Improved MPC Algorithms for Edit Distance and Ulam Distance

Mahdi Boroujeni, Mohammad Ghodsi, and Saeed Seddighin

Abstract

Edit distance is one of the most fundamental problems in combinatorial optimization to measure the similarity between strings. Ulam distance is a special case of edit distance where no character is allowed to appear more than once in a string. Recent developments have been very fruitful for obtaining fast and parallel algorithms for both edit distance and Ulam distance. In this work, we present an almost optimal MPC (massively parallel computation) algorithm for Ulam distance and improve MPC algorithms for edit distance. Our algorithm for Ulam distance is almost optimal in the sense that (1) the approximation factor of our algorithm is $1+\epsilon$, (2) the round complexity of our algorithm is constant, (3) the total memory of our algorithm is almost linear ($\widetilde{O}_{\epsilon}(n)$), and (4) the overall running time of our algorithm is almost linear which is the best known for Ulam distance. We also improve the work of Hajiaghayi et al. for edit distance in terms of total memory. The best previously known MPC algorithm for edit distance requires $\widetilde{O}\left(n^{2 x}\right)$ machines when the memory of each machine is bounded by $\widetilde{O}\left(n^{1-x}\right)$. In this work, we improve the number of machines to $\widetilde{O}\left(n^{(9 / 5) x}\right)$ while keeping the memory limit intact. Moreover, the round complexity of our algorithm is constant and the total running time of our algorithm is truly subquadratic. However, our improvement comes at the expense of a constant factor in the approximation guarantee of the algorithm. This improvement is inspired by the recent techniques of Boroujeni et al. and Chakraborty et al. for obtaining truly subquadratic time algorithms for edit distance.

Index Terms—MapReduce, Parallel Algorithms, Approximation Algorithms, Ulam Distance, Edit Distance.

1 Introduction

String similarity measures are among the most fundamental problems in computer science. The edit distance (a.k.a Levenshtein distance) is the most notable example of it. This problem has lots of applications in several fields such as computational biology, natural language processing, and information theory. In theoretical computer science, too, the problem has been very central and fundamental; the problem of computing the edit distance is a textbook example for dynamic programming.

In edit distance, we are given two strings s and \bar{s} and we wish to transform s into \bar{s} using the smallest number of edit operations. In each operation, we are allowed to (i) insert a character at a specific position, (ii) remove a character, or (iii) modify a character. For simplicity, we assume that all these edit operations incur equal costs. For two strings s and $\bar{s},|s|=|\bar{s}|=n$, a classic dynamic program finds the edit distance between them in time $O\left(n^{2}\right)$. The idea is to define auxiliary variables $d_{i, j}$'s which denote the edit distance between the first i characters of s and the first j characters of \bar{s}. Next, we iteratively determine the values of the auxiliary variables based on the following formula.

[^0]\[

d_{i, j}= $$
\begin{cases}d_{i-1, j-1} & \text { if } s[i]=\bar{s}[j] \\ 1+\min \left\{d_{i-1, j-1}, d_{i, j-1}, d_{i-1, j}\right\} & \text { if } s[i] \neq \bar{s}[j]\end{cases}
$$
\]

Although naïve, the above algorithm is almost the best we can do from a theoretical perspective. Since the late 60's, several studies were focused on improving the quadratic running time of the problem; however, thus far, the bestknown algorithm runs in time $O\left(n^{2} / \log ^{2} n\right)$ [2]. The shortcoming of these studies is partly addressed by the work of Backurs and Indyk [3] (STOC'15) wherein the authors show a truly subquadratic time algorithm is impossible to achieve unless a widely believed conjecture (SETH ${ }^{1}$) fails.

Unfortunately, the quadratic dependency of the running time on the size of the input makes it impossible to use such algorithms for large inputs in practice. For example, a human genome consists of almost three billion base pairs that need to be incorporated in similarity measurements. Therefore, the need to compute/approximate these measures in better than quadratic time has led to several algorithmic breakthroughs. Near linear time solutions have been studied in a series of works [4], [5], [6], [7], [8], [9], [10] culminating in polylogarithmic approximation. Recently, a quantum algorithm is given for edit distance that approximates the solution within a constant factor in truly subquadratic time by exploiting triangle inequality [11]. Subsequent work discovers a novel classic replacement for the quantum techniques and obtains a truly subquadratic time algorithm within a constant factor for classic computers [12]. Subsequent works improve the running time

1. The strong exponential time hypothesis states that no algorithm can solve the boolean satisfiability (CNF-SAT) problem in time $O\left(2^{n(1-\epsilon)}\right)$.
of the algorithm. Kouckỳ and Saks [13] and Brakensiek and Rubinstein [14] independently present near-linear time constant-factor approximation algorithms for edit distance where the input strings are far from each other. Finally, Andoni and Nosatzki [15] provide a similar near-linear time algorithm which does not impose any condition on input strings. Note that the approximation factors of these algorithms are exponentially or doubly exponentially large constants. The best algorithm within a factor of $3+\epsilon$ is presented by Goldenberg, Rubinstein, and Saha |16| with a running time of $\widetilde{O}\left(n^{1.6+o(1)}\right)$.

Ulam distance is a special case of edit distance wherein the input strings s and \bar{s} have no repetitive characters $\2 This additional restriction to the input makes the problem relatively easier to solve as Ulam distance admits an almost linear time solution. Notice that, verifying whether s and \bar{s} are equal or not requires $\Omega(n)$ operations and thus there is no hope to solve or even approximate the solution in sublinear time. However, for the large solution regime, a constant approximate solution can be found in time $\widetilde{O}_{\epsilon}(\sqrt{n}+n / d)$ where d is the distance of the two input strings [17|. This was later improved to a $1+\epsilon$ approximation algorithm but for a more relaxed notion of distance wherein character substitution is not allowed [17], |18], [19]. The algorithm of Naumovitz et al. [17] obtains a $2+\epsilon$ approximate solution for the more conventional formulation of Ulam distance.

Another line of attack is to design efficient algorithms for string similarity measures is parallel computing [11], [20]. Motivated by modern fast, efficient, easy-to-use massively parallel distributed computing platforms such as MapReduce, Hadoop, and Spark [21], [22], [23], the massively parallel computation (MPC) model [24], [25], [26], [27] has been proposed and extensively studied to understand the power and limitations of these parallel computing platforms.

In contrast to the PRAM model where an $\Omega(\log n)$ factor in the round complexity is usually inevitable, MPC allows for sublogarithmic round complexity [24], [28], [29]. In the MPC model, each machine has unlimited access to its memory; however, two machines can only interact in between two rounds. Thus, a central parameter in this setting is the round complexity of the algorithm since network communication is the typical main bottleneck in practice. The ultimate goal is developing constant-round algorithms, which are highly desirable in practice.
The MPC model: We assume throughout this paper that the input contains two strings of length n. In the MPC model [24], [25], [26], [27], the number of machines and the local memory size on each machine should be relatively smaller than the input size of the problem. Therefore, we fix an $0<x<1$ and consider the memory of each machine to be $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ and aim to minimize the number of machines needed to run the algorithm. In the MPC model, each algorithm runs in a number of rounds. In each round, every machine makes some computation on the data assigned to the machine. No communication between machines is allowed during a round. Between two rounds, machines are allowed to communicate so long as each machine receives no more communication than its memory. Any data that is
2. W.l.o.g. in Ulam distance, s and \bar{s} can be considered as two permutations of $[n]=\{1, \ldots, n\}$.
the output of a machine must be computed locally from the data residing on the machine, and initially, the input data is distributed across the machines.

In this work, we present an almost optimal MPC algorithm for Ulam distance and improve MPC algorithms for edit distance. An overview of our results is shown in Table 1 . Our algorithm for Ulam distance is almost optimal in the sense that (1) the approximation factor of our algorithm is $1+\epsilon$, (2) the round complexity of our algorithm is constant, (3) the total memory of our algorithm is almost linear $\left(\widetilde{O}_{\epsilon}(n)\right)$, and (4) the overall running time of our algorithm is almost linear which is the best known for Ulam distance. Similar to edit distance and longest common subsequence (LCS) which are considered as dual problems, Ulam distance and longest increasing subsequence (LIS) are also seen as dual problems. LIS is equivalent to a special case of LCS where each string can contain each character at most once. In that sense, our result for Ulam distance complements the work of Im et al. [30], wherein a similar result is presented for LIS. It is worth mentioning that similar to Ulam distance, for which the running time improves for similar strings, LIS also admits very fast (polylogarithmic time) solutions when the two strings share a large subsequence [31]. However, these techniques do not improve the time or memory complexity of the solution in the MPC model since adaptive sampling is an inherent barrier for the MPC model.

