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Abstract—Edit distance is one of the most fundamental problems in combinatorial optimization to measure the similarity between
strings. Ulam distance is a special case of edit distance where no character is allowed to appear more than once in a string. Recent
developments have been very fruitful for obtaining fast and parallel algorithms for both edit distance and Ulam distance. In this work,
we present an almost optimal MPC (massively parallel computation) algorithm for Ulam distance and improve MPC algorithms for edit
distance.
Our algorithm for Ulam distance is almost optimal in the sense that (1) the approximation factor of our algorithm is 1 + ε, (2) the round
complexity of our algorithm is constant, (3) the total memory of our algorithm is almost linear (Õε(n)), and (4) the overall running time
of our algorithm is almost linear which is the best known for Ulam distance.
We also improve the work of Hajiaghayi et al. for edit distance in terms of total memory. The best previously known MPC algorithm for
edit distance requires Õ(n2x) machines when the memory of each machine is bounded by Õ(n1−x). In this work, we improve the
number of machines to Õ(n(9/5)x) while keeping the memory limit intact. Moreover, the round complexity of our algorithm is constant
and the total running time of our algorithm is truly subquadratic. However, our improvement comes at the expense of a constant factor
in the approximation guarantee of the algorithm. This improvement is inspired by the recent techniques of Boroujeni et al. and
Chakraborty et al. for obtaining truly subquadratic time algorithms for edit distance.

Index Terms—MapReduce, Parallel Algorithms, Approximation Algorithms, Ulam Distance, Edit Distance.
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1 INTRODUCTION

String similarity measures are among the most fundamental
problems in computer science. The edit distance (a.k.a Lev-
enshtein distance) is the most notable example of it. This
problem has lots of applications in several fields such as
computational biology, natural language processing, and
information theory. In theoretical computer science, too, the
problem has been very central and fundamental; the prob-
lem of computing the edit distance is a textbook example
for dynamic programming.

In edit distance, we are given two strings s and s and we
wish to transform s into s using the smallest number of edit
operations. In each operation, we are allowed to (i) insert
a character at a specific position, (ii) remove a character,
or (iii) modify a character. For simplicity, we assume that
all these edit operations incur equal costs. For two strings
s and s, |s| = |s| = n, a classic dynamic program finds
the edit distance between them in time O(n2). The idea is
to define auxiliary variables di,j ’s which denote the edit
distance between the first i characters of s and the first j
characters of s. Next, we iteratively determine the values of
the auxiliary variables based on the following formula.
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di,j =

{
di−1,j−1 if s[i] = s[j],

1 + min{di−1,j−1, di,j−1, di−1,j} if s[i] 6= s[j].

Although naı̈ve, the above algorithm is almost the best we
can do from a theoretical perspective. Since the late 60’s,
several studies were focused on improving the quadratic
running time of the problem; however, thus far, the best-
known algorithm runs in time O(n2/ log2 n) [2]. The short-
coming of these studies is partly addressed by the work of
Backurs and Indyk [3] (STOC’15) wherein the authors show
a truly subquadratic time algorithm is impossible to achieve
unless a widely believed conjecture (SETH1) fails.

Unfortunately, the quadratic dependency of the running
time on the size of the input makes it impossible to use
such algorithms for large inputs in practice. For example,
a human genome consists of almost three billion base pairs
that need to be incorporated in similarity measurements.
Therefore, the need to compute/approximate these mea-
sures in better than quadratic time has led to several al-
gorithmic breakthroughs. Near linear time solutions have
been studied in a series of works [4], [5], [6], [7], [8],
[9], [10] culminating in polylogarithmic approximation. Re-
cently, a quantum algorithm is given for edit distance that
approximates the solution within a constant factor in truly
subquadratic time by exploiting triangle inequality [11].
Subsequent work discovers a novel classic replacement for
the quantum techniques and obtains a truly subquadratic
time algorithm within a constant factor for classic com-
puters [12]. Subsequent works improve the running time

1. The strong exponential time hypothesis states that no algorithm can
solve the boolean satisfiability (CNF-SAT) problem in time O(2n(1−ε)).
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of the algorithm. Kouckỳ and Saks [13] and Brakensiek
and Rubinstein [14] independently present near-linear time
constant-factor approximation algorithms for edit distance
where the input strings are far from each other. Finally,
Andoni and Nosatzki [15] provide a similar near-linear
time algorithm which does not impose any condition on
input strings. Note that the approximation factors of these
algorithms are exponentially or doubly exponentially large
constants. The best algorithm within a factor of 3 + ε is
presented by Goldenberg, Rubinstein, and Saha [16] with
a running time of Õ(n1.6+o(1)).

Ulam distance is a special case of edit distance wherein
the input strings s and s have no repetitive characters2.
This additional restriction to the input makes the problem
relatively easier to solve as Ulam distance admits an almost
linear time solution. Notice that, verifying whether s and s
are equal or not requires Ω(n) operations and thus there is
no hope to solve or even approximate the solution in sublin-
ear time. However, for the large solution regime, a constant
approximate solution can be found in time Õε(

√
n + n/d)

where d is the distance of the two input strings [17]. This
was later improved to a 1 + ε approximation algorithm
but for a more relaxed notion of distance wherein character
substitution is not allowed [17], [18], [19]. The algorithm of
Naumovitz et al. [17] obtains a 2 + ε approximate solution
for the more conventional formulation of Ulam distance.

Another line of attack is to design efficient algorithms for
string similarity measures is parallel computing [11], [20].
Motivated by modern fast, efficient, easy-to-use massively
parallel distributed computing platforms such as MapRe-
duce, Hadoop, and Spark [21], [22], [23], the massively par-
allel computation (MPC) model [24], [25], [26], [27] has been
proposed and extensively studied to understand the power
and limitations of these parallel computing platforms.

In contrast to the PRAM model where an Ω(log n) factor
in the round complexity is usually inevitable, MPC allows
for sublogarithmic round complexity [24], [28], [29]. In the
MPC model, each machine has unlimited access to its mem-
ory; however, two machines can only interact in between
two rounds. Thus, a central parameter in this setting is the
round complexity of the algorithm since network communi-
cation is the typical main bottleneck in practice. The ultimate
goal is developing constant-round algorithms, which are
highly desirable in practice.
The MPC model: We assume throughout this paper that
the input contains two strings of length n. In the MPC
model [24], [25], [26], [27], the number of machines and
the local memory size on each machine should be relatively
smaller than the input size of the problem. Therefore, we fix
an 0 < x < 1 and consider the memory of each machine to
be Õε(n1−x) and aim to minimize the number of machines
needed to run the algorithm. In the MPC model, each
algorithm runs in a number of rounds. In each round, every
machine makes some computation on the data assigned
to the machine. No communication between machines is
allowed during a round. Between two rounds, machines are
allowed to communicate so long as each machine receives
no more communication than its memory. Any data that is

2. W.l.o.g. in Ulam distance, s and s can be considered as two
permutations of [n] = {1, . . . , n}.

the output of a machine must be computed locally from the
data residing on the machine, and initially, the input data is
distributed across the machines.

In this work, we present an almost optimal MPC algo-
rithm for Ulam distance and improve MPC algorithms for
edit distance. An overview of our results is shown in Table 1.
Our algorithm for Ulam distance is almost optimal in the
sense that (1) the approximation factor of our algorithm is
1 + ε, (2) the round complexity of our algorithm is constant,
(3) the total memory of our algorithm is almost linear
(Õε(n)), and (4) the overall running time of our algorithm
is almost linear which is the best known for Ulam distance.
Similar to edit distance and longest common subsequence
(LCS) which are considered as dual problems, Ulam dis-
tance and longest increasing subsequence (LIS) are also seen
as dual problems. LIS is equivalent to a special case of LCS
where each string can contain each character at most once.
In that sense, our result for Ulam distance complements the
work of Im et al. [30], wherein a similar result is presented
for LIS. It is worth mentioning that similar to Ulam distance,
for which the running time improves for similar strings, LIS
also admits very fast (polylogarithmic time) solutions when
the two strings share a large subsequence [31]. However,
these techniques do not improve the time or memory com-
plexity of the solution in the MPC model since adaptive
sampling is an inherent barrier for the MPC model.

The best previously known MPC algorithm for edit
distance requires Õε(n2x) machines when the memory of
each machine is bounded by Õε(n1−x) [20]. Thus, the total
memory of their algorithm is Õε(n1+x). Indeed, the main
question which is left unanswered is how best can one
approximate edit distance in the MPC model with near-
linear memory? In this work, we take a step forward toward
the answer by improving the total memory of the algorithm
to Õε(n

1+(4/5)x). Moreover, the round complexity of our
algorithm is constant and the total running time of our al-
gorithm is truly subquadratic. However, our improvements
come at the expense of a constant factor in the approx-
imation guarantee of the algorithm. This improvement is
inspired by the recent techniques of Boroujeni et al. [11]
and Chakrabortyet al. [12] for obtaining truly subquadratic
time algorithms for edit distance. Moreover, using specific
parameters and Õε(n5/17) machines, the total running time
of our algorithm is O(n1.883) and the parallel running time
of our algorithm is O(n1.353).

2 PRELIMINARIES

In this work, we consider two problems, namely edit dis-
tance and Ulam distance. The input to both problems con-
sists of two strings s and s both of length n. Let us begin by
formally defining the edit distance of two strings s and s.

edit distance

input: Two strings s and s, both of size n.

solution: The smallest number of operations that we need to
perform on s to transform it into s. We are allowed to (i) add
a character at some position, (ii) remove a character, and (iii)
change a character. All these operations come at a cost of 1.
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TABLE 1: Our results are shown along with previous massively parallel algorithms for edit distance. Our algorithm for
edit distance improves the previous algorithms in terms of total memory and total running time.

Our Results

Problem Reference Approximation
Factor # Rounds Memory of

Each Machine # Machines Total
Running Time

Ulam Distance Theorem 4 1 + ε 2 Õε(n1−x) Õε(nx) Õε(n)

Edit Distance Theorem 9 3 + ε 4 Õε(n1−x) Õε(n(9/5)x) Õε(n
2−min( 1−x

6
, 2x

5
))

Previous Work

Edit Distance [?] 1 + ε O(logn) Õε(n8/9) Õε(n8/9) Õε(n2.6)

Edit Distance [20] 1 + ε 2 Õε(n1−x) Õε(n2x) Õε(n2)

For instance, for s = elephant and s = relevant, we can
transform s into s by performing three operations:

elephant
insert ’r’ at position 0
=================⇒ relephant
replace ’p’ with ’v’ at position 4
=================⇒ relevhant
delete ’h’ at position 5
=================⇒ relevant.

