat performs the
long job. In this case, he should be working up to time b, which leads to the
answer of the Subset Sum problem and he has processed at most n + 1 jobs
(at most n element jobs and one long job), so the approximation algorithm will
produce an output with at most m(n + 1) jobs. On the other hand, if he does
not process the long job, then he has to process m(n + 2) − 1 extra jobs (he
has enough time to process all element and extra jobs), so the approximation
algorithm will end with more than m(n + 1) jobs.

Then, the answer to the Subset Sum problem is ‘yes’ if and only if there are
at most m(n + 1) jobs in the output of the algorithm, and ‘no’ otherwise. ��

Corollary 1. CD-LBSP[min-weighted-sum] is not approximable to within
any fixed factor ∆ > 1, unless P = NP .

Proof. We know that CD-LBSP[min-number-of-jobs] is a special case of CD-
LBSP[min-weighted-sum]. Theorem 2 completes the proof. ��

Common-Deadline Lazy Bureaucrat Scheduling Problems 63

3 Approximation Algorithm

It is shown in this section that, under objective function 3 ([min-makespan]),
the bureaucrat can reach a nearly optimal solution with a simple algorithm.

For a schedule σ, we say ji ∈ σ if job ji is processed in σ. Also, we use si(σ)
and fi(σ) to denote the time when the processing of ji is started and the time
when it is finished in σ respectively (fi(σ) = si(σ) + ti).

Theorem 3. The Shortest Job First (SJF) scheduling policy is a 2-
approximation algorithm for CD-LBSP[min-makespan] and this bound is tight.

Proof. Let σOPT be an optimal solution and σ be the schedule which the SJF
policy has generated, and OPT and SJF be their makespans respectively. In
the SJF policy, among the executable jobs, the one with the shortest processing
time is picked first. We will show that SJF − OPT < OPT.

Without loss of generality, suppose that jobs j1 . . . jk (for some k) are pro-
cessed in σ in that order. Let jq ∈ σ be the job that is being processed at time
OPT in σ. That is, sq(σ) < OPT ≤ fq(σ). We know that ai < OPT for all
jobs ji. The SJF policy, therefore, forces that tq+1 ≤ tq+2 ≤ . . . ≤ tk. Note that
there is no gap between jobs jq, . . . , jk in σ. From the greedy requirement, we
can easily conclude that ji ∈ σOPT for all q + 1 ≤ i ≤ k (otherwise, at least one
of them can be processed at time OPT).

Assume that q < k. The q = k case is treated similarly and we omit it. We
consider two different cases:

– tq ≤ tq+1: With the same argument as above, we have jq ∈ σOPT . Therefore,
since sq(σ) < OPT, we have SJF − OPT < Σk

i=qti ≤ OPT .
– tq > tq+1: If job jq ∈ σOPT , then we will have SJF − OPT < Σk

i=qti ≤ OPT
and SJF < 2OPT; otherwise, we can show that there exists a job jp, not
shorter than jq, such that jp ∈ σOPT and jp /∈ σ. Let Q = {ji | q < i ≤ k}.
All jobs in Q are shorter than jq, otherwise, there will be enough time to
process jq at time OPT, which means that σOPT is invalid. Also, from the
SJF policy, we conclude that all jobs in Q have arrived after sq(σ).
Let T be the set of jobs ji ∈ σOPT such that si(σOPT) ≤ sq(σ). Obviously,
T cannot be empty. Not all jobs in T can be processed in σ. To show this,
consider a subset of T which has been processed continuously (without any
break) and has the maximum start time among these subsets. The finish time
of this subset is after time sq(σ). From the greedy requirement, we conclude
that this set of jobs cannot be processed and finished by time sq(σ), and thus
they cannot all be processed in σ (because job jq has been already started
at time sq(σ).) Thus, there is some job jp /∈ σ, with ap ≤ sq(σ). The SJF
policy forces that tq ≤ tp, and also jp ∈ σOPT . Putting all together leads to

SJF − OPT < tq + Σk
i=q+1ti ≤ tp + Σk

i=q+1ti < tp ≤ OPT.