The best previously known MPC algorithm for edit distance requires $\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$ machines when the memory of each machine is bounded by $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ [20]. Thus, the total memory of their algorithm is $\widetilde{O}_{\epsilon}\left(n^{1+x}\right)$. Indeed, the main question which is left unanswered is how best can one approximate edit distance in the MPC model with nearlinear memory? In this work, we take a step forward toward the answer by improving the total memory of the algorithm to $\widetilde{O}_{\epsilon}\left(n^{1+(4 / 5) x}\right)$. Moreover, the round complexity of our algorithm is constant and the total running time of our algorithm is truly subquadratic. However, our improvements come at the expense of a constant factor in the approximation guarantee of the algorithm. This improvement is inspired by the recent techniques of Boroujeni et al. |11] and Chakrabortyet al. [12] for obtaining truly subquadratic time algorithms for edit distance. Moreover, using specific parameters and $\widetilde{O}_{\epsilon}\left(n^{5 / 17}\right)$ machines, the total running time of our algorithm is $O\left(n^{1.883}\right)$ and the parallel running time of our algorithm is $O\left(n^{1.353}\right)$.

2 Preliminaries

In this work, we consider two problems, namely edit distance and Ulam distance. The input to both problems consists of two strings s and \bar{s} both of length n. Let us begin by formally defining the edit distance of two strings s and \bar{s}.

edit distance

input: Two strings s and \bar{s}, both of size n.
solution: The smallest number of operations that we need to perform on s to transform it into \bar{s}. We are allowed to (i) add a character at some position, (ii) remove a character, and (iii) change a character. All these operations come at a cost of 1.

TABLE 1: Our results are shown along with previous massively parallel algorithms for edit distance. Our algorithm for edit distance improves the previous algorithms in terms of total memory and total running time.

Our Results								
Problem	Reference	Approximation Factor	\# Rounds	Memory of Each Machine	\# Machines	Total Running Time		
Ulam Distance	Theorem4	$1+\epsilon$	2	$\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$	$\widetilde{O}_{\epsilon}\left(n^{x}\right)$	$\widetilde{O}_{\epsilon}(n)$		
Edit Distance	Theorem 9	$3+\epsilon$	4	$\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$	$\widetilde{O}_{\epsilon}\left(n^{(9 / 5) x}\right)$	$\widetilde{O}_{\epsilon}\left(n^{2-\min \left(\frac{1-x}{6}, \frac{2 x}{5}\right)}\right)$		
Previous Work								$\widetilde{O}_{\epsilon}\left(n^{2.6}\right)$
Edit Distance	$[?]$	$1+\epsilon$	$O(\log n)$	$\widetilde{O}_{\epsilon}\left(n^{8 / 9}\right)$	$\widetilde{O}_{\epsilon}\left(n^{8 / 9}\right)$	$\widetilde{O}_{\epsilon}\left(n^{2}\right)$		
Edit Distance	20	$1+\epsilon$	2	$\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$	$\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$			

For instance, for $s=$ elephant and $\bar{s}=$ relevant, we can transform s into \bar{s} by performing three operations:

Therefore, ed ("elephant", "relevant") is at most 3. With more inspection, it can be shown that here the edit distance is equal to 3 . The other measure that we are interested in is the Ulam distance. Ulam distance is a special case of edit distance wherein each character appears at most once in each string. We denote the edit distance between s and \bar{s} by ed (s, \bar{s}), and their Ulam distance by ulam (s, \bar{s}).

We consider the MPC setting in which we are provided with a certain number of machines each having a memory of at most $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. In each round, every machine is fed with a piece of information that fits within its memory and sequentially executes a stream of operations on the input. At the end of each round, every machine outputs some information whose length is bounded by $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. The outputs then are given as input to the machines at the beginning of the next round. We are interested in massively parallel algorithms that run in a constant number of rounds.

In our algorithms, we divide the strings into pieces of size $\mathcal{B}=n^{1-y}$ and refer to them as blocks. We denote each block i of s by $s\left[\ell_{i}, r_{i}\right]$ (thus, $r_{i}=\ell_{i}+\mathcal{B}-1$). For the sake of analysis, we sometimes fix an optimal solution opt and denote by $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ the substring of \bar{s} that corresponds to block $s\left[\ell_{i}, r_{i}\right]$ according to opt. Blocks of s and their corresponding blocks in \bar{s} are shown in Figure 1. We often denote the string positions by γ, κ, p and q. For instance, $s[\gamma, \kappa]$ denotes the substring of s starting from position γ and ending at position κ. Also, to simplify the analysis, we make use of two notations \widetilde{O} and \widetilde{O}_{ϵ} where both suppress poly $(\log n)$ factors and the latter also hides poly $(1 / \epsilon)$ terms.

3 Our Results

In this section, we briefly describe our massively parallel algorithms for Ulam distance and edit distance. The details of our algorithms are presented in Sections 4 and 5 .

3.1 Ulam Distance

Here, we briefly present our massively parallel algorithm for Ulam distance using $\widetilde{O}_{\epsilon}\left(n^{x}\right)$ machines, each with a

Fig. 1: The partitioning of s into n^{y} blocks of size $\mathcal{B}=n^{1-y}$ and the transformation of the blocks into their matches via opt is shown in this figure. Note that matched substrings $\operatorname{span} \bar{s}, \ell_{1}=\alpha_{1}=1$ and $r_{n / \mathcal{B}}=\beta_{n / \mathcal{B}}=n$.
memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. Recall that, the \widetilde{O}_{ϵ} notation suppresses poly $(\log n)$ and poly $(1 / \epsilon)$ terms. The details of our algorithm are presented in Section 4 Our algorithm approximates Ulam distance within a factor of $1+\epsilon$ for an arbitrarily small constant $\epsilon>0$ with high probability. The total running tim ϵ^{3} of our algorithm is $\widetilde{O}_{\epsilon}(n)$. Moreover, our algorithm runs in two MPC rounds.

In the sequential setting, a trivial $\Omega(n)$ lower bound holds for the running time of approximating Ulam distance within a $1+\epsilon$ factor. However, for the high distance regime, the running time can be improved to $\widetilde{O}_{\epsilon}(n / d+\sqrt{n})$ if character substitution is not allowed [17]. However, even when the distance is large, no $1+\epsilon$ approximation algorithm is known for Ulam distance if character substitution is allowed.

Recall that, Ulam distance is a special case of edit distance where the input strings s and \bar{s} have no repetitive characters. Moreover, recall that for simplicity, we assume both input strings have length n. Recall that, we break s into blocks of size $\mathcal{B}=n^{1-y}$. In our algorithm for Ulam distance, we set $y=x$; hence, each block fits into the memory of one machine. We assume for simplicity that \mathcal{B} is an integer.

To better understand our algorithm, we first illustrate how a block of s is mapped to a substring of \bar{s}. Note that, if for each block of s we know where it transforms into in opt, we can break the problem into n^{x} subproblems and solve Ulam distance for each of them individually. Since such information is not present, we form a set of candidate substrings on \bar{s} for every block of s and compute the Ulam distances between each block of s and its corresponding candidate substrings. The construction in our algorithm ensures that each block $s\left[\ell_{i}, r_{i}\right]$ has a corresponding candidate substring $\bar{s}[\gamma, \kappa]$ which is relatively close to $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Recall that, $s\left[\ell_{i}, r_{i}\right]$ transforms into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ in opt. The construction of

[^1]

Fig. 2: If the Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ is small, we solve local Ulam distance which gives us the best match of $s\left[\ell_{i}, r_{i}\right]$ in \bar{s}. Such a substring is shown as $\bar{s}[\gamma, \kappa]$ in this figure. We prove that $\bar{s}[\gamma, \kappa]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ intersect, which narrows down our search for $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. In this figure, common characters are connected via dotted lines.
the candidate substrings and computing the Ulam distance between each block and its candidate substrings are done in the first round of our algorithm. In the second round, we compute an approximately optimal transformation of s into \bar{s} using a dynamic program on the information gathered in the first round.