Therefore, ed(“elephant”, “relevant”) is at most 3. With more
inspection, it can be shown that here the edit distance is
equal to 3. The other measure that we are interested in is
the Ulam distance. Ulam distance is a special case of edit
distance wherein each character appears at most once in
each string. We denote the edit distance between s and s by
ed(s, s), and their Ulam distance by ulam(s, s).

We consider the MPC setting in which we are provided
with a certain number of machines each having a memory
of at most Õε(n1−x). In each round, every machine is fed
with a piece of information that fits within its memory
and sequentially executes a stream of operations on the
input. At the end of each round, every machine outputs
some information whose length is bounded by Õε(n

1−x).
The outputs then are given as input to the machines at the
beginning of the next round. We are interested in massively
parallel algorithms that run in a constant number of rounds.

In our algorithms, we divide the strings into pieces of
size B = n1−y and refer to them as blocks. We denote each
block i of s by s[`i, ri] (thus, ri = `i + B − 1). For the
sake of analysis, we sometimes fix an optimal solution opt
and denote by s[αi, βi] the substring of s that corresponds
to block s[`i, ri] according to opt. Blocks of s and their
corresponding blocks in s are shown in Figure 1. We often
denote the string positions by γ, κ, p and q. For instance,
s[γ, κ] denotes the substring of s starting from position γ
and ending at position κ. Also, to simplify the analysis, we
make use of two notations Õ and Õε where both suppress
poly(log n) factors and the latter also hides poly(1/ε) terms.

3 OUR RESULTS

In this section, we briefly describe our massively parallel
algorithms for Ulam distance and edit distance. The details
of our algorithms are presented in Sections 4 and 5.

3.1 Ulam Distance
Here, we briefly present our massively parallel algorithm
for Ulam distance using Õε(n

x) machines, each with a

. . .s

s̄ . . .

. . .

. . .

s[`1, r1] s[`2, r2] s[`i, ri] s[`n/B, rn/B]

s̄[α1, β1] s̄[α2, β2] s̄[αi, βi] s̄[αn/B, βn/B]

Fig. 1: The partitioning of s into ny blocks of size B = n1−y

and the transformation of the blocks into their matches via
opt is shown in this figure. Note that matched substrings
span s, `1 = α1 = 1 and rn/B = βn/B = n.

memory of Õε(n1−x). Recall that, the Õε notation sup-
presses poly(log n) and poly(1/ε) terms. The details of
our algorithm are presented in Section 4. Our algorithm
approximates Ulam distance within a factor of 1 + ε for an
arbitrarily small constant ε > 0 with high probability. The
total running time3 of our algorithm is Õε(n). Moreover, our
algorithm runs in two MPC rounds.

In the sequential setting, a trivial Ω(n) lower bound
holds for the running time of approximating Ulam distance
within a 1 + ε factor. However, for the high distance regime,
the running time can be improved to Õε(n/d+

√
n) if charac-

ter substitution is not allowed [17]. However, even when the
distance is large, no 1+ε approximation algorithm is known
for Ulam distance if character substitution is allowed.

Recall that, Ulam distance is a special case of edit dis-
tance where the input strings s and s have no repetitive
characters. Moreover, recall that for simplicity, we assume
both input strings have length n. Recall that, we break s into
blocks of size B = n1−y . In our algorithm for Ulam distance,
we set y = x; hence, each block fits into the memory of one
machine. We assume for simplicity that B is an integer.

To better understand our algorithm, we first illustrate
how a block of s is mapped to a substring of s. Note that,
if for each block of s we know where it transforms into in
opt, we can break the problem into nx subproblems and
solve Ulam distance for each of them individually. Since
such information is not present, we form a set of candidate
substrings on s for every block of s and compute the Ulam
distances between each block of s and its corresponding can-
didate substrings. The construction in our algorithm ensures
that each block s[`i, ri] has a corresponding candidate sub-
string s[γ, κ] which is relatively close to s[αi, βi]. Recall that,
s[`i, ri] transforms into s[αi, βi] in opt. The construction of

3. summing the running time of all machines
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s[`i, ri]

s̄

s̄[αi, βi]

s̄[γ, κ]

A B C D E F G H I J

H B D F G I J A C E

Fig. 2: If the Ulam distance between s[`i, ri] and s[αi, βi] is
small, we solve local Ulam distance which gives us the best
match of s[`i, ri] in s. Such a substring is shown as s[γ, κ]
in this figure. We prove that s[γ, κ] and s[αi, βi] intersect,
which narrows down our search for s[αi, βi]. In this figure,
common characters are connected via dotted lines.

the candidate substrings and computing the Ulam distance
between each block and its candidate substrings are done
in the first round of our algorithm. In the second round, we
compute an approximately optimal transformation of s into
s using a dynamic program on the information gathered in
the first round.

In the following, we briefly formalize the ideas men-
tioned above. Without loss of generality, we assume that
substrings s[αi, βi] partition s, i.e., each character of s
belongs to exactly one s[αi, βi]. Recall that, 1 + ε is the
desired approximation factor of our algorithm where ε > 0
is an arbitrarily small constant number. We fix another
small number ε′ = ε/2 for the sake of analysis. Let
ui = ulam(s[`i, ri], s[αi, βi]) be the Ulam distance between
the i’th block of s and its corresponding substring of s in
opt. We call a substring s[α′i, β

′
i] an approximately optimal

candidate substring for a block s[`i, ri] if both of the follow-
ing conditions hold:

αi ≤ α′i ≤ αi + ε′ui (1)
βi − ε′ui ≤ β′i ≤ βi (2)

Note that using approximately optimal candidate substrings
instead of the optimal ones imposes an additive error of
at most 2ε′ui for each block which sum up to at most a
total additive error of 2ε′ · ulam(s, s). For a small enough
ε′, this total additive error is in the range of the desired
approximation factor. In our algorithm, we construct an
approximately optimal candidate substring in the first phase
with high probability unless ui is too large and the number
of common characters of s[`i, ri] and s[αi, βi] is too small
(see Lemma 3). Note that, in such cases, one can remove
all characters of s[`i, ri] and add all characters of s[αi, βi]
instead, without losing more than a 1 +O(ε′) multiplicative
factor. This claim is proven in Theorem 4.

In what follows, we explore some features of the ap-
proximately optimal candidate substrings. In our algorithm,
if ui is relatively small, we solve a local version of Ulam
distance which finds a substring s[γ, κ] and guarantees
that its endpoints are relatively close to the endpoints of
s[αi, βi]. Next, we construct several candidate substrings
with starting points near γ and ending points near κ. We
prove that at least one of these candidate substrings satisfies
both conditions 1 and 2. This case is illustrated in Figure 2

In cases that ui is relatively large and ci, the number of
unchanged characters of transforming s[`i, ri] into s[αi, βi]

s[`i, ri]

s̄

s̄[αi, βi]

s̄[γ, κ]

A B C D E F G H I J

G

Fig. 3: If the Ulam distance between s[`i, ri] and s[αi, βi]
is large but the number of unchanged characters is not
small, we try to find a common character by randomized
sampling. If character G is a common character, we extend it
to form s[γ, κ] which narrows down our search for s[αi, βi]
to indices near γ and κ.

in opt, is more than εB/4, we sample each character of
s[`i, ri] with an independent probability of θ = (8/ε′B) log n
and put them in a hitting set I. We show that at least one of
the characters of I remain unchanged in the transformation
of s[`i, ri] into s[αi, βi] in opt with high probability. For such
an unchanged character, we make a substring s[γ, κ] based
on the position of the unchanged characters and show that
its endpoints are near the endpoints of s[αi, βi]. Note that
since s contains distinct characters, it is easy to find where
an unchanged character of s maps in s. We prove this claim
in Lemma 2. Afterward, we construct several candidate
substrings with starting points near γ’s and ending points
near κ’s. We prove in Lemma 3 that at least one of these
candidate substrings satisfies both conditions 1 and 2 with
high probability. This case is shown in Figure 3.

Recall that, the starting point of an approximately op-
timal candidate substring α′i is allowed to be up to ε′ui
characters away from αi. Hence, we define a gap Gi = ε′ui
and only inspect the starting points and ending points with
indices divisible by Gi. We assume for simplicity that Gi
is an integer. We show that the expected total number of
candidate substrings for a block (for both cases) is at most[
1 + log1+ε′ n · (1 + B · (8/ε′B) log n)(1/ε′)

]
(1/ε′) = Õε(1).

Therefore, we assign the computational task correspond-
ing to each block of s, including the computation of the
Ulam distance between the block and its corresponding
candidate substrings, to one machine. Note that since s does
not have any repetitive characters, the only information
needed from s to be fed to the machine is the location of
each characters of s[`i, ri] in s if exists, which are Õε(n1−x)
many locations. A more formal description of the first round
of our algorithm is given in Algorithm 1. Finally, in the
second round of our algorithm, we run a dynamic program
to find a 1+ε approximation solution based on the candidate
substrings we construct in the first round of the algorithm.
This phase is shown in Algorithm 2.

Theorem 4 [restated]. For an arbitrarily small constant ε > 0,
there exists a massively parallel algorithm with Õε(nx) machines
for arbitrary 0 < x < 1/2, each with a memory of Õε(n1−x)
that approximates the Ulam distance of two strings of length n
within a factor of 1 + ε in two rounds with high probability.
Moreover, the total computation of this algorithm is Õε(n).
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s[`i, ri]

s̄

s̄[αi, βi]

nδ

G

Fig. 4: In our algorithm for edit distance, we form the start-
ing points of candidate substrings for a block s[`i, ri] as fol-
lows. The starting points are in the range of [`i−nδ, `i+nδ].
Moreover, we consider starting points in this interval which
are divisible by G = ε′nδ−y .