To prove the tightness, for a given n and 0 < ε < 1, we construct an instance
of CD-LBSP with n jobs such that the SJF policy does not do better than

64 B. Esfahbod, M. Ghodsi, and A. Sharifi

2 − ε. Such instance contains n jobs with zero arrival times and deadlines D.
Let D = n − 3 + 2L − 1 = n + 2L − 4 with L = 2n/ε. The first three jobs have
t1 = L − 1, t2 = L, and t3 = L + 1. The next n − 3 jobs, j4, . . . , jn, all have
ti = 1.

The σOPT should process all j4, . . . , jn jobs and then j3, having makespan
OPT = n − 3 + L + 1 = n + L − 2. There is not enough time to process j1 or j2.

The SJF schedule processes j4, . . . , jn, j1, and j2 having makespan SJF =
n − 3 + L − 1 + L = n + 2L − 4. Thus, we have

SJF
OPT

=
n + 2L − 4
n + L − 2

=
nε + 4n − 4ε

nε + 2n − 2ε
=

ε + 4 − 8
L

ε + 2 − 4
L

> 2 − ε

2(1 − 2
L)

> 2 − ε,

which completes the proof. ��
It looks quite likely that the same algorithm yields the same approximation

bound under function [min-time-spent], but we do not have a complete proof.

4 Pseudo-Polynomial Time Algorithms

We assume that the jobs are numbered in order of their arrival times (that is,
a1 ≤ a2 ≤ . . . an). Let Ti and Ti,k denote the set of jobs ji, ji+1, . . . , jn and
ji, ji+1, . . . , jk respectively. We will also use the following definitions:
Definition 3. The time α is called the first rest time of a schedule σ, if the
bureaucrat has paused processing the jobs in σ for the first time at α. If there is
no pause during σ, the first rest time is defined as the time when the schedule
is finished.

Definition 4. For a time α, we define critical jobs Hα as the set of jobs ji ∈ J
which can be processed in [α, D], i.e. max(ai, α) + ti ≤ D.

Definition 5. For a given (T, α, U) in which T, U ⊂ J and α is a time point,
sequence E of some jobs in T is said to be a valid sequence if we can process
these jobs in this order without any gaps in between, starting from first arrival
time of the jobs in T and finishing at α such that every job in T ∩ U appears in
E. A valid sequence E is said to be an optimal sequence under some objective
function, if its cost is minimum among all valid sequences of (T, α, U).

Lemma 1. For a given (T, α, U), let E be an optimal sequence and jm ∈ E be
the job with the latest arrival time. There exists another optimal sequence F in
which jm is the last processed job.

Proof. This can easily be done by repeated swapping of jm with its adjacent
jobs. ��

Lemma 2. There is a pseudo-polynomial time algorithm that finds the optimal
sequence for any given (Ti, α, U) under any of the objective functions, if such
sequence exists (1 ≤ i ≤ n).

Common-Deadline Lazy Bureaucrat Scheduling Problems 65

Proof. Let jf be the last job arrived before α in Ti, and Cx,y (i ≤ x ≤ f, ai ≤
y ≤ α) be the cost of the optimal sequence for (Ti,x, α, U), or ∞ if no such
optimal sequence exists. Our goal is to compute Cf,α. We show how Cx,y can be
computed recursively from the values of Cx′,y′ , where x′ < x and y′ ≤ y.

If jx ∈ U , then it is in any valid sequence. Hence, from lemma 1, jx can
be processed last in [y − tx, y]. Based on the objective function used, we can
easily compute Cx,y from Cx−1,y−tx

. For example, Cx,y = Cx−1,y−tx
+ tx under

[min-time-spent].
On the other hand, if jx /∈ U , there are two options depending on whether

or not it is in the optimal sequence. If jx is processed in the optimal sequence,
it can be processed last, in which case, Cx,y can be computed from Cx−1,y−tx

as before. Otherwise, Cx,y = Cx−1,y, since we can ignore jx. The minimum of
these two values is taken for Cx,y.