In the following, we briefly formalize the ideas mentioned above. Without loss of generality, we assume that substrings $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ partition \bar{s}, i.e., each character of \bar{s} belongs to exactly one $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Recall that, $1+\epsilon$ is the desired approximation factor of our algorithm where $\epsilon>0$ is an arbitrarily small constant number. We fix another small number $\epsilon^{\prime}=\epsilon / 2$ for the sake of analysis. Let $u_{i}=\operatorname{ulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ be the Ulam distance between the i^{\prime} th block of s and its corresponding substring of \bar{s} in opt. We call a substring $\bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]$ an approximately optimal candidate substring for a block $s\left[\ell_{i}, r_{i}\right]$ if both of the following conditions hold:

$$
\begin{gather*}
\alpha_{i} \leq \alpha_{i}^{\prime} \leq \alpha_{i}+\epsilon^{\prime} u_{i} \tag{1}\\
\beta_{i}-\epsilon^{\prime} u_{i} \leq \beta_{i}^{\prime} \leq \beta_{i} \tag{2}
\end{gather*}
$$

Note that using approximately optimal candidate substrings instead of the optimal ones imposes an additive error of at most $2 \epsilon^{\prime} u_{i}$ for each block which sum up to at most a total additive error of $2 \epsilon^{\prime}$. ulam (s, \bar{s}). For a small enough ϵ^{\prime}, this total additive error is in the range of the desired approximation factor. In our algorithm, we construct an approximately optimal candidate substring in the first phase with high probability unless u_{i} is too large and the number of common characters of $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ is too small (see Lemma 3). Note that, in such cases, one can remove all characters of $s\left[\ell_{i}, r_{i}\right]$ and add all characters of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ instead, without losing more than a $1+O\left(\epsilon^{\prime}\right)$ multiplicative factor. This claim is proven in Theorem 4

In what follows, we explore some features of the approximately optimal candidate substrings. In our algorithm, if u_{i} is relatively small, we solve a local version of Ulam distance which finds a substring $\bar{s}[\gamma, \kappa]$ and guarantees that its endpoints are relatively close to the endpoints of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Next, we construct several candidate substrings with starting points near γ and ending points near κ. We prove that at least one of these candidate substrings satisfies both conditions 1 and 2 . This case is illustrated in Figure 2

In cases that u_{i} is relatively large and c_{i}, the number of unchanged characters of transforming $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$

Fig. 3: If the Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ is large but the number of unchanged characters is not small, we try to find a common character by randomized sampling. If character G is a common character, we extend it to form $\bar{s}[\gamma, \kappa]$ which narrows down our search for $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ to indices near γ and κ.
in opt, is more than $\epsilon \mathcal{B} / 4$, we sample each character of $s\left[\ell_{i}, r_{i}\right]$ with an independent probability of $\theta=\left(8 / \epsilon^{\prime} \mathcal{B}\right) \log n$ and put them in a hitting set I. We show that at least one of the characters of I remain unchanged in the transformation of $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ in opt with high probability. For such an unchanged character, we make a substring $\bar{s}[\gamma, \kappa]$ based on the position of the unchanged characters and show that its endpoints are near the endpoints of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Note that since \bar{s} contains distinct characters, it is easy to find where an unchanged character of s maps in \bar{s}. We prove this claim in Lemma 2. Afterward, we construct several candidate substrings with starting points near γ 's and ending points near κ^{\prime} s. We prove in Lemma 3 that at least one of these candidate substrings satisfies both conditions 1 and 2 with high probability. This case is shown in Figure 3

Recall that, the starting point of an approximately optimal candidate substring α_{i}^{\prime} is allowed to be up to $\epsilon^{\prime} u_{i}$ characters away from α_{i}. Hence, we define a gap $\mathcal{G}_{i}=\epsilon^{\prime} u_{i}$ and only inspect the starting points and ending points with indices divisible by \mathcal{G}_{i}. We assume for simplicity that \mathcal{G}_{i} is an integer. We show that the expected total number of candidate substrings for a block (for both cases) is at most
$\left[1+\log _{1+\epsilon^{\prime}} n \cdot\left(1+\mathcal{B} \cdot\left(8 / \epsilon^{\prime} \mathcal{B}\right) \log n\right)\left(1 / \epsilon^{\prime}\right)\right]\left(1 / \epsilon^{\prime}\right)=\widetilde{O}_{\epsilon}(1)$.
Therefore, we assign the computational task corresponding to each block of s, including the computation of the Ulam distance between the block and its corresponding candidate substrings, to one machine. Note that since \bar{s} does not have any repetitive characters, the only information needed from \bar{s} to be fed to the machine is the location of each characters of $s\left[\ell_{i}, r_{i}\right]$ in \bar{s} if exists, which are $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ many locations. A more formal description of the first round of our algorithm is given in Algorithm 1. Finally, in the second round of our algorithm, we run a dynamic program to find a $1+\epsilon$ approximation solution based on the candidate substrings we construct in the first round of the algorithm. This phase is shown in Algorithm 2
Theorem 4 [restated]. For an arbitrarily small constant $\epsilon>0$, there exists a massively parallel algorithm with $\widetilde{O}_{\epsilon}\left(n^{x}\right)$ machines for arbitrary $0<x<1 / 2$, each with a memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ that approximates the Ulam distance of two strings of length n within a factor of $1+\epsilon$ in two rounds with high probability. Moreover, the total computation of this algorithm is $\widetilde{O}_{\epsilon}(n)$.

Fig. 4: In our algorithm for edit distance, we form the starting points of candidate substrings for a block $s\left[\ell_{i}, r_{i}\right]$ as follows. The starting points are in the range of $\left[\ell_{i}-n^{\delta}, \ell_{i}+n^{\delta}\right]$. Moreover, we consider starting points in this interval which are divisible by $\mathcal{G}=\epsilon^{\prime} n^{\delta-y}$.

3.2 Edit Distance

Note that in the classic setting, edit distance can be solved within linear memory. However, existing massively parallel algorithms for edit distance such as [11] and [20] use a superlinear amount of memory, the best of which uses $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ memory for each of its $\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$ machines. Recall that, the \widetilde{O}_{ϵ} notation suppresses poly $(\log n)$ and poly $(1 / \epsilon)$ terms. In this work, we improve the number of machines and thus the aggregated memory of our algorithm. Our algorithm runs on $\widetilde{O}_{\epsilon}\left(n^{(9 / 5) x}\right)$ machines with memory $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. However, this comes at the expense of a constant factor loss in the approximation. More precisely, the approximation factor of our algorithm is $3+\epsilon$ and its round complexity is 4 . Moreover, the total running time of our algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-\min \left(\frac{1-x}{6}, \frac{2 x}{5}\right)}\right)$ which is truly subquadratic for any $0<x<1$.

Our algorithm uses two different approaches for small distances and large distances. The overall structure of our algorithm for small distances has similarities with the algorithm of [20] but improves it in terms of memory usage. For large distances, which is the hard case, we borrow some ideas from sequential algorithms of [11] and [12] and marry them with new techniques to run the algorithm in the parallel setting.

The very first step of our algorithm is to assume we have a given value n^{δ} and the task is to verify whether n^{δ} is relatively close to $\mathrm{ed}(s, \bar{s})$ or it is much smaller than the actual edit distance between s and \bar{s}. Previous work such as [11] has shown that such an assumption only adds a multiplicative $\widetilde{O}_{\epsilon}(1)$ term to the analysis of our algorithm. The overall idea is to try all values of $n^{\delta}=(1+\epsilon)^{i}$ for $0 \leq i \leq \log _{1+\epsilon} n$. In the sequential setting, we start by a small $n^{\bar{\delta}}$, and every time we fail to find a solution with that size, we try the next value for n^{δ}. The first time we find a solution, we are certain that it is a $1+\epsilon$ approximation of the optimal solution. In the parallel setting, we run our algorithm for all values of n^{δ} in parallel and only consider the smallest n^{δ} with a valid solution at the end. Therefore, this assumption does not affect the round complexity of our algorithm. Last but not least, our algorithm detects the case of ed $(s, \bar{s})=0$ separately.

Let $1+\epsilon$ be the desired approximation factor of our algorithm for an arbitrarily small constant $\epsilon>0$. For simplicity, we use $\epsilon^{\prime}=\epsilon / 22$ in the analysis of our algorithm. Our algorithm breaks the problem into n^{y} subproblems for each block of s. Recall that the memory of each machine
is $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ hence, $\widetilde{O}_{\epsilon}\left(n^{y-x}\right)$ blocks of size $\mathcal{B}=n^{1-y}$ fit into the memory of a single machine. Moreover, for a block $s\left[\ell_{i}, r_{i}\right]$ of s, we call a candidate substring $\bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]$ approximately optimal if both of these conditions hold.

$$
\begin{gather*}
\alpha_{i} \leq \alpha_{i}^{\prime} \leq \alpha_{i}+\epsilon^{\prime} n^{\delta-y} \tag{3}\\
\beta_{i}-\epsilon^{\prime} n^{\delta-y}-\epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right) \leq \beta_{i}^{\prime} \leq \beta_{i} \tag{4}
\end{gather*}
$$

We then use one of the following approaches to solve these subproblems based on whether n^{δ} is relatively small or relatively large.