3.2 Edit Distance
Note that in the classic setting, edit distance can be solved
within linear memory. However, existing massively par-
allel algorithms for edit distance such as [11] and [20]
use a superlinear amount of memory, the best of which
uses Õε(n1−x) memory for each of its Õε(n2x) machines.
Recall that, the Õε notation suppresses poly(log n) and
poly(1/ε) terms. In this work, we improve the number of
machines and thus the aggregated memory of our algo-
rithm. Our algorithm runs on Õε(n

(9/5)x) machines with
memory Õε(n1−x). However, this comes at the expense of a
constant factor loss in the approximation. More precisely, the
approximation factor of our algorithm is 3 + ε and its round
complexity is 4. Moreover, the total running time of our
algorithm is Õε(n2−min( 1−x

6 , 2x5 )) which is truly subquadratic
for any 0 < x < 1.

Our algorithm uses two different approaches for small
distances and large distances. The overall structure of our
algorithm for small distances has similarities with the algo-
rithm of [20] but improves it in terms of memory usage.
For large distances, which is the hard case, we borrow
some ideas from sequential algorithms of [11] and [12] and
marry them with new techniques to run the algorithm in the
parallel setting.

The very first step of our algorithm is to assume we have
a given value nδ and the task is to verify whether nδ is
relatively close to ed(s, s) or it is much smaller than the
actual edit distance between s and s. Previous work such
as [11] has shown that such an assumption only adds a
multiplicative Õε(1) term to the analysis of our algorithm.
The overall idea is to try all values of nδ = (1 + ε)i for
0 ≤ i ≤ log1+ε n. In the sequential setting, we start by a
small nδ , and every time we fail to find a solution with that
size, we try the next value for nδ . The first time we find
a solution, we are certain that it is a 1 + ε approximation
of the optimal solution. In the parallel setting, we run our
algorithm for all values of nδ in parallel and only consider
the smallest nδ with a valid solution at the end. Therefore,
this assumption does not affect the round complexity of our
algorithm. Last but not least, our algorithm detects the case
of ed(s, s) = 0 separately.

Let 1 + ε be the desired approximation factor of our
algorithm for an arbitrarily small constant ε > 0. For
simplicity, we use ε′ = ε/22 in the analysis of our algorithm.
Our algorithm breaks the problem into ny subproblems for
each block of s. Recall that the memory of each machine

is Õε(n
1−x) hence, Õε(ny−x) blocks of size B = n1−y

fit into the memory of a single machine. Moreover, for a
block s[`i, ri] of s, we call a candidate substring s[α′i, β

′
i]

approximately optimal if both of these conditions hold.

αi ≤ α′i ≤ αi + ε′nδ−y , (3)

βi − ε′nδ−y − ε′ed(s[`i, ri], s[αi, βi]) ≤ β′i ≤ βi. (4)

We then use one of the following approaches to solve these
subproblems based on whether nδ is relatively small or
relatively large.

3.2.1 Small Distances (nδ ≤ n1−x/5)

Note that if we know which part of s corresponds to each
block of s in opt, the subproblems can be solved easily.
Instead of this out of reach information, our algorithm
finds Õε(ny) candidate substrings of s for each block of s
and ensures that at least one of the candidate substrings
of each block is relatively close to its match in opt. The
construction of the candidate substrings is similar to that
of [20]. In this case, our algorithm consists of two rounds. In
the first round, we compute the edit distance between each
block and its candidate substrings. In the second round,
we use the information obtained in the first round and
run a dynamic program to find an approximately optimal
transformation of s into s. In the following, we briefly
describe the two rounds of our algorithm in the case of small
distances.

If for every block of s, we are able to find an approxi-
mately optimal candidate substring, the total additive error
caused by using these substrings instead of optimal ones
assuming ed(s, s) ≤ nδ is at most∑

i

ε′nδ−y + ε′nδ−y + ε′ed(s[`i, ri], s[αi, βi]) ≤ 3ε′nδ.

Therefore, using these substrings only incurs a multiplica-
tive 1 + 3ε′ term to the approximation factor. We claim that
if the size of s[αi, βi] is not too small nor too large, our al-
gorithm certainly finds an approximately optimal candidate
substring for s[`i, ri] in the first phase. We provide a formal
proof of this claim in Lemma 5.

On the other hand, if s[αi, βi] is too small or too large,
we can remove s[`i, ri] and insert s[αi, βi] by imposing at
most a 1 + ε′ multiplicative factor to the approximation
factor. We prove this claim in Lemma 6. The construction
of candidate substrings is done as follows. Assuming nδ

is an upper bound on the solution size, we conclude that
|`i − αi| ≤ nδ . We then define a gap G = bε′nδ−yc and
consider indices in the range of [`i − nδ, `i + nδ] which
are divisible by G as the starting points of our candidate
substrings. It can be easily shown that one of these starting
points meets condition 3. This structure is shown in Figure 4.
The total number of starting points for a block is therefore,
O(nδ)/G = O((1/ε′)ny). Moreover, for each starting point,
we consider at most O(log1+ε′ n) = Õε(1) endpoints. The
construction of endpoints is shown in Figure 5. Each pair
of a starting point and an ending point forms a candidate
substring. Hence, the total number of candidate substrings
for each block is Õε(ny) · Õε(1) = Õε(n

y). In the case of
small distances, we use y = x.
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s[`i, ri]

s̄

s̄[αi, βi]

(1 + ε′)j

B

Fig. 5: We form the ending points of candidate substrings
for a block s[`i, ri] and a starting point γ around κ = γ + B
as κ± (1 + ε′)j . Note that we only construct candidate with
a length less than (1/ε′)B. Moreover, we can safely neglect
ending points beyond κ+ nδ .

Up to this point, our algorithm for the case of a small
distance is similar to that of [20]. However, the algorithm
of [20] assigns each pair of block/candidate substring to a
single machine. On the contrary, since in this case, nδ is
small, starting points of candidate substrings of a block are
not far from each other. Therefore, we give several candi-
date substrings of each block to a machine. This technique
reduces the number of machines and therefore the total
memory of our algorithm. The total number of machines
in our algorithm in this case is

nx · Õε(n
δ)

n1−x
= Õε(n

2x−(1−δ)).

Recall that in the first round of our algorithm, we compute
the distances between each block and its candidate sub-
strings. To find the edit distance between a block and one of
its candidate substrings in our algorithm, we use a variant
of the algorithm of [12] on each machine which uses linear
memory, has an approximation factor of 3 + ε′, and runs
in time O(n2−1/6). Therefore, the total running time of this
phase is Õε(n2−(1−x)/6) and the parallel running time of this
phase is Õε(n(1−δ)+(2−1/6)(1−x)). In the second round of our
algorithm, we find a 1 + ε′ approximate solution based on
the information obtained in the first round. Moreover, the
total computation of the second round is done on a single
machine with a running time of Õε(n2y).

3.2.2 Large distances (nδ > n1−x/5)

In this case, we apply the triangle inequality technique
of [11], randomized sampling technique of [11], and low
degree extension technique of [12] to avoid explicitly com-
puting the edit distance for all pairs of blocks and candidate
substrings. Similar to the previous case, we partition s
into ny blocks of size B = n1−y . It is known that we
can reduce the problem of computing the edit distance for
all pairs of blocks and candidate substrings into verifying
whether their distance is at most a given threshold τ or
much larger than τ [11]. More precisely, similar to Lemma 5,
we reduce the edit distance problem to finding the edit
distance between smaller block/substring pairs. Afterward,
the distance between a block and one of its substrings is
found by discretizing the distance with several threshold τ
(τ = 0 and τ = (1 + ε′)j for 0 ≤ j ≤ logε′ n) and then
checking whether the distance is at most τ or much larger
than τ . Both steps impose small errors. In the following, we
assume a threshold τ is fixed, and we aim to find all pairs

N2τ (R)

Nτ (R)

R

low degree
blocks

low degree
substrings

Fig. 6: The graph Gτ is shown in this figure. The set of
representatives R is shown with the set of its neighbors with
distance τ and 2τ . We show that high degree nodes are in
Nτ (R) with high probability. Other low degree nodes may
correspond to blocks or substrings.

of (block, candidate substring)’s with an edit distance of at
most τ . In the final solution, we try all values of τ = 0
and τ = (1 + ε′)j for 0 ≤ j ≤ logε′ n in parallel. For a
given τ , we define a graph Gτ by placing a node for every
block and candidate substrings of all blocks and connect two
nodes if their edit distance is at most τ . Note that Gτ is not
explicitly constructed at first, and we try to find most of its
edges with limited resources. We sometimes use the phrase
the edit distance between two nodes which means the edit
distance between their corresponding strings. Let 0 < α < 1
be a parameter we fix later. We call a node high degree (or
dense) if it is connected to more than nα nodes and call it
low degree (or sparse) otherwise.

Our algorithm for the case of large distances consists of
four rounds. In the first round, we find the neighbors of
all high degree nodes with high probability. If most of the
blocks are high degree, then our job is done. In the second
and third rounds, we solve the problem for cases where
a significant number of low degree blocks are present. In
the fourth round, we combine the solutions of individual
blocks into a general solution using a dynamic program. In
the following, we briefly explore these ideas.

In the first round, we sample each node with an indepen-
dent probability of Õε(1/nα) and call them representatives.
We then compute the edit distances between each represen-
tative and all other nodes. We show that each high degree
node of Gτ has at least one representative as its neighbor
with high probability and therefore, we can approximately
find all of its neighbors using the triangle inequality. More
precisely, let z be a representative, Nτ (z) be the set of all
nodes with a distance of at most τ to z, and N2τ (z) be the
set of all nodes with a distance of at most 2τ to z. We put
an edge for each pair of Nτ (z) × N2τ (z) in our graph. For
a node v with a representative z as one of its neighbors,
v ∈ Nτ (z) and Nτ (v) ⊆ N2τ (z) hold. Therefore, for a node
v which has a representative neighbor, the edges between v
and all of its neighbors are added. Moreover, if a node v is
high degree, we show it has at least one representative as its
neighbors with high probability. Furthermore, using triangle
inequality, we show that each added edge has a distance of
at most 3τ . In Figure 6 the Venn diagram of the these sets
are shown and in Lemma 7 a formal proof is presented.

Therefore, at the end of the first round, all neighbors of
high degree nodes for all thresholds are found. However,
some false positive neighbors may also be present where
each of them has a distance of at most 3τ .
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The second and third rounds consider low degree nodes.
In the second round, we sample some low degree blocks
and find their distance to their candidate substrings. In the
third round, we extend some pairs of low degree blocks and
candidate substring with distances less than τ to a number
of adjacent blocks. In the following, we briefly describe the
second and third rounds.