The running time of this algorithm is O(nD), as there are at most nD values
of Cx,y to compute. ��

Theorem 4. CD-LBSP[*] is weakly NP-hard.

Proof. We present a pseudo-polynomial time algorithm which can be used for
any of the objective functions.

Consider Ti for some 1 ≤ i ≤ n and temporarily assume that the jobs in Ti

are the only jobs available, and that the greedy requirement is to be satisfied on
only these jobs. Let Pi be this subproblem and Ci be its optimal value. Clearly,
C1 is the desired value.

Consider an optimal schedule σ for Pi. Let α be the first rest time in σ. No
job in Ti arrives at α. We know that the jobs in Ti appearing in the set of critical
jobs Hα should be processed before the rest time α.

Let jk be the first job arrived after α. Because of the pause at time α, we
know that no job having arrival time less than α can be processed after α. So,
we can break up the schedule σ into two subschedules: those processed before α
and those processed after. These subschedules are independent. We can consider
the first subschedule as a valid sequence for (Ti,k−1, α, Hα). From the optimality
of σ, it is clear that this sequence is optimal. Similarly, the second subschedule
is an optimal schedule for Pk.

We compute Ci for every 1 ≤ i ≤ n from the values of Cj (i < j ≤ n) for all
times α (ai < α ≤ D). Note that we only consider those α’s at which time there
is no job arrival. It is first checked whether there exists an optimal sequence
for (Ti,k−1, α, Hα). If there is no such sequence, there will be no schedule for Ti

having α as the first rest time; otherwise, let C be the cost of that sequence.
We know that the lowest cost of a schedule for Ti having α as the first rest time
can be computed easily from the values of C and Ck and the objective function
used. For example, under [min-time-spent] this is equal to C + Pk. The value
of Pi is the minimum cost for different values of α.

The running time of this algorithm is O(n2D2) because it calls the subroutine
of finding optimal sequence at most O(nD) times. ��

66 B. Esfahbod, M. Ghodsi, and A. Sharifi

5 Conclusion

In this paper, we studied a new class of the Lazy Bureaucrat Scheduling Problems
(LBSP), called common-deadline LBSP, where the deadlines of all jobs are the
same. We proved that this problem is still NP-hard under all four pre-defined ob-
jective functions. We also showed that this problem is not approximable to within
any fixed factor in cases of [min-weighted-sum] and [min-number-of-jobs]
objective functions. The problem is shown to have a tight 2-approximation algo-
rithm under [min-makespan]. But, it is still open whether it is approximable un-
der [min-time-spent]. In the rest of the paper, we presented pseudo-polynomial
time dynamic programming algorithms for this problem under all objective func-
tions. Further work on this problem is underway.

subsubsection*Acknowledgements. The authors would like to thank the
anonymous referees for their useful comments.

References

1. Arkin, E. M., Bender, M. A., Mitchell, J. S. B., Skiena, S. S.: The lazy bureaucrat
scheduling problem. Workshop on Algorithms and Data Structures (WADS’99),
LNCS 1663, pp. 122–133, Springer-Verlag, 1999.

2. Gary, M. R., Johnson D. S.: Computers and intractability, a guide to the theory of
NP-completeness. W. H. Freeman and Company, New York, 1979.

3. Farzan, A., Ghodsi, M.: New results for lazy bureaucrat scheduling problem. 7th
CSI Computer Conference (CSICC’2002), Iran Telecommunication Research Center,
March 3–5, 2002, pp. 66–71.

4. Hepner, C., Stein, C.: Minimizing makespan for the lazy bureaucrat problem, SWAT
2002, LNCS 2368, pp. 40–50, Springer-Verlag, 2002.

	Introduction
	Objective Functions
	Previous Related Results
	Our Results

	Hardness Results
	Approximation Algorithm
	Pseudo-Polynomial Time Algorithms
	Conclusion