3.2.1 Small Distances $\left(\mathbf{n}^{\delta} \leq \mathbf{n}^{\mathbf{1 - x} / \mathbf{5}}\right)$

Note that if we know which part of \bar{s} corresponds to each block of s in opt, the subproblems can be solved easily. Instead of this out of reach information, our algorithm finds $\widetilde{O}_{\epsilon}\left(n^{y}\right)$ candidate substrings of \bar{s} for each block of s and ensures that at least one of the candidate substrings of each block is relatively close to its match in opt. The construction of the candidate substrings is similar to that of [20]. In this case, our algorithm consists of two rounds. In the first round, we compute the edit distance between each block and its candidate substrings. In the second round, we use the information obtained in the first round and run a dynamic program to find an approximately optimal transformation of s into \bar{s}. In the following, we briefly describe the two rounds of our algorithm in the case of small distances.

If for every block of s, we are able to find an approximately optimal candidate substring, the total additive error caused by using these substrings instead of optimal ones assuming ed $(s, \bar{s}) \leq n^{\delta}$ is at most

$$
\sum_{i} \epsilon^{\prime} n^{\delta-y}+\epsilon^{\prime} n^{\delta-y}+\epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right) \leq 3 \epsilon^{\prime} n^{\delta}
$$

Therefore, using these substrings only incurs a multiplicative $1+3 \epsilon^{\prime}$ term to the approximation factor. We claim that if the size of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ is not too small nor too large, our algorithm certainly finds an approximately optimal candidate substring for $s\left[\ell_{i}, r_{i}\right]$ in the first phase. We provide a formal proof of this claim in Lemma 5 .

On the other hand, if $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ is too small or too large, we can remove $s\left[\ell_{i}, r_{i}\right]$ and insert $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ by imposing at most a $1+\epsilon^{\prime}$ multiplicative factor to the approximation factor. We prove this claim in Lemma 6 The construction of candidate substrings is done as follows. Assuming n^{δ} is an upper bound on the solution size, we conclude that $\left|\ell_{i}-\alpha_{i}\right| \leq n^{\delta}$. We then define a gap $\mathcal{G}=\left\lfloor\epsilon^{\prime} n^{\delta-y}\right\rfloor$ and consider indices in the range of $\left[\ell_{i}-n^{\delta}, \ell_{i}+n^{\delta}\right]$ which are divisible by \mathcal{G} as the starting points of our candidate substrings. It can be easily shown that one of these starting points meets condition 3. This structure is shown in Figure 4 The total number of starting points for a block is therefore, $O\left(n^{\delta}\right) / \mathcal{G}=O\left(\left(1 / \epsilon^{\prime}\right) n^{y}\right)$. Moreover, for each starting point, we consider at most $O\left(\log _{1+\epsilon^{\prime}} n\right)=\widetilde{O}_{\epsilon}(1)$ endpoints. The construction of endpoints is shown in Figure 5. Each pair of a starting point and an ending point forms a candidate substring. Hence, the total number of candidate substrings for each block is $\widetilde{O}_{\epsilon}\left(n^{y}\right) \cdot \widetilde{O}_{\epsilon}(1)=\widetilde{O}_{\epsilon}\left(n^{y}\right)$. In the case of small distances, we use $y=x$.

Fig. 5: We form the ending points of candidate substrings for a block $s\left[\ell_{i}, r_{i}\right]$ and a starting point γ around $\kappa=\gamma+\mathcal{B}$ as $\kappa \pm\left(1+\epsilon^{\prime}\right)^{j}$. Note that we only construct candidate with a length less than $\left(1 / \epsilon^{\prime}\right) \mathcal{B}$. Moreover, we can safely neglect ending points beyond $\kappa+n^{\delta}$.

Up to this point, our algorithm for the case of a small distance is similar to that of [20]. However, the algorithm of |20| assigns each pair of block/candidate substring to a single machine. On the contrary, since in this case, n^{δ} is small, starting points of candidate substrings of a block are not far from each other. Therefore, we give several candidate substrings of each block to a machine. This technique reduces the number of machines and therefore the total memory of our algorithm. The total number of machines in our algorithm in this case is

$$
n^{x} \cdot \frac{\widetilde{O}_{\epsilon}\left(n^{\delta}\right)}{n^{1-x}}=\widetilde{O}_{\epsilon}\left(n^{2 x-(1-\delta)}\right)
$$

Recall that in the first round of our algorithm, we compute the distances between each block and its candidate substrings. To find the edit distance between a block and one of its candidate substrings in our algorithm, we use a variant of the algorithm of [12] on each machine which uses linear memory, has an approximation factor of $3+\epsilon^{\prime}$, and runs in time $O\left(n^{2-1 / 6}\right)$. Therefore, the total running time of this phase is $\widetilde{O}_{\epsilon}\left(n^{2-(1-x) / 6}\right)$ and the parallel running time of this phase is $\widetilde{O}_{\epsilon}\left(n^{(1-\delta)+(2-1 / 6)(1-x)}\right)$. In the second round of our algorithm, we find a $1+\epsilon^{\prime}$ approximate solution based on the information obtained in the first round. Moreover, the total computation of the second round is done on a single machine with a running time of $\widetilde{O}_{\epsilon}\left(n^{2 y}\right)$.

3.2.2 Large distances $\left(\mathbf{n}^{\delta}>\mathbf{n}^{\mathbf{1 - x} / \mathbf{5}}\right)$

In this case, we apply the triangle inequality technique of [11], randomized sampling technique of [11], and low degree extension technique of [12] to avoid explicitly computing the edit distance for all pairs of blocks and candidate substrings. Similar to the previous case, we partition s into n^{y} blocks of size $\mathcal{B}=n^{1-y}$. It is known that we can reduce the problem of computing the edit distance for all pairs of blocks and candidate substrings into verifying whether their distance is at most a given threshold τ or much larger than τ [11]. More precisely, similar to Lemma 5 . we reduce the edit distance problem to finding the edit distance between smaller block/substring pairs. Afterward, the distance between a block and one of its substrings is found by discretizing the distance with several threshold τ ($\tau=0$ and $\tau=\left(1+\epsilon^{\prime}\right)^{j}$ for $0 \leq j \leq \log _{\epsilon^{\prime}} n$) and then checking whether the distance is at most τ or much larger than τ. Both steps impose small errors. In the following, we assume a threshold τ is fixed, and we aim to find all pairs

Fig. 6: The graph G_{τ} is shown in this figure. The set of representatives R is shown with the set of its neighbors with distance τ and 2τ. We show that high degree nodes are in $N_{\tau}(R)$ with high probability. Other low degree nodes may correspond to blocks or substrings.
of (block, candidate substring)'s with an edit distance of at most τ. In the final solution, we try all values of $\tau=0$ and $\tau=\left(1+\epsilon^{\prime}\right)^{j}$ for $0 \leq j \leq \log _{\epsilon^{\prime}} n$ in parallel. For a given τ, we define a graph G_{τ} by placing a node for every block and candidate substrings of all blocks and connect two nodes if their edit distance is at most τ. Note that G_{τ} is not explicitly constructed at first, and we try to find most of its edges with limited resources. We sometimes use the phrase the edit distance between two nodes which means the edit distance between their corresponding strings. Let $0<\alpha<1$ be a parameter we fix later. We call a node high degree (or dense) if it is connected to more than n^{α} nodes and call it low degree (or sparse) otherwise.

Our algorithm for the case of large distances consists of four rounds. In the first round, we find the neighbors of all high degree nodes with high probability. If most of the blocks are high degree, then our job is done. In the second and third rounds, we solve the problem for cases where a significant number of low degree blocks are present. In the fourth round, we combine the solutions of individual blocks into a general solution using a dynamic program. In the following, we briefly explore these ideas.