The neighbors of low degree nodes cannot be found
similar to the high degree nodes. However, low degree
nodes have other useful features:
• We partition s into several regions or larger blocks. If in

the optimal solution opt, only a few low degree blocks
correspond to a region, we can ignore low degree blocks
of this region in our approximate solution since we are
not going to lose much. Hence, we can only focus on
regions with too many low degree blocks in opt.

• For such regions, we suppose we know a block s[`i, ri]
that transforms into s[γ, κ] in opt. Such an assumption
is valid since there exist too many low degree blocks
and we can hit at least one of them using random
sampling. We can also assume we approximately know
the edit distance between them by trying all values for
τ . Moreover, since s[`i, ri] is low degree, we can find
s[γ, κ] by trying all candidate substrings of s[`i, ri] and
be sure that a small number of them can be (approxi-
mately) s[γ, κ]. Otherwise, s[`i, ri] is high degree.

• If we know a block s[`i, ri] transforms into s[γ, κ] in
opt, we can approximately guess that where the nearby
blocks of s[`i, ri] which are in the same region also
transform into and create a pair of block/substring.

This technique is called the extension of a low degree block
and it is shown in Figure 7. More precisely, Suppose
we know a block s[`i, ri] transforms into s[γ, κ] in opt.
We then consider larger blocks with size n1−y

′
, assuming

y′ < y. Let s[`′i, r
′
i] be a block of size n1−y

′
containing

s[`i, ri]. We observe that s[`′i, r
′
i] approximately transforms

into s[γ − (`i − `′i), κ + (r′i − ri)] in opt. Moreover, we
show that any block of size n1−y such as s[`j , rj ] which
is also contained in s[`′i, r

′
i] approximately transforms into

s[γ − (`i − `j), κ+ (rj − ri)] in opt. To use such a block, we
should have τ ≈ ed(s[`i, ri], s[γ, κ]). To this end, we sample
each low degree block with an independent probability of
Õε(1/n

(y−y′)−(1−δ)) and put them in a set L. We show that
for each of the larger blocks which contain sufficiently many
low degree normal sized blocks, L hits at least one of the
normal sized blocks with the right τ with high probability.
This claim is shown in Lemma 8. Note that the expected size
of L is ny · Õε(1/n(y−y

′)−(1−δ)) = Õε(n
y′+(1−δ)). For each

block in L, we find its distance to all Õε(ny) of its candidate
substrings in the second round. The expected number of
machines in the second round is equal to

|L| · O(nδ)

n1−x
= Õε(n

x+y′).

The expected total running time of the second round is equal
to

|L| · Õε(ny) · Õε(n2(1−y)) = Õε(n
2−(y−y′)).

Moreover, the parallel running time of this phase is equal to

Õε(n
2−x−y).

s[`′i, r
′
i]

s̄

s

s[`i, ri]

s̄[αi, βi]

s[`j , rj ]

Fig. 7: If we know a block s[`i, ri] and its corresponding
substring s[αi, βi] in opt, we can extend the substring. This
extension gives us a candidate substring for each block
s[`j , rj ] if it is contained in a larger block s[`′i, r

′
i].

In the third round, we extend low degree blocks, for each
of their candidate substrings with a distance of no more than
τ . Note that low degree nodes have at most nα such candi-
date substrings. For each of such pairs, we compute the edit
distance of ny−y

′
pair of strings of size Õε(n1−y) in the third

round. Therefore, the expected number of machines in the
third round is at most

|L| · nα · nx−y
′

= Õε(n
x+(1−δ)+α).

The expected total running time of the third round is equal
to

|L| · nα · ny−y
′
· Õε(n2(1−y)) = Õε(n

2−y+(1−δ)+α).

Moreover, the parallel running time of this phase of our
algorithm is equal to

Õε(n
2−x−y).

In the fourth round of our algorithm, we use a DP
algorithm (similar to the second round of small distances) to
find a total solution. The final solution has an approximation
factor of at most 3 + ε. In Section 5.3, we show by setting
adequate parameters, the expected number of machines of
our algorithm is Õε(n(9/5)x), each having a memory of size
O(n1−x). Moreover, the expected total time complexity of
our algorithm is Õε(n2−2x/5).

By combining the two approaches for small distances
and large distances, we achieve the desired massively par-
allel algorithm for edit distance.

Theorem 9 [restated]. Let 0 ≤ x ≤ 5/17 and ε > 0 be two
arbitrary numbers. There exists a massively parallel algorithm
that approximates the edit distance between two strings of length
n within a factor of 3+ ε in four rounds. The total computation of
this algorithm is Õε(n2−min( 1−x

6 , 2x5 )), and it uses Õε(n(9/5)x)
machines each with a memory of Õε(n1−x). Moreover, the parallel
running time of our algorithm is Õε(n2−min( 5+49x

30 , 11x5 )).

4 ULAM DISTANCE

The outline of our algorithm is presented in Section 3. In
this section, we explain two phases of our algorithm in
more details. Recall that in our algorithm, we divide string
s into blocks of size B = n1−y where y = x in this
Section. In the first phase, each machine receives a block
of s and constructs a set of candidate substrings in s for the
given block. Afterward, each machine computes the Ulam
distance between their given block and the constructed
candidate substrings. In the second phase of our algorithm,
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a single machine receives all of the information generated
in the first phase and uses it to compute an approximately
optimal solution via a dynamic program. In this section, we
show that the approximation factor of our algorithm is 1 + ε
with high probability. In the analysis of our algorithm, we
use a relatively smaller error threshold of ε′ = ε/2.

4.1 Phase 1
In the first phase of our algorithm, we construct the candi-
date substrings for each block of s and compute the Ulam
distance between each block and its candidate substrings.
The construction of the candidate substrings is done us-
ing two approaches. The first approach is suitable when
ui = ulam(s[li, ri], s[αi, βi]) is small and the second one is
suitable when ui is large.

If ui < B/2, we use the solution of the local version
of Ulam distance (lulam) between s[li, ri] and the whole
string of s to find an estimated location of αi and βi. The
local Ulam distance between s[li, ri] and s is defined as the
minimum Ulam distance between s[li, ri] and any substring
of s. A sequential algorithm for local Ulam distance is
presented in Appendix A. Let s[γ, κ] be such a substring
of s with the minimum Ulam distance to s[li, ri]. We claim
that |αi − γ| ≤ 2ui and |βi − κ| ≤ 2ui. Recall that
we define a gap size Gi = ε′ui and consider substrings
where their starting points and ending points indices are
divisible by Gi. The total additive error incurred by con-
sidering the gap for starting and ending points is at most∑
i 2Gi ≤ 2ε′ · ulam(s[li, ri], s[αi, βi]), which is negligible.

Furthermore, since |αi − γ| ≤ 2ui and |βi − κ| ≤ 2ui,
the total number of starting points and ending points we
consider are at most (4ui + 1)/Gi = O(1/ε′). This makes a
total of O(1/ε′2) candidate substrings for each block.

The next approach constructs candidate substrings for
a block when ui ≥ B/2. Let ci be the number of un-
changed characters in an optimal transformation of s[li, ri]
into s[αi, βi]. If ci is at most ε′B/4, we ignore the trans-
formation, remove all characters of s[li, ri] and insert all
characters of s[αi, βi]. This imposes an additive error of at
most 2ci ≤ ε′B/2 ≤ ε′ui, which is also negligible. Hence, in
the following, we assume that ci ≥ ε′B/4.

In this case, we use a randomized sampling method
and choose each character of s[li, ri] with an independent
probability of θ = (8/ε′B) log n. This hitting set I has at least
one of the ci unchanged characters of the given block with
a probability of at least

1− (1− θ)ci = 1− (1− ((8/ε′B) log n)ε
′B/4

> 1− e−2 logn = 1− 1/n2.

Using the union bound, the overall probability of success
for all machines is at least 1 − nx/n2 > 1 − 1/n. The idea
is to use the location of an unchanged character for locating
αi and βi as follows. Let s[p] be an unchanged character
which is mapped to s[q]. Moreover, let γ = q − (p− `i) and
κ = q+(ri−p). We show that |αi−γ| ≤ ui and |βi−κ| ≤ ui.
Similar to before, we only use the starting points and ending
points whose indices are divisible by Gi. The total additive
error incurred by considering the gap for starting and end-
ing points is at most

∑
i 2Gi = 2ε′ · ulam(s[li, ri], s[αi, βi])

likewise. Furthermore, the expected total number of starting

points and ending points we investigate are each at most
O(θB) · (2ui + 1)/Gi = Õ(1/ε′2). This makes an expected
total of O(1/ε′4) candidate substrings for each block.

Since we do not know ui in advance, we try all values
of ui = (1 + ε′)j and ui = 0 as an estimated value.
This imposes an extra 1/ε′ term in the time complexity.
However, it does not affect the approximation factor of our
algorithm. For a block s[`i, ri], we feed the entire block
and the locations of its characters in s to a machine. Since
s has no repetitive characters, the input of each machine
has size O(B) = O(n1−x). In each machine then, we try
all ui = (1 + ε′)j for 0 ≤ j < log1+ε′ n

1−x. We also deal
with ui = 0 separately as a special case. For a fixed ui, we
identify a set of at most Õ(1/ε′4) candidate substrings as
described above. Our algorithm then computes the Ulam
distance between s[`i, ri] and all of the candidate substrings
and outputs a set of at most Õ(1/ε′5) tuples indicating
the candidate substrings and their corresponding Ulam
distances. Therefore, for each block, the running time of
our algorithm is Õ(B/ε′5), and the size of the output is
Õ(1/ε′5). Hence, the total running time of the first phase is
nx · Õ(B/ε′5) = Õ(n/ε′5) and the total output generated for
the second phase is Õ(nx/ε′5). A more detailed description
of our algorithm is given in Algorithm 1.