In the first round, we sample each node with an independent probability of $\widetilde{O}_{\epsilon}\left(1 / n^{\alpha}\right)$ and call them representatives. We then compute the edit distances between each representative and all other nodes. We show that each high degree node of G_{τ} has at least one representative as its neighbor with high probability and therefore, we can approximately find all of its neighbors using the triangle inequality. More precisely, let z be a representative, $N_{\tau}(z)$ be the set of all nodes with a distance of at most τ to z, and $N_{2 \tau}(z)$ be the set of all nodes with a distance of at most 2τ to z. We put an edge for each pair of $N_{\tau}(z) \times N_{2 \tau}(z)$ in our graph. For a node v with a representative z as one of its neighbors, $v \in N_{\tau}(z)$ and $N_{\tau}(v) \subseteq N_{2 \tau}(z)$ hold. Therefore, for a node v which has a representative neighbor, the edges between v and all of its neighbors are added. Moreover, if a node v is high degree, we show it has at least one representative as its neighbors with high probability. Furthermore, using triangle inequality, we show that each added edge has a distance of at most 3τ. In Figure 6 the Venn diagram of the these sets are shown and in Lemma 7 a formal proof is presented.

Therefore, at the end of the first round, all neighbors of high degree nodes for all thresholds are found. However, some false positive neighbors may also be present where each of them has a distance of at most 3τ.

The second and third rounds consider low degree nodes. In the second round, we sample some low degree blocks and find their distance to their candidate substrings. In the third round, we extend some pairs of low degree blocks and candidate substring with distances less than τ to a number of adjacent blocks. In the following, we briefly describe the second and third rounds.

The neighbors of low degree nodes cannot be found similar to the high degree nodes. However, low degree nodes have other useful features:

- We partition s into several regions or larger blocks. If in the optimal solution opt, only a few low degree blocks correspond to a region, we can ignore low degree blocks of this region in our approximate solution since we are not going to lose much. Hence, we can only focus on regions with too many low degree blocks in opt.
- For such regions, we suppose we know a block $s\left[\ell_{i}, r_{i}\right]$ that transforms into $\bar{s}[\gamma, \kappa]$ in opt. Such an assumption is valid since there exist too many low degree blocks and we can hit at least one of them using random sampling. We can also assume we approximately know the edit distance between them by trying all values for τ. Moreover, since $s\left[\ell_{i}, r_{i}\right]$ is low degree, we can find $\bar{s}[\gamma, \kappa]$ by trying all candidate substrings of $s\left[\ell_{i}, r_{i}\right]$ and be sure that a small number of them can be (approximately) $\bar{s}[\gamma, \kappa]$. Otherwise, $s\left[\ell_{i}, r_{i}\right]$ is high degree.
- If we know a block $s\left[\ell_{i}, r_{i}\right]$ transforms into $\bar{s}[\gamma, \kappa]$ in opt, we can approximately guess that where the nearby blocks of $s\left[\ell_{i}, r_{i}\right]$ which are in the same region also transform into and create a pair of block/substring.
This technique is called the extension of a low degree block and it is shown in Figure 7 More precisely, Suppose we know a block $s\left[\ell_{i}, r_{i}\right]$ transforms into $\bar{s}[\gamma, \kappa]$ in opt. We then consider larger blocks with size $n^{1-y^{\prime}}$, assuming $y^{\prime}<y$. Let $s\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right]$ be a block of size $n^{1-y^{\prime}}$ containing $s\left[\ell_{i}, r_{i}\right]$. We observe that $s\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right]$ approximately transforms into $\bar{s}\left[\gamma-\left(\ell_{i}-\ell_{i}^{\prime}\right), \kappa+\left(r_{i}^{\prime}-r_{i}\right)\right]$ in opt. Moreover, we show that any block of size n^{1-y} such as $s\left[\ell_{j}, r_{j}\right]$ which is also contained in $s\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right]$ approximately transforms into $\bar{s}\left[\gamma-\left(\ell_{i}-\ell_{j}\right), \kappa+\left(r_{j}-r_{i}\right)\right]$ in opt. To use such a block, we should have $\tau \approx \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[\gamma, \kappa]\right)$. To this end, we sample each low degree block with an independent probability of $\widetilde{O}_{\epsilon}\left(1 / n^{\left(y-y^{\prime}\right)-(1-\delta)}\right)$ and put them in a set L . We show that for each of the larger blocks which contain sufficiently many low degree normal sized blocks, L hits at least one of the normal sized blocks with the right τ with high probability. This claim is shown in Lemma 8 Note that the expected size of L is $n^{y} \cdot \widetilde{O}_{\epsilon}\left(1 / n^{\left(y-y^{\prime}\right)-(1-\delta)}\right)=\widetilde{O}_{\epsilon}\left(n^{y^{\prime}+(1-\delta)}\right)$. For each block in L , we find its distance to all $\widetilde{O}_{\epsilon}\left(n^{y}\right)$ of its candidate substrings in the second round. The expected number of machines in the second round is equal to

$$
|\mathrm{L}| \cdot \frac{O\left(n^{\delta}\right)}{n^{1-x}}=\widetilde{O}_{\epsilon}\left(n^{x+y^{\prime}}\right)
$$

The expected total running time of the second round is equal to

$$
|\mathrm{L}| \cdot \widetilde{O}_{\epsilon}\left(n^{y}\right) \cdot \widetilde{O}_{\epsilon}\left(n^{2(1-y)}\right)=\widetilde{O}_{\epsilon}\left(n^{2-\left(y-y^{\prime}\right)}\right)
$$

Moreover, the parallel running time of this phase is equal to

$$
\widetilde{O}_{\epsilon}\left(n^{2-x-y}\right) .
$$

Fig. 7: If we know a block $s\left[\ell_{i}, r_{i}\right]$ and its corresponding substring $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ in opt, we can extend the substring. This extension gives us a candidate substring for each block $s\left[\ell_{j}, r_{j}\right]$ if it is contained in a larger block $s\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right]$.

In the third round, we extend low degree blocks, for each of their candidate substrings with a distance of no more than τ. Note that low degree nodes have at most n^{α} such candidate substrings. For each of such pairs, we compute the edit distance of $n^{y-y^{\prime}}$ pair of strings of size $\widetilde{O}_{\epsilon}\left(n^{1-y}\right)$ in the third round. Therefore, the expected number of machines in the third round is at most

$$
|L| \cdot n^{\alpha} \cdot n^{x-y^{\prime}}=\widetilde{O}_{\epsilon}\left(n^{x+(1-\delta)+\alpha}\right)
$$

The expected total running time of the third round is equal to

$$
|L| \cdot n^{\alpha} \cdot n^{y-y^{\prime}} \cdot \widetilde{O}_{\epsilon}\left(n^{2(1-y)}\right)=\widetilde{O}_{\epsilon}\left(n^{2-y+(1-\delta)+\alpha}\right)
$$

Moreover, the parallel running time of this phase of our algorithm is equal to

$$
\widetilde{O}_{\epsilon}\left(n^{2-x-y}\right)
$$

In the fourth round of our algorithm, we use a DP algorithm (similar to the second round of small distances) to find a total solution. The final solution has an approximation factor of at most $3+\epsilon$. In Section 5.3 . we show by setting adequate parameters, the expected number of machines of our algorithm is $\widetilde{O}_{\epsilon}\left(n^{(9 / 5) x}\right)$, each having a memory of size $O\left(n^{1-x}\right)$. Moreover, the expected total time complexity of our algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-2 x / 5}\right)$.

By combining the two approaches for small distances and large distances, we achieve the desired massively parallel algorithm for edit distance.
Theorem 9 [restated]. Let $0 \leq x \leq 5 / 17$ and $\epsilon>0$ be two arbitrary numbers. There exists a massively parallel algorithm that approximates the edit distance between two strings of length n within a factor of $3+\epsilon$ in four rounds. The total computation of this algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-\min \left(\frac{1-x}{6}, \frac{2 x}{5}\right)}\right)$, and it uses $\widetilde{O}_{\epsilon}\left(n^{(9 / 5) x}\right)$ machines each with a memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. Moreover, the parallel running time of our algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-\min \left(\frac{5+49 x}{30}, \frac{11 x}{5}\right)}\right)$.

4 Ulam Distance

The outline of our algorithm is presented in Section 3. In this section, we explain two phases of our algorithm in more details. Recall that in our algorithm, we divide string s into blocks of size $\mathcal{B}=n^{1-y}$ where $y=x$ in this Section. In the first phase, each machine receives a block of s and constructs a set of candidate substrings in \bar{s} for the given block. Afterward, each machine computes the Ulam distance between their given block and the constructed candidate substrings. In the second phase of our algorithm,
a single machine receives all of the information generated in the first phase and uses it to compute an approximately optimal solution via a dynamic program. In this section, we show that the approximation factor of our algorithm is $1+\epsilon$ with high probability. In the analysis of our algorithm, we use a relatively smaller error threshold of $\epsilon^{\prime}=\epsilon / 2$.

4.1 Phase 1

In the first phase of our algorithm, we construct the candidate substrings for each block of s and compute the Ulam distance between each block and its candidate substrings. The construction of the candidate substrings is done using two approaches. The first approach is suitable when $u_{i}=\operatorname{ulam}\left(s\left[l_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ is small and the second one is suitable when u_{i} is large.

If $u_{i}<\mathcal{B} / 2$, we use the solution of the local version of Ulam distance (lulam) between $s\left[l_{i}, r_{i}\right]$ and the whole string of \bar{s} to find an estimated location of α_{i} and β_{i}. The local Ulam distance between $s\left[l_{i}, r_{i}\right]$ and \bar{s} is defined as the minimum Ulam distance between $s\left[l_{i}, r_{i}\right]$ and any substring of \bar{s}. A sequential algorithm for local Ulam distance is presented in Appendix A Let $\bar{s}[\gamma, \kappa]$ be such a substring of \bar{s} with the minimum Ulam distance to $s\left[l_{i}, r_{i}\right]$. We claim that $\left|\alpha_{i}-\gamma\right| \leq 2 u_{i}$ and $\left|\beta_{i}-\kappa\right| \leq 2 u_{i}$. Recall that we define a gap size $\mathcal{G}_{i}=\epsilon^{\prime} u_{i}$ and consider substrings where their starting points and ending points indices are divisible by \mathcal{G}_{i}. The total additive error incurred by considering the gap for starting and ending points is at most $\sum_{i} 2 \mathcal{G}_{i} \leq 2 \epsilon^{\prime} \cdot \operatorname{ulam}\left(s\left[l_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$, which is negligible. Furthermore, since $\left|\alpha_{i}-\gamma\right| \leq 2 u_{i}$ and $\left|\beta_{i}-\kappa\right| \leq 2 u_{i}$, the total number of starting points and ending points we consider are at most $\left(4 u_{i}+1\right) / \mathcal{G}_{i}=O\left(1 / \epsilon^{\prime}\right)$. This makes a total of $O\left(1 / \epsilon^{\prime 2}\right)$ candidate substrings for each block.

The next approach constructs candidate substrings for a block when $u_{i} \geq \mathcal{B} / 2$. Let c_{i} be the number of unchanged characters in an optimal transformation of $s\left[l_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. If c_{i} is at most $\epsilon^{\prime} \mathcal{B} / 4$, we ignore the transformation, remove all characters of $s\left[l_{i}, r_{i}\right]$ and insert all characters of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. This imposes an additive error of at $\operatorname{most} 2 c_{i} \leq \epsilon^{\prime} \mathcal{B} / 2 \leq \epsilon^{\prime} u_{i}$, which is also negligible. Hence, in the following, we assume that $c_{i} \geq \epsilon^{\prime} \mathcal{B} / 4$.

In this case, we use a randomized sampling method and choose each character of $s\left[l_{i}, r_{i}\right]$ with an independent probability of $\theta=\left(8 / \epsilon^{\prime} \mathcal{B}\right) \log n$. This hitting set I has at least one of the c_{i} unchanged characters of the given block with a probability of at least

$$
\begin{aligned}
1-(1-\theta)^{c_{i}} & =1-\left(1-\left(\left(8 / \epsilon^{\prime} \mathcal{B}\right) \log n\right)^{\epsilon^{\prime} \mathcal{B} / 4}\right. \\
& >1-e^{-2 \log n}=1-1 / n^{2}
\end{aligned}
$$

Using the union bound, the overall probability of success for all machines is at least $1-n^{x} / n^{2}>1-1 / n$. The idea is to use the location of an unchanged character for locating α_{i} and β_{i} as follows. Let $s[p]$ be an unchanged character which is mapped to $\bar{s}[q]$. Moreover, let $\gamma=q-\left(p-\ell_{i}\right)$ and $\kappa=q+\left(r_{i}-p\right)$. We show that $\left|\alpha_{i}-\gamma\right| \leq u_{i}$ and $\left|\beta_{i}-\kappa\right| \leq u_{i}$. Similar to before, we only use the starting points and ending points whose indices are divisible by \mathcal{G}_{i}. The total additive error incurred by considering the gap for starting and ending points is at most $\sum_{i} 2 \mathcal{G}_{i}=2 \epsilon^{\prime} \cdot \operatorname{ulam}\left(s\left[l_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ likewise. Furthermore, the expected total number of starting
points and ending points we investigate are each at most $O(\theta \mathcal{B}) \cdot\left(2 u_{i}+1\right) / \mathcal{G}_{i}=\widetilde{O}\left(1 / \epsilon^{\prime 2}\right)$. This makes an expected total of $O\left(1 / \epsilon^{\prime 4}\right)$ candidate substrings for each block.

Since we do not know u_{i} in advance, we try all values of $u_{i}=\left(1+\epsilon^{\prime}\right)^{j}$ and $u_{i}=0$ as an estimated value. This imposes an extra $1 / \epsilon^{\prime}$ term in the time complexity. However, it does not affect the approximation factor of our algorithm. For a block $s\left[\ell_{i}, r_{i}\right]$, we feed the entire block and the locations of its characters in \bar{s} to a machine. Since \bar{s} has no repetitive characters, the input of each machine has size $O(\mathcal{B})=O\left(n^{1-x}\right)$. In each machine then, we try all $u_{i}=\left(1+\epsilon^{\prime}\right)^{j}$ for $0 \leq j<\log _{1+\epsilon^{\prime}} n^{1-x}$. We also deal with $u_{i}=0$ separately as a special case. For a fixed u_{i}, we identify a set of at most $\widetilde{O}\left(1 / \epsilon^{\prime 4}\right)$ candidate substrings as described above. Our algorithm then computes the Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and all of the candidate substrings and outputs a set of at most $\widetilde{O}\left(1 / \epsilon^{\prime 5}\right)$ tuples indicating the candidate substrings and their corresponding Ulam distances. Therefore, for each block, the running time of our algorithm is $\widetilde{O}\left(\mathcal{B} / \epsilon^{\prime 5}\right)$, and the size of the output is $\widetilde{O}\left(1 / \epsilon^{\prime 5}\right)$. Hence, the total running time of the first phase is $n^{x} \cdot \widetilde{O}\left(\mathcal{B} / \epsilon^{\prime 5}\right)=\widetilde{O}\left(n / \epsilon^{\prime 5}\right)$ and the total output generated for the second phase is $\widetilde{O}\left(n^{x} / \epsilon^{\prime 5}\right)$. A more detailed description of our algorithm is given in Algorithm 1

```
Algorithm 1: Computing the candidate substrings for
a block \(s\left[\ell_{i}, r_{i}\right]\)
    Data: \(\ell_{i}, r_{i}, s\left[\ell_{i}, r_{i}\right], \bar{s}\).
    Result: candidate substrings along with their Ulam distances
                from \(s\left[\ell_{i}, r_{i}\right]\)
    \(\left(\gamma, \kappa, d^{*}\right) \leftarrow \operatorname{lulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\right)\);
    if \(d^{*}=0\) then
    \(\left\lfloor\right.\) Output \(\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], 0\right\rangle\);
    for \(u_{i}=\left(1+\epsilon^{\prime}\right)^{j}\) where \(j \in\left[0, \log _{1+\epsilon^{\prime}} n\right]\) do
        \(\hat{u_{i}}=\left(1+\epsilon^{\prime}\right) u_{i} ;\)
        \(\mathcal{G}_{i} \leftarrow \max \left(\left\lfloor\epsilon^{\prime} u_{i}\right\rfloor, 1\right) ;\)
        if \(u_{i}<\mathcal{B} / 2\) then
            for \(s p=\max \left(1, \gamma-2 \hat{u_{i}}\right)\) to \(\min \left(\gamma+2 \hat{u_{i}}, n\right)\) in steps of
            \(s p \leftarrow s p+\mathcal{G}_{i}\) do
                    for \(e p=\max \left(1, \kappa-2 \hat{u_{i}}\right)\) to \(\min \left(\kappa+2 \hat{u_{i}}, n\right)\) in steps
                    of \(e p \leftarrow e p+\mathcal{G}_{i}\) do
                                    Output
                                    \(\left\langle\left[\ell_{i}, r_{i}\right],[s p, e p], \operatorname{ulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[s p, e p]\right)\right\rangle ;\)
        else
            sample a hitting set I from \(\left[\ell_{i}, r_{i}\right]\) with a probability of
            \(\left(8 / \epsilon^{\prime} \mathcal{B}\right) \log n\) for each element;
            for \(p \in I\) do
                    \(q \leftarrow\) the location of \(s[p]\) in \(\bar{s} ;\)
                    \(\gamma \leftarrow q-\left(p-\ell_{i}\right) ;\)
                    \(\kappa \leftarrow q+\left(r_{i}-p\right) ;\)
                    for \(s p=\max \left(1, \gamma-\hat{u_{i}}\right)\) to \(\min \left(\gamma+\hat{u_{i}}, n\right)\) in steps of
                        \(s p \leftarrow s p+\mathcal{G}_{i}\) do
                            for \(e p=\max \left(1, \kappa-\hat{u_{i}}, s p\right)\) to \(\min \left(\kappa+\hat{u_{i}}, n\right)\) in
                        steps of ep \(\leftarrow e p+\mathcal{G}_{i}\) do
                            Output
                                    \(\left\langle\left[\ell_{i}, r_{i}\right],[s p, e p]\right.\), ulam \(\left.\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[s p, e p]\right)\right\rangle ;\)
```