Algorithm 1: Computing the candidate substrings for
a block s[`i, ri]

Data: `i, ri, s[`i, ri], s.
Result: candidate substrings along with their Ulam distances

from s[`i, ri]
1 (γ, κ, d∗)← lulam(s[`i, ri], s);
2 if d∗ = 0 then
3 Output 〈[`i, ri], [γ, κ], 0〉;
4 for ui = (1 + ε′)j where j ∈ [0, log1+ε′ n] do
5 ûi = (1 + ε′)ui;
6 Gi ← max(bε′uic, 1);
7 if ui < B/2 then
8 for sp = max(1, γ − 2ûi) to min(γ + 2ûi, n) in steps of

sp← sp+ Gi do
9 for ep = max(1, κ− 2ûi) to min(κ+ 2ûi, n) in steps

of ep← ep+ Gi do
10 Output

〈[`i, ri], [sp, ep], ulam(s[`i, ri], s[sp, ep])〉;

11 else
12 sample a hitting set I from [`i, ri] with a probability of

(8/ε′B) logn for each element;
13 for p ∈ I do
14 q ← the location of s[p] in s;
15 γ ← q − (p− `i);
16 κ← q + (ri − p);
17 for sp = max(1, γ − ûi) to min(γ + ûi, n) in steps of

sp← sp+ Gi do
18 for ep = max(1, κ− ûi, sp) to min(κ+ ûi, n) in

steps of ep← ep+ Gi do
19 Output

〈[`i, ri], [sp, ep], ulam(s[`i, ri], s[sp, ep])〉;

In the Lemmas 1 and 2, we show some properties for
small and large ui’s, respectively. Then, in Lemma 3, we use
the two previous lemmas to show an important property of
Algorithm 1. The proofs of Lemmas 1, 2, and 3 are presented
in Appendix B. In Section 4.2, we use this property to prove
the approximation factor of our algorithm.
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Lemma 1. Let s[`i, ri] be a block of s and s[αi, βi] be its
corresponding substring in an optimal transformation of s into
s. Moreover, let ui be the Ulam distance between s[`i, ri] and
s[αi, βi]. If ui < B/2 and s[γ, κ] be the solution of local Ulam
distance between s[`i, ri] and s, then two substrings s[γ, κ] and
s[αi, βi] intersect. In addition, |αi−γ| ≤ 2ui and |βi−κ| ≤ 2ui
hold.

Lemma 2. Let s[`i, ri] be a block of s and s[αi, βi] be its
corresponding substring in an optimal transformation of s into
s. Moreover, let ui be the Ulam distance between s[`i, ri] and
s[αi, βi]. If ui ≥ B/2 and at least ε′B/4 unchanged character
exist in the optimal transformation of s[`i, ri] into s[αi, βi]
and s[p] = s[q] be one of these unchanged characters, then
|αi − γ| ≤ ui and |βi − κ| ≤ ui hold where γ = q − (p − `i)
and κ = q + (ri − p).

Lemma 3. Let s[`i, ri] be a block and s[αi, βi] be its corre-
sponding substring in an optimal transformation of s into s. If
the optimal transformation of s[`i, ri] into s[αi, βi] has a size of
less than B/2 or has at least ε′B/2 unchanged characters, then
Algorithm 1 outputs at least a candidate substring s[α′, β′] for
s[`i, ri] with high probability such that

1) αi ≤ α′i ≤ αi + ε′ui
2) βi − ε′ui ≤ β′i ≤ βi

4.2 Phase 2

Recall that the output of the first phase of our algorithm
is a set of Õε(nx) tuples, 〈[`i, ri], [γ, κ], d〉, where s[`i, ri] is
the i’th block of s and s[γ, κ] is a corresponding candidate
substring. Also, d is equal to the Ulam distance between
s[`i, ri] and s[γ, κ]. In the second phase of our algorithm, we
perform a dynamic program to compute a transformation
from s into s based on the partial solutions gathered in the
first phase. Notice that if we assume x < 1/2, the size of the
output of the first phase, Õε(nx), is relatively small and can
be fed into the memory of a single machine. This machine is
responsible for the entire computation of the second phase.

We assume the tuples are stored in array T and are
sorted in increasing order of `i where ties are broken ar-
bitrarily. In our dynamic program, we create an array D
with the same length as T . Let the a’th tuple be equal to
〈[`i, ri], [γ, κ], d〉. We compute D such that each D[a] ap-
proximates ulam(s[1, ri], s[1, κ]). Let Pa be the set of indices
of tuples T [b] = 〈[`′i, r′i], [γ′, κ′], e′〉 such that r′i < `i and
κ′ < γ. Then, the update rule of D is as follows.

D[a] := min
{

max{`i − 1, γ − 1}+ d,

min
b∈Pa
{D[b] + max{`i − r′i − 1, γ − κ′ − 1}+ d}

}
.

The term d+ max{`i− 1, γ − 1} correspond to the situation
where characters of s[1,min{`i − 1, γ − 1}] are substituted
with s[1,min{`i − 1, γ − 1}], the remaining characters of
s[1, `i − 1] are removed, and the remaining characters of
s[1, γ − 1] are inserted. In the other term, T [b] is the first
tuple before T [a] in the solution where D[b] is the esti-
mated value for ulam(s[1, r′i], s[1, κ

′]), the additional cost d
corresponds to the cost of transforming s[`i, ri] into s[γ, κ]
and the cost max{`i − r′i − 1, γ − κ′ − 1} corresponds to
substituting/removing/adding the characters between the

Algorithm 2: Computing an approximate solution for
ulam(s, s) based on the tuples.

Data: T [1], T [2], . . ..
Result: an approximate value of Ulam distance between s and s

1 m← the number of tuples;
2 D ← an array of size m initially containing∞ in all cells;
3 for a ∈ [1,m], T [a] = 〈[`i, ri], [γ, κ], d〉 do
4 D[a]← max{`i − 1, γ − 1}+ d;
5 for b ∈ [1, a− 1], T [b] = 〈[`′i, r′i], [γ′, κ′], d′〉 do
6 if r′i < `i and κ′ < γ then
7 D[a]←

min
{
D[a], D[b]+max{`i− r′i− 1, γ−κ′− 1}+ d

}
;

8 answer←∞;
9 for a ∈ [1,m], T [a] = 〈[`i, ri], [γ, κ], d〉 do

10 answer← min
{
answer, D[a] + max{n− ri, n− κ}

}
;

11 return answer;

two tuples. This gives us an Õε(n
2x) time algorithm with

memory Õε(nx) that runs on a single machine.
In Theorem 4, we show that the combination of Algo-

rithms 1 and 2, approximates the Ulam distance of s and s
within a factor of 1 + ε with high probability.

Theorem 4. For an arbitrarily small ε > 0, there exists a
massively parallel algorithm with Õε(nx) machines for arbitrary
0 < x < 1/2, each with a memory of Õε(n1−x) that approxi-
mates the Ulam distance of two strings of length n within a factor
of 1 + ε with high probability in two rounds. The expected total
computation of this algorithm is Õε(n).

The proof of Theorem 4 is presented in Appendix B.

5 EDIT DISTANCE

The outline of our algorithm for edit distance is presented
in Section 3. In this section, we describe both cases of our
algorithm in more details. Recall that our algorithm has
two different approaches for relatively small and relatively
large distances. Recall that we divide s into ny blocks
of size B = n1−y . We also construct a set of candidate
substrings for each block. We define ε′ = ε/22 for the
simplicity of our analysis. We also assume that our solution
is roughly equal to nδ . Recall that we define the gap size
G = max{bnδ−xε′c, 1} and define the starting points of
candidate substrings to be indices no more that nδ apart
from `i and are divisible by G.

5.1 Small Distances (nδ ≤ n1−x/5)

For small distances recall that we fix y = x. The main
task in the first phase is to compute the edit distances
between each block and its candidate substrings. In the
second phase, we use the gathered information in the first
phase to construct our final solution. The approximation
factor of our algorithm, in this case, is 3 + ε since we use
a variant of the approximation algorithm of [12] to find the
edit distance between any block and its candidate substrings
instead of using the naı̈ve DP algorithm.

5.1.1 Phase 1 for small distances
In the first phase of our algorithm for small distances, we
construct candidate substrings for each block s[`i, ri] and
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assign one block and several of its candidate substrings to
each machine. The memory of each machine is Õε(n1−x);
hence, Õε(nδ)/n1−x machines are sufficient for each block
since we partition candidate substrings by their starting
points. Therefore, the total number of machines used in this
phase is Õε(n2x−(1−δ)). In the following, we explain how
we partition candidate substrings of a block.

For a fixed block and a fixed starting point, our algorithm
considers several ending points. Note that, we only consider
candidate substrings with a length of at most (1/ε′)B.
Therefore, the size of the feed of each machine is at most
Õε(n

1−x). More precisely, a machine is responsible to com-
pute the edit distance between a block s[`i, ri] and several
starting points γ1, γ2, . . . , γη , where η = O(n1−x/G). The
feed given to this machine is s[`i, ri] and s[γ1, γη + (1/ε′)B].
Afterward, we assign a set of endpoints κj,1, κj,2, . . . , κj,η′ ,
where η′ = O(log1+ε′((1/ε

′)B)), for a starting point γj . We
form κj,h’s as γ +B± (1 + ε′)a for 0 ≤ a ≤ log1+ε′(B/ε′) in
addition to γ+B. We then consider s[γj , κj,h]’s as candidate
substrings. The machine then computes the edit distance
between the given block (s[`i, ri]) and the candidate sub-
strings (s[γj , κj,h]’s) and outputs a set of η · η′ = Õε(n

1−δ)
tuples each consisting of a block, a candidate substring, and
their edit distance. The running time of each machine is then
η ·η′ · Õε(n(2−1/6)(1−x)) = Õε(n

2−2x+(1−δ)−(1−x)/6). Hence,
the total running time of the first phase is Õε(n2x−(1−δ)) ·
Õε(n

2−2x+(1−δ)−(1−x)/6) = Õε(n
2−(1−x)/6). The size of

the ouput of a machine is η · η′ = Õε(n
1−δ); hence, the

size of the total output produced in the first phase is
Õε(n

2x−(1−δ)) · Õε(n1−δ) = Õε(n
2x). The pseudocode of

the first phase is given in Algorithm 3.