In the Lemmas 1 and 2, we show some properties for small and large u_{i} 's, respectively. Then, in Lemma 3. we use the two previous lemmas to show an important property of Algorithm 1 . The proofs of Lemmas 1, 2, and 3 are presented in Appendix B. In Section 4.2, we use this property to prove the approximation factor of our algorithm.

Lemma 1. Let $s\left[\ell_{i}, r_{i}\right]$ be a block of s and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ be its corresponding substring in an optimal transformation of s into \bar{s}. Moreover, let u_{i} be the Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. If $u_{i}<\mathcal{B} / 2$ and $\bar{s}[\gamma, \kappa]$ be the solution of local Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and \bar{s}, then two substrings $\bar{s}[\gamma, \kappa]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ intersect. In addition, $\left|\alpha_{i}-\gamma\right| \leq 2 u_{i}$ and $\left|\beta_{i}-\kappa\right| \leq 2 u_{i}$ hold.

Lemma 2. Let $s\left[\ell_{i}, r_{i}\right]$ be a block of s and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ be its corresponding substring in an optimal transformation of s into \bar{s}. Moreover, let u_{i} be the Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. If $u_{i} \geq \mathcal{B} / 2$ and at least $\epsilon^{\prime} \mathcal{B} / 4$ unchanged character exist in the optimal transformation of $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ and $s[p]=\bar{s}[q]$ be one of these unchanged characters, then $\left|\alpha_{i}-\gamma\right| \leq u_{i}$ and $\left|\beta_{i}-\kappa\right| \leq u_{i}$ hold where $\gamma=q-\left(p-\ell_{i}\right)$ and $\kappa=q+\left(r_{i}-p\right)$.
Lemma 3. Let $s\left[\ell_{i}, r_{i}\right]$ be a block and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ be its corresponding substring in an optimal transformation of s into \bar{s}. If the optimal transformation of $s\left[\ell_{i}, r_{i}\right]$ into $s\left[\alpha_{i}, \beta_{i}\right]$ has a size of less than $\mathcal{B} / 2$ or has at least $\epsilon^{\prime} \mathcal{B} / 2$ unchanged characters, then Algorithm 1 outputs at least a candidate substring $\bar{s}\left[\alpha^{\prime}, \beta^{\prime}\right]$ for $s\left[\ell_{i}, r_{i}\right]$ with high probability such that

1) $\alpha_{i} \leq \alpha_{i}^{\prime} \leq \alpha_{i}+\epsilon^{\prime} u_{i}$
2) $\beta_{i}-\epsilon^{\prime} u_{i} \leq \beta_{i}^{\prime} \leq \beta_{i}$

4.2 Phase 2

Recall that the output of the first phase of our algorithm is a set of $\widetilde{O}_{\epsilon}\left(n^{x}\right)$ tuples, $\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], d\right\rangle$, where $s\left[\ell_{i}, r_{i}\right]$ is the i 'th block of s and $\bar{s}[\gamma, \kappa]$ is a corresponding candidate substring. Also, d is equal to the Ulam distance between $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}[\gamma, \kappa]$. In the second phase of our algorithm, we perform a dynamic program to compute a transformation from s into \bar{s} based on the partial solutions gathered in the first phase. Notice that if we assume $x<1 / 2$, the size of the output of the first phase, $\widetilde{O}_{\epsilon}\left(n^{x}\right)$, is relatively small and can be fed into the memory of a single machine. This machine is responsible for the entire computation of the second phase.

We assume the tuples are stored in array T and are sorted in increasing order of ℓ_{i} where ties are broken arbitrarily. In our dynamic program, we create an array D with the same length as T. Let the a^{\prime} th tuple be equal to $\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], d\right\rangle$. We compute D such that each $D[a]$ approximates ulam $\left(s\left[1, r_{i}\right], \bar{s}[1, \kappa]\right)$. Let P_{a} be the set of indices of tuples $T[b]=\left\langle\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right],\left[\gamma^{\prime}, \kappa^{\prime}\right], e^{\prime}\right\rangle$ such that $r_{i}^{\prime}<\ell_{i}$ and $\kappa^{\prime}<\gamma$. Then, the update rule of D is as follows.

$$
\begin{aligned}
D[a]: & =\min \left\{\max \left\{\ell_{i}-1, \gamma-1\right\}+d,\right. \\
& \left.\min _{b \in P_{a}}\left\{D[b]+\max \left\{\ell_{i}-r_{i}^{\prime}-1, \gamma-\kappa^{\prime}-1\right\}+d\right\}\right\} .
\end{aligned}
$$

The term $d+\max \left\{\ell_{i}-1, \gamma-1\right\}$ correspond to the situation where characters of $s\left[1, \min \left\{\ell_{i}-1, \gamma-1\right\}\right]$ are substituted with $\bar{s}\left[1, \min \left\{\ell_{i}-1, \gamma-1\right\}\right]$, the remaining characters of $s\left[1, \ell_{i}-1\right]$ are removed, and the remaining characters of $\bar{s}[1, \gamma-1]$ are inserted. In the other term, $T[b]$ is the first tuple before $T[a]$ in the solution where $D[b]$ is the estimated value for $\operatorname{ulam}\left(s\left[1, r_{i}^{\prime}\right], \bar{s}\left[1, \kappa^{\prime}\right]\right)$, the additional cost d corresponds to the cost of transforming $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}[\gamma, \kappa]$ and the cost $\max \left\{\ell_{i}-r_{i}^{\prime}-1, \gamma-\kappa^{\prime}-1\right\}$ corresponds to substituting/removing/adding the characters between the

```
Algorithm 2: Computing an approximate solution for
ulam \((s, \bar{s})\) based on the tuples.
    Data: \(T[1], T[2], \ldots\).
    Result: an approximate value of Ulam distance between \(s\) and \(\bar{s}\)
    \(m \leftarrow\) the number of tuples;
    \(D \leftarrow\) an array of size \(m\) initially containing \(\infty\) in all cells;
    for \(a \in[1, m], T[a]=\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], d\right\rangle\) do
        \(D[a] \leftarrow \max \left\{\ell_{i}-1, \gamma-1\right\}+d ;\)
        for \(b \in[1, a-1], T[b]=\left\langle\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right],\left[\gamma^{\prime}, \kappa^{\prime}\right], d^{\prime}\right\rangle\) do
            if \(r_{i}^{\prime}<\ell_{i}\) and \(\kappa^{\prime}<\gamma\) then
                \(D[a] \leftarrow\)
                \(\min \left\{D[a], D[b]+\max \left\{\ell_{i}-r_{i}^{\prime}-1, \gamma-\kappa^{\prime}-1\right\}+d\right\} ;\)
    answer \(\leftarrow \infty\);
    for \(a \in[1, m], T[a]=\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], d\right\rangle\) do
        answer \(\leftarrow \min \left\{\right.\) answer, \(\left.D[a]+\max \left\{n-r_{i}, n-\kappa\right\}\right\} ;\)
    return answer;
```

two tuples. This gives us an $\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$ time algorithm with memory $\widetilde{O}_{\epsilon}\left(n^{x}\right)$ that runs on a single machine.