Algorithm 3: Computing the edit distance between a
block s[`i, ri] and its candidate substrings with starting
points γ1, γ2, . . . , γη

Data: `i, ri, γ1, . . . , γη , s[`i, ri], s[γ1, γη + B · 1/ε′].
Result: candidate substrings with specified starting points along

with their edit distances from s[`i, ri]
1 for j ∈ [1, η] do
2 Output 〈[`i, ri], [γj , γj + B], ed(s[`i, ri], s[γj , γj + B])〉;
3 for a ∈ [0, blog1+ε′ min{B/ε′, nδ}c] do
4 Output 〈[`i, ri], [γj , γj + B − b(1 + ε′)ac],

ed(s[`i, ri], s[γj , γj + B − b(1 + ε′)ac])〉;
5 Output 〈[`i, ri], [γj , γj + B + b(1 + ε′)ac],

ed(s[`i, ri], s[γj , γj + B + b(1 + ε′)ac])〉;

In Lemma 5, we prove an important feature of Algo-
rithm 3. In Section 5.1.2, we use this feature of Algorithm 3
to prove the correctness of our algorithm for small distances.

Lemma 5. Let s[`i, ri] be a block of s and s[αi, βi] be its
corresponding substring in an optimal transformation of s into
s. Moreover, assume αi + G + ε′B < βi ≤ αi + B · 1/ε′

holds. Therefore, Algorithm 3 for at least one machine outputs
a candidate substring s[α′, β′] such that both of these conditions
hold:

• αi ≤ α′i ≤ αi + ε′nδ−x,
• βi − ε′nδ−x − ε′ed(s[`i, ri], s[αi, βi]) ≤ β′i ≤ βi.

The proof of Lemma 5 is presented in Appendix B.

5.1.2 Phase 2 for small distances

The second phase of our algorithm receives a set of Õε(n2x)
tuples in the form of 〈[`i, ri], [γ, κ], e〉. In this notation, a
tuple contains a block of s, one of its corresponding candi-
date substrings generated in the first phase, and their edit
distance. Then, a dynamic program selects a subset of these
tuples to form a total transformation of s into s. We run
the dynamic program in a single machine. This is possible
due to the size of the output of Phase 1 and assuming
0 < x < 5/17. We denote the tuples by T [1], T [2], . . . We
assume that the tuples are sorted in increasing order of `i
where ties are broken arbitrarily. In the dynamic program,
for any tuple a = 〈[`i, ri], [γ, κ], e〉, we compute D[a] as
an approximation of ed(s[1, ri], s[1, κ]) using a and tuples
before a in T . The update rule of this dynamic program is:

D[a] = min
{
e+ (`i − 1) + (γ − 1),

min
`i>r

′
i,γ>κ

′,b<a,
〈[`′i,r

′
i],[γ

′,κ′],e′〉=T [b]

{D[b] + e+ (`i − r′i − 1) + (γ − κ′ − 1)}
}
.

In this notation, b is the last tuple used before a. Cost
`i − r′i − 1 corresponds to removing the characters between
two tuples in s, cost γ − κ′ − 1 corresponds to adding
the characters between two tuples in s, and cost e corre-
sponds to using the transformation of the tuple a. The time
complexity of this algorithm is Õε(n4x) and its memory is
Õε(n

2x).

Algorithm 4: Computing an approximation of ed(s, s)
based on the output tuples of the first round.

Data: T [1], T [2], . . .
Result: an approximate value of ed(s, s)

1 m← the size of T ;
2 D ← an array of size m where all of its entries

initialized to +∞ ;
3 for a ∈ [1,m], 〈[`i, ri], [γ, κ], e〉 = T [a] do
4 D[a]← (`i − 1) + (γ − 1) + e;
5 for b ∈ [1, a− 1], 〈[`′i, r′i], [γ′, κ′], e′〉 = T [b] do
6 if `i > r′i and γ > κ′ then
7 D[a]←

min{D[a], D[b]+e+(`i−r′i−1)+(γ−κ′−1)};

8 answer←∞;
9 for a ∈ [1,m], 〈[`i, ri], [γ, κ], e〉 = T [a] do

10 answer← min{answer, D[a] + (n− ri) + (n− κ)};
11 return answer;

In Lemma 6, we show that our overall algorithm consist-
ing of Algorithms 3 and 4, approximates the edit distance of
s and s within a factor of 3 + ε.

Lemma 6. For an arbitrarily small ε > 0, there exists a
massively parallel algorithm that approximates the edit distance
of two strings of length n if their distance is no more than nδ

within a factor of 3 + ε in two rounds. The total computation
of this algorithm is Õε(n2−(1−x)/6) and its parallel running
time is Õε(n(1−δ)+(2−1/6)(1−x)). Moreover, the algorithm uses
Õε(n

2x−(1−δ)) machines each with a memory of Õε(n1−x).

The proof of Lemma 6 is presented in Appendix B.
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5.2 Large Distances (nδ > n1−x/5)

Recall that for large distances, we use four phases as follows.
The goal of the algorithm in the first round is to find many
edges of Gτ with the help of the triangle inequality. We
run our algorithm for all thresholds τ = (1 + ε′)h for 0 ≤
h ≤ log1+ε′(2n) and τ = 0 in parallel. In the following, we
assume a threshold τ is fixed. The algorithm, in this case,
consists of four phases which are described as follows.

5.2.1 Phase 1: high degree case
In this phase, we use a random sampling method to select
a set of representative nodes R. Recall that we chose each
node of Gτ with an independent probability of 2 log n/nα

where 0 < α < 1 is a parameter we fix later. We call a
node high degree (dense) if its degree is at least nα, and low
degree (sparse), otherwise. Afterward, for each z ∈ R, we
find its edit distance to all other nodes of Gτ . We then use
this information to generate several edges of Gτ as follows.
We claim that for any edge of Gτ whose one of its nodes
is a high degree node we generate it with high probability.
Furthermore, some edges with a distance of at most 3τ may
be generated in the output of the first phase.

Each node of Gτ either corresponds to a block or a
candidate substrings. The number of block nodes is ny and
the number of candidate substring nodes is computed as
follows. The starting points of candidate substrings are di-
visible by G′ = max{bnδ−yε′c, 1}. Therefore, the total num-
ber of starting point is at most O(n/G′) = Õε(n

(1−δ)+y) and
the total number of nodes of Gτ is Õε(n(1−δ)+y) Hence, the
expected size of |R| is equal to (2 log n/nα) · Õε(n(1−δ)+y) =
Õε(n

(1−δ)+y−α). For each representative, we compute its
edit distance to all other nodes. Hence, the expected number
of pairs of nodes which we compute their edit distance is
equal to

Õε(n
(1−δ)+y−α) · Õε(n(1−δ)+y) = Õε(n

2(1−δ)+2y−α).

By using the naı̈ve DP algorithm for computing the edit
distance between two nodes, the expected total running
time of this phase is equal to

Õε(n
2(1−δ)+2y−α) · Õε((n1−y)2) = Õε(n

2+2(1−δ)−α).

Since each machine has a memory of size Õε(n1−x) and the
string size of each node is Õε(n1−y), the machine can keep
ny−x representatives and ny−x extra nodes. Therefore, the
expected number of required machines is

Õε(n
(1−δ)+y−α) · 1

ny−x
· Õε(n(1−δ)+y) · 1

ny−x

= Õε(n
2x+2(1−δ)−α).

In the following, we explain how we find the neighbors
of high degree nodes using the edit distance between rep-
resentatives and all nodes. For a node z, we call the set of
nodes with an edit distance of at most τ to z (including
z itself) as Nτ (z). Since we computed the distance of each
representative to all other nodes, this information is avail-
able to us for arbitrary τ ’s. For each z ∈ R, we connect
all nodes of Nτ (z) to N2τ (z). We claim that for each node
with a degree of at least nα, we found all of its neighbors
with high probability. We may found some false positive

neighbors; however, any additional generated edge has an
edit distance of at most 3τ . The pseudocode of this phase is
shown in Algorithm 5. We prove our claims in Lemma 7.

Algorithm 5: Computing the edit distances between
repsentative nodes v1, v2, . . . and nodes u1, u2, . . .

Data: A subset of repsentative nodes z1, z2, . . . , zµ, a set of
nodes v1, v2, . . . , vµ, and a number τ .

Result: edit distances between given repsentative and given
nodes

1 for z ∈ {z1, z2, . . . , zµ} do
2 for v ∈ {v1, v2, . . . , vµ} do
3 compute the edit distance between z and v;
4 if v is a candidate substring node and ed(z, v) ≤ 2τ then
5 Output 〈“cs”, v, z, τ〉;
6 if z is a candidate substring node then
7 Output 〈“cs”, z, z, τ〉;
8 if v is a block node and ed(z, v) ≤ τ then
9 Output 〈“b”, v, z, τ〉;

10 if z is a block node then
11 Output 〈“b”, z, z, τ〉;

Lemma 7. Let R be a random sampling of nodes of Gτ where
each node is chosen with an independent probability of p =
2 log n/nα. Let v be a block node of Gτ with a degree of at least
nα. For each candidate substring node u ∈ Nτ (v), there exist a
representative z ∈ R with high probability such that v ∈ Nτ (z)
and u ∈ N2τ (z). Moreover, if z is an arbitrary representative,
v an arbitrary block node and u and candidate substring node, if
v ∈ Nτ (z) and u ∈ N2τ (z) then ed(v, u) ≤ 3τ .

The proof of Lemma 7 is presented in Appendix B.

5.2.2 Phases 2 and 3: low degree nodes

In the second and third phases, we treat the low degree
block nodes as follows. Since a node being high degree or
low degree in Gτ highly depends on τ we define overall
high degree and overall low degree nodes independent of τ
as follows.

All blocks in Gτ for τ = n are high degree. As τ
decreases, some of its edges get deleted and each nodes
eventually becomes low degree (sparse). For a block s[`i, ri],
we call it overall high degree if it is high degree for τ =
ed(s[`i, ri], s[αi, βi]). We call other blocks as overall low
degree. We then consider larger blocks of size n1−y

′
. A larger

block belong to one the two type:

i. Larger blocks that contain at most ε′n(y−y
′)−(1−δ) over-

all low degree blocks.
ii. Larger blocks that contain more than ε′n(y−y

′)−(1−δ)

overall low degree blocks.

The overall low degree blocks of all larger blocks of type
(i) can be ignored with a multiplicative error of no more
than 1 + ε′. Therefore, from this point we only concen-
trate on larger blocks of type (ii). We claim that by sam-
pling each low degree block with a probability of p =
3(1/ε′2) log2 n/n(y−y′)−(1−δ), we catch at least one overall
low degree block for each larger block of type (ii) with high
probability.
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To compute the edit distance between the chosen block
and all of their candidate substrings, we need an expected
number of machines of at most

p · ny · Õε(n
δ)

n1−x
= Õε(n

x+y′).

Moreover, the expected total running time of computing
these distances is at most

p · ny · Õε(ny) · Õε(n2(1−y)) = Õε(n
2−(y−y′)+(1−δ)).

Suppose we find an overall low degree block s[`i, ri]
in Gτ where τ ≤ ed(s[`i, ri], s[αi, βi]) ≤ (1 + ε′)τ . Also
recall that, one of the candidate substrings such as s[α′i, β

′
i]

is guaranteed to be approximately optimal. If all of blocks
in the same larger block as s[`i, ri], such as s[`j , rj ] forced
to be transformed it into s[α′i + (`j − `i), β′i + (rj − ri)] the
imposed multiplicative error is bounded by 2 + 3ε′. In the
following, we use this technique to extend low degree block.

In the third round, every pair of low degree block and its
neighbors is extended to ny−y

′
nearby blocks, which are in

the same larger block. Note that since a low degree node has
at most nα neighbors, the total number of pairs is limited.
More precisely, the expected number of generated pairs is at
most

p · ny · nα · ny−y
′

= Õε(n
y+α+(1−δ)).

Since ny−x pairs can be process in a single machine, the
expected number of machines needed in this round is equal
to

Õε(n
x+α+(1−δ)).

Moreover, the expected total running time of the third round
is

Õε(n
y+α+(1−δ)) · Õε(n2(1−y)) = Õε(n

2−y+α+(1−δ)).

5.2.3 Phase 4: computing the overall transformation
The DP algorithm of this phase is similar to that of small
distances. In this round, we receive at most Õε(n2y) tu-
ples in the form of 〈[`i, ri], [γ, κ], e〉. In this notation, the
tuple corresponds to a block, its corresponding candidate
substring and their edit distance. Then, a dynamic program
selects a subset of these tuples to form a total transformation
of s into s. We run the dynamic program in a single machine.
We again denote the tuples by T [1], T [2], . . . and assume
that the tuples are sorted in increasing order of `i where ties
are broken arbitrarily. The time complexity of this algorithm
if trivially implemented is Õε(n4y). However, by suitable
data structure the time complexity is improved to Õε(n2y).
Moreover, the memory complexity of this algorithm is
Õε(n

2y). The rest of the algorithm is the same as the second
round of small distances. A minor difference is that if the
candidate substring of two tuples intersects, we may choose
both of them, but we add the cost of removing the common
part.

In Lemma 8, we show that our overall algorithm consist-
ing of Algorithms 5, 6, 7, and a dynamic program similar
to Algorithm 4, approximates the edit distance of s and s
within a factor of 3 + ε. The proof of Lemma 8 is presented
in Appendix B.

Algorithm 6: Computing the edit distances between
representative nodes v1, v2, . . . and nodes u1, u2, . . . .

Data: The blocks s[`i, ri] for, a subset of candidate substrings for
these blocks, all tuples of type “b” (Tb[1], Tb[2], . . . ) for
these blocks and all tuples of type “cs” (Tcs[1], Tcs[2], . . . )
for these candidate substrings.

Result: edit distances between high degree blocks and low
degree extension for low degree blocks

1 for τ ∈ {0, (1 + ε′)a for 0 ≤ a ≤ logε′ n} do
2 for all given blocks s[`i, ri] do
3 if there exists a tuple Tb[a] of type “b” for the given block

and τ then
4 let z be the third value of Tb[a];
5 for every Tcs[b] containing z and τ do
6 let u be the third value of Tcs[b];
7 Output 〈“high degree”, [`i, ri], u, τ〉;

8 else
9 if a random variable with a common seed between

machines is less than
p = 3(1/ε′2) log2 n/n(y−y′)−(1−δ) then

10 compute the edit distance s[`i, ri] and all of
related candidate substrings in the input;

11 for any candidate interval s[γ, κ] where
ed(s[`i, ri], s[γ, κ]) ≤ τ do

12 for any block s[`j , rj ] which is the same larger
block as s[`i, ri] do

13 Output 〈“extend”, [`j , rj ], [γ + (`j −
`i), κ+ (rj − ri)], τ〉;

Algorithm 7: Computing the edit distances between a
block and a candidate substring which came from a
low degree extension.

Data: a block s[`i, ri] and a candidate substring s[γ, κ].
Result: the edit distance between s[`i, ri] and s[γ, κ]

1 Use the naı̈ve DP algorithm to compute ed(s[`i, ri], s[γ, κ]);
2 Output 〈“low degree ext”, [`i, ri], [γ, κ], ed(s[`i, ri], s[γ, κ])〉;

Lemma 8. For an arbitrarily small ε > 0, there exists a
massively parallel algorithm that approximates the edit distance
of two strings of length n if their distance is at most nδ

within a factor of 3 + ε in four rounds. This algorithm uses
Õε(n

max{2x+2(1−δ)−α,x+y′,x+(1−δ)+α}) machines each with a
memory of Õε(n1−x). The total computation of this algorithm is
Õε(n

2−x/4).

5.3 Overall Algorithm
By substituting δ = 1 − x/5, α = (3/5)x, y = (6/5)x, y′ =
(4/5)x, and x ≤ 5/17, and using Lemmas 6 and 8 we can
conclude the following theorem.

Theorem 9. Let 0 ≤ x ≤ 5/17 and ε > 0 be two arbitrary num-
bers. There exists a massively parallel algorithm that approximates
the edit distance between two strings of length n within a factor
of 3 + ε in four rounds. The total computation of this algorithm
is Õε(n2−min( 1−x

6 , 2x5 )), and it uses Õε(n(9/5)x) machines each
with a memory of Õε(n1−x). Moreover, the parallel running time
of our algorithm is Õε(n2−min( 5+49x

30 , 11x5 )).
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APPENDIX A
LOCAL ULAM DISTANCE

In this appendix, we first present an almost linear time
sequential algorithm for Ulam distance and then use it to
solve the local version of the Ulam distance problem. Note
that, insertion, deletion, and substitution are allowed as
elementary operations.

Since we have no repetitive character in either of the
strings, the number of matching pairs of characters is at
most n. We solve this problem using a similar dynamic
programming formula to that of edit distance. Let P be
the set of (i, j)’s where s[i] = s[j]. Let di,j be an auxiliary
variable defined as the Ulam distance between s[1, i] and
s[1, j] where (i, j) ∈ P . Then, the following condition holds.

di,j = min
{

max(i− 1, j − 1),

min
i′<i, j′<j, (i′,j′)∈P

{
di′,j′ + max(i− i′, j − j′)

}}
To execute this dynamic programming faster, we use a data
structure to compute the above mentioned update rule in
Õ(1) time. First, we elliminate the max(i − i′, j − j′) oper-
ation from the equation. To this end, we partition (i′, j′)’s
into two sets:
• the set A≥ of (i′, j′)’s where i′ − j′ ≥ i− j, and
• the set A< of (i′, j′)’s where i′ − j′ < i− j.

For A≥ we have max(i − i′, j − j′) = j − j′, and for A<,
max(i − i′, j − j′) = i − i′ holds. What remains is to store
and query (i′, j′). We store each pair in a 3D coordinate of
(i′, j′, i′ − j′) along with the value of di′,j′ − j′. To find the
min in set A≥, we search in the subspace [0, i− 1]× [0, j −
1]× [0, i− j] and find the minimum value mv1 = di′,j′ − j′.
We also store the same pair in another data structure by the
coordinate of (i′, j′, j′−i′) by the value of di′,j′−i′. We then
query in the subspace [0, i−1]× [0, j−1]× [0, j− i−1] and
and find the minimum valuemv2 = di′,j′−i′. In conclusion,
the folowing equation holds.

di,j = min
{

max(i− 1, j − 1),mv1 + j,mv2 + i
}

We use a multidimensional dynamic range tree to find
the minimum of the update rule. Each query takes time
O(log2 n). Afterward, a post-processing in O(n) is per-
formed to find the final answer.

ulam(s, s) = min
(i,j)∈P

{di,j + max(n− i, n− j)}.

Therefore, the total time complexity is n·O(log2 n)+O(n) =
Õ(n).

In local Ulam distance the goal is to find the best sub-
string of s in term of its Ulam distance to s. More specificly,

lulam(s, s) = mini,j{ulam(s, s[i, j])}.

To solve the local Ulam distance problem, similar to the
(original version of) Ulam distance, we compute ldi,j ’s for
(i, j) ∈ P where ldi,j = lulam(s[1, i], s[1, j]). However, the
equation is a bit different, where max(i − 1, j − 1) term is
replaced by just i− 1.

ldi,j = min
{
i− 1, min

i′<i, j′<j, (i′,j′)∈P

{
ldi′,j′ +max(i− i′, j − j′)

}}
.

Moreover, the post-processing is also a little different.

lulam(s, s) = min
(i,j)∈P

{ldi,j + (n− i)}.

As you see, the modifications do not change the query types
from the data structure. Therefore, a similar solution works
here, too. Furthermore, the substring associated with the so-
lution can also be determined in the same time complexity.

APPENDIX B
MISSING PROOFS

Proof of Lemma 1.

Proof. Assume that s[γ, κ] and s[αi, βi] does not inter-
sect for the sake of contradiction. Let d∗ be equal to
ulam(s[`i, ri], s[γ, κ]). By definition, d∗ ≤ ui. Moreover, at
least B − d∗ characters of s[`i, ri] are present in s[γ, κ].
Similarly, at least B − ui characters of s[`i, ri] are present
in s[αi, βi]. Since each character of s[`i, ri] appears at most
once in s we conclude that

(B − d∗) + (B − ui) ≤ B =⇒ B ≤ d∗ + ui ≤ 2ui.

This contradicts the assumption that ui < B/2. Therefore,
s[γ, κ] and s[αi, βi] do intersect.

To prove the second part, let k1 = |αi − γ|. If αi < γ,
then there are k1 characters in s[αi, βi] which are not in
s[γ, κ]. Recall that, at least B − d∗ characters of s[`i, ri]
are present in s[γ, κ]; therefore, at most d∗ of them are
outside of s[γ, κ]. We immediately conclude that at least
k1 − d∗ insert/substitute edit operations are needed for
transforming s[`i, ri] into s[αi, βi]. Hence,

k1 − d∗ ≤ ui =⇒ k1 ≤ ui + d∗ ≤ 2ui.

The situation where αi ≥ γ is similar. Therefore, |αi − γ| ≤
2ui. The proof of |βi − κ| ≤ 2ui is also identical.

Proof of Lemma 2.

Proof. Since s[p] is mapped to s[q] in the optimal transfor-
mation of s[`i, ri] into s[αi, βi], we conclude that at least
|(p − `i) − (q − αi)| edit operation is needed. Therefore,
|(p − `i) − (q − αi)| ≤ ui =⇒ |αi − (q − (p + `i))| ≤ ui.
Similarly, at least |(ri−p)−(βi−q)| edit operation is needed;
therefore, |(ri−p)−(βi−q)| ≤ ui =⇒ |βi−(q−(p−ri))| ≤
ui.

Proof of Lemma 3.

Proof. Let u∗i be the actual value and ui be its estimated
value. Also, note that in Algorithm 2, ûi = (1 + ε′)ui. We
check the case where u∗i = 0 in line 2 and 3. For 1 ≤ u∗i <
B/2, choose a j such that (1 + ε′)j ≤ u∗i < (1 + ε′)j+1.
For ui = (1 + ε′)j , we check the correct range for αi since
according to Lemma 1, |αi − γ| ≤ 2u∗i < 2(1 + ε′)j+1 =
2ûi. Moreover, in that step, the gap size is equal to Gi =
ε′ui ≤ ε′u∗i . Therefore, the first sp not before αi satisfies the
condition (i). Similarly, the last ep not after βi in the same
step of our algorithm satisfies the condition (ii).

For B/2 ≤ ui ≤ n, also choose a j such that (1 + ε′)j ≤
ui < (1 + ε′)j+1. It is guaranteed by the statement of
the lemma that at least ε′B/2 unchanged character exists
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in the optimal transformation of s[`i, ri] into s[αi, βi]. We
discussed that I hits at least one of the unchanged characters
with a probability of at least 1 − 1/n2. Let s[p] = s[q] be
such a character. According to Lemma 2, |αi − γ| ≤ u∗i ≤
(1 + ε′)j+1 = ûi. Similarly, |βi − κ| ≤ u∗i ≤ ûi. Since in this
step Gi = ε′ûi ≤ ε′u∗i , the first sp not before αi and the last
ep not after βi satisfy both (i) and (ii) conditions.

Proof of Theorem 4.

Proof. The number of machines, the size of the memory
of each machine, and the computational complexity of our
algorithm are already discussed. Here, we prove the approx-
imation factor of our algorithm is at most 1 + ε. To prove
such an upper bound on the approximation factor of our
solution, we compare our solution size with ulam(s, s). It
follows from the definition that

ulam(s, s) =
∑

ulam(s[`i, ri], s[αi, βi]).

What we compute in our algorithm is almost the same,
except: (i) we compute ulam(s[`i, ri], s[α

′
i, β
′
i]) instead of

ulam(s[`i, ri], s[αi, βi]) for an almost optimal candidate sub-
string s[α′i, β

′
i], and (ii) for some blocks whose unchanged

characters in ulam(s[`i, ri], s[αi, βi]) are less than ε′B/4, we
substitute all characters of s into s with some additional
insert or remove operations if necessary.

We first claim that by ignoring the blocks of type (ii) we
do not lose more than a multiplicative 1 + ε′ factor in our
algorithm. Recall that, we only ignore such transformations
only if ui ≥ B/2. Therefore, by completely substituting the
whole block s[`i, ri] into the substring s[αi, βi] we have a
solution with a cost at most ui + 2(ε′B/4) = ui + ε′(B/2) ≤
ui(1 + ε′).

Now, let Let s[`i, ri] be a block of type (i), where we
found an optimal candidate substring of s[α′i, β

′
i] instead of

s[αi, βi]. Recall that by Lemma 3 we have:
• αi ≤ α′i ≤ αi + ε′ui
• βi − ε′ui ≤ β′ ≤ βi
Therefore, in case (i), the additional cost is at most

(βi − β′i) + (α′i − αi) ≤ 2ε′ui for deleting or insert-
ing the characters that do not lie in the optimal candi-
date substring. This implies that ulam(s[`i, ri], s[α

′
i, β
′
i]) ≤

(1 + 2ε′)ulam(s[`i, ri], s[αi, βi]). Therefore, the total error
of our algorithm is bounded by a multiplicative factor of
(1 + 2ε′) ≤ 1 + ε since we choose ε′ = ε/2.

Proof of Lemma 5.

Proof. Assuming ed(s, s) ≤ nδ , we know that `i − nδ ≤
αi ≤ `i + nδ which starting points for s[`i, ri] cover. Let α′i
be the smallest starting point for s[`i, ri] not less than αi.
Considering the gap between starting points, α′i − αi < G
holds. It only remains to show that one of the ending points
for α′i has the desired property. Recall that we construct the
endpoints in forms of γ+B±(1+ε′)a and γ+B. Considering
the range of βi in the statement, βi lies between α′i + B −
(1+ε′)a and α′i+B+(1+ε′)a for a = log1+ε′ min{B/ε′, nδ}.

Let ip be equal to αi + B. Note that,
ed(s[`i, ri], s[αi, βi]) ≥ βi − ip. Also if βi 6= ip, let
(1 + ε′)a ≤ |βi − ip| < (1 + ε′)a+1. Let κ be defined as
below:
• ip if βi = ip,

• ip+ (1 + ε′)a if β > ip, and
• ip− (1 + ε′)a+1 if β < ip.

Therefore, 0 ≤ βi − κ ≤ ε′ed(s[`i, ri], s[αi, βi]). Let β′ =
κ− αi + α′i. Since |αi + α′i| ≤ G = ε′nδ−x, we can conclude
that 0 ≤ βi − β′i ≤ ε′ed(s[`i, ri], s[αi, βi]) + ε′nδ−x.

Proof of Lemma 6.

Proof. We already discussed the number of machines, mem-
ory of each machine, and the time complexity of our al-
gorithm. Here, we prove the approximation factor of our
algorithm is at most 1 + ε. Recall that s[`i, ri]’s span s and
s[αi, βi]’s span s. Therefore,

ed(s, s) =
∑
i

ed(s[`i, ri], s[αi, βi]).

Algorithm 4 sums up similar values except:
(i) we use a 1 + ε′ estimated value of ed(s[`i, ri], s[α

′
i, β
′
i])

instead of ed(s[`i, ri], s[αi, βi]),
(ii) we use a 3 + ε′ approximation value of

ed(s[`i, ri], s[α
′
i, β
′
i]) instead of its exact value,

(iii) or if s[αi, βi] is either too large or too small, we remove
all characters of s[`i, ri] and insert all characters of
s[αi, βi].

If the case (iii) happends for a block, we have an additive
error of at most 2ε′ed(s[`i, ri], s[αi, βi]) since the number
of unchanged characters in the optimal transformation of
ed(s[`i, ri], s[αi, βi]) is no more than ε′ed(s[`i, ri], s[αi, βi]).

If the case (i) happens, we have an additive error of
at most 2G + ε′ed(s[`i, ri], s[αi, βi]) since some unchanged
character in the optimal transformation of s[`i, ri] into
s[αi, βi] fell outside of s[α′i, β

′
i]. Recall that G = ε′nδ−x and

nδ < (1 + ε′)ed(s, s). Therefore, considering only error of
case (i) and (iii), the total error is boundede by a multiplica-
tive factor of at most 1 + 4ε′.

Case (ii) also imposes a 3 + ε′ factor. Moreover, we lose a
1 + ε′ for considering different values for nδ . Therefore, the
total error of our algorithm is bounded by a multiplicative
factor of (3+ε′)(1+4ε′)(1+ε′)(1+ε′) = 3+19ε′+o(ε′) ≤ 3+ε
since we choose ε′ = ε/22.

Proof of Lemma 7.

Proof. For a block node v with a degree of at least nα

we chose one of its neighbors as a representative with a
probability of

P [R ∩Nτ (v) 6= ∅] = 1− (1− p)|Nτ (v)|

≥ 1−
(
1− (2 log n/nα)

)nα
= 1− e−2 logn = 1− (1/n2).

Using the union bound we conclude that we choose a
neighbor of every high degree node with a total probability
of at least 1− (1/n).

Now, let (v, u) be a pair of block and candidate substring
with a distance of at most τ where the degree of v in Gτ is at
least nα. We showed that there exists a node z ∈ R ∩Nτ (v)
with high probability. By symmetry, v ∈ Nτ (z) also holds.
Triangle inequality ensures that u ∈ N2τ (z). Therefore, our
algorithm outputs 〈“b”, v, z, τ〉 and 〈“cs”, u, z, τ〉 with high
probability. Therefore, our algorithm (in the next round)
connects v and u.

On the other hand, let (v, u) be an edge that our
algorithm outputs. There is a representative z such that
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u ∈ Nτ (z) and v ∈ N2τ (z), or v ∈ Nτ (z) and u ∈ N2τ (z).
Therefore,

ed(u, v) ≤ ed(u, z) + ed(z, v) ≤ τ + 2τ = 3τ.

Proof of Lemma 8.

Proof. We already discussed the number of machines, the
memory of each machine, and the time complexity of our
algorithm. Here, we prove the approximation factor of our
algorithm is at most 3 + ε.

Recall that we have two types of larger blocks based on
the number of overall high degree blocks. The error corre-
sponding to larger blocks of type (i) is because of (a) triangle
inequality (a multiplicative error of 3), (b) discretizing τ ’s
(a multiplicative error of 1 + ε′), (c) ignoring overall low
degree blocks (a multiplicative error of 1 + ε′), and (d) using
approximately optimal substring instead of optimal ones
(1 + ε′).

The error corresponding to larger blocks of type (ii) is
because of (a) low degree extension (a multiplicative error
of 2), (b) using approximately optimal substring instead of
optimal ones for extension (1 + ε′).

Moreover, we lose a 1+ε′ for considering different values
for nδ . Therefore, the total error of our algorithm is bounded
by a multiplicative factor of

1 + ε′ ·max
{

3 · (1 + ε′)2(1 + 4ε′), 2 · (1 + ε′)
}

= 3 + 21ε′ + o(ε′) ≤ 1 + ε

since we choose ε′ = ε/22.
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