In Theorem 4. we show that the combination of Algorithms 1 and 2, approximates the Ulam distance of s and \bar{s} within a factor of $1+\epsilon$ with high probability.

Theorem 4. For an arbitrarily small $\epsilon>0$, there exists a massively parallel algorithm with $\widetilde{O}_{\epsilon}\left(n^{x}\right)$ machines for arbitrary $0<x<1 / 2$, each with a memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ that approximates the Ulam distance of two strings of length n within a factor of $1+\epsilon$ with high probability in two rounds. The expected total computation of this algorithm is $\widetilde{O}_{\epsilon}(n)$.

The proof of Theorem 4 is presented in Appendix B

5 Edit Distance

The outline of our algorithm for edit distance is presented in Section 3 . In this section, we describe both cases of our algorithm in more details. Recall that our algorithm has two different approaches for relatively small and relatively large distances. Recall that we divide s into n^{y} blocks of size $\mathcal{B}=n^{1-y}$. We also construct a set of candidate substrings for each block. We define $\epsilon^{\prime}=\epsilon / 22$ for the simplicity of our analysis. We also assume that our solution is roughly equal to n^{δ}. Recall that we define the gap size $\mathcal{G}=\max \left\{\left\lfloor n^{\delta-x} \epsilon^{\prime}\right\rfloor, 1\right\}$ and define the starting points of candidate substrings to be indices no more that n^{δ} apart from ℓ_{i} and are divisible by \mathcal{G}.

5.1 Small Distances $\left(n^{\delta} \leq n^{1-x / 5}\right)$

For small distances recall that we fix $y=x$. The main task in the first phase is to compute the edit distances between each block and its candidate substrings. In the second phase, we use the gathered information in the first phase to construct our final solution. The approximation factor of our algorithm, in this case, is $3+\epsilon$ since we use a variant of the approximation algorithm of [12] to find the edit distance between any block and its candidate substrings instead of using the naïve DP algorithm.

5.1.1 Phase 1 for small distances

In the first phase of our algorithm for small distances, we construct candidate substrings for each block $s\left[\ell_{i}, r_{i}\right]$ and
assign one block and several of its candidate substrings to each machine. The memory of each machine is $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$; hence, $\widetilde{O}_{\epsilon}\left(n^{\delta}\right) / n^{1-x}$ machines are sufficient for each block since we partition candidate substrings by their starting points. Therefore, the total number of machines used in this phase is $\widetilde{O}_{\epsilon}\left(n^{2 x-(1-\delta)}\right)$. In the following, we explain how we partition candidate substrings of a block.

For a fixed block and a fixed starting point, our algorithm considers several ending points. Note that, we only consider candidate substrings with a length of at most $\left(1 / \epsilon^{\prime}\right) \mathcal{B}$. Therefore, the size of the feed of each machine is at most $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. More precisely, a machine is responsible to compute the edit distance between a block $s\left[\ell_{i}, r_{i}\right]$ and several starting points $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\eta}$, where $\eta=O\left(n^{1-x} / \mathcal{G}\right)$. The feed given to this machine is $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}\left[\gamma_{1}, \gamma_{\eta}+\left(1 / \epsilon^{\prime}\right) \mathcal{B}\right]$. Afterward, we assign a set of endpoints $\kappa_{j, 1}, \kappa_{j, 2}, \ldots, \kappa_{j, \eta^{\prime}}$, where $\eta^{\prime}=O\left(\log _{1+\epsilon^{\prime}}\left(\left(1 / \epsilon^{\prime}\right) \mathcal{B}\right)\right)$, for a starting point γ_{j}. We form $\kappa_{j, h^{\prime}}$ s as $\gamma+\mathcal{B} \pm\left(1+\epsilon^{\prime}\right)^{a}$ for $0 \leq a \leq \log _{1+\epsilon^{\prime}}\left(\mathcal{B} / \epsilon^{\prime}\right)$ in addition to $\gamma+\mathcal{B}$. We then consider $\bar{s}\left[\gamma_{j}, \kappa_{j, h}\right]$'s as candidate substrings. The machine then computes the edit distance between the given block $\left(s\left[\ell_{i}, r_{i}\right]\right)$ and the candidate substrings $\left(\bar{s}\left[\gamma_{j}, \kappa_{j, h}\right]^{\prime}\right.$ s) and outputs a set of $\eta \cdot \eta^{\prime}=\widetilde{O}_{\epsilon}\left(n^{1-\delta}\right)$ tuples each consisting of a block, a candidate substring, and their edit distance. The running time of each machine is then $\eta \cdot \eta^{\prime} \cdot \widetilde{O}_{\epsilon}\left(n^{(2-1 / 6)(1-x)}\right)=\widetilde{O}_{\epsilon}\left(n^{2-2 x+(1-\delta)-(1-x) / 6}\right)$. Hence, the total running time of the first phase is $\widetilde{O}_{\epsilon}\left(n^{2 x-(1-\delta)}\right)$. $\widetilde{O}_{\epsilon}\left(n^{2-2 x+(1-\delta)-(1-x) / 6}\right)=\widetilde{O}_{\epsilon}\left(n^{2-(1-x) / 6}\right)$. The size of the ouput of a machine is $\eta \cdot \eta^{\prime}=\widetilde{O}_{\epsilon}\left(n^{1-\delta}\right)$; hence, the size of the total output produced in the first phase is $\widetilde{O}_{\epsilon}\left(n^{2 x-(1-\delta)}\right) \cdot \widetilde{O}_{\epsilon}\left(n^{1-\delta}\right)=\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$. The pseudocode of the first phase is given in Algorithm 3

```
Algorithm 3: Computing the edit distance between a
block \(s\left[\ell_{i}, r_{i}\right]\) and its candidate substrings with starting
points \(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{\eta}\)
    Data: \(\ell_{i}, r_{i}, \gamma_{1}, \ldots, \gamma_{\eta}, s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\gamma_{1}, \gamma_{\eta}+\mathcal{B} \cdot 1 / \epsilon^{\prime}\right]\).
    Result: candidate substrings with specified starting points along
        with their edit distances from \(s\left[\ell_{i}, r_{i}\right]\)
    for \(j \in[1, \eta]\) do
        Output \(\left\langle\left[\ell_{i}, r_{i}\right],\left[\gamma_{j}, \gamma_{j}+\mathcal{B}\right]\right.\), ed \(\left.\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\gamma_{j}, \gamma_{j}+\mathcal{B}\right]\right)\right\rangle\);
        for \(a \in\left[0,\left[\log _{1+\epsilon^{\prime}} \min \left\{\mathcal{B} / \epsilon^{\prime}, n^{\delta}\right\}\right\rfloor\right]\) do
            Output \(\left\langle\left[\ell_{i}, r_{i}\right],\left[\gamma_{j}, \gamma_{j}+\mathcal{B}-\left\lfloor\left(1+\epsilon^{\prime}\right)^{a}\right\rfloor\right]\right.\),
            \(\left.\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\gamma_{j}, \gamma_{j}+\mathcal{B}-\left\lfloor\left(1+\epsilon^{\prime}\right)^{a}\right\rfloor\right]\right)\right\rangle ;\)
            Output \(\left\langle\left[\ell_{i}, r_{i}\right],\left[\gamma_{j}, \gamma_{j}+\mathcal{B}+\left\lfloor\left(1+\epsilon^{\prime}\right)^{a}\right\rfloor\right]\right.\),
            \(\left.\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\gamma_{j}, \gamma_{j}+\mathcal{B}+\left\lfloor\left(1+\epsilon^{\prime}\right)^{a}\right\rfloor\right]\right)\right\rangle ;\)
```

In Lemma 5, we prove an important feature of Algorithm 3. In Section 5.1.2, we use this feature of Algorithm 3 to prove the correctness of our algorithm for small distances.

Lemma 5. Let $s\left[\ell_{i}, r_{i}\right]$ be a block of s and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ be its corresponding substring in an optimal transformation of s into \bar{s}. Moreover, assume $\alpha_{i}+\mathcal{G}+\epsilon^{\prime} \mathcal{B}<\beta_{i} \leq \alpha_{i}+\mathcal{B} \cdot 1 / \epsilon^{\prime}$ holds. Therefore, Algorithm 3 for at least one machine outputs a candidate substring $\bar{s}\left[\alpha^{\prime}, \beta^{\prime}\right]$ such that both of these conditions hold:

$$
\begin{aligned}
& \text { - } \alpha_{i} \leq \alpha_{i}^{\prime} \leq \alpha_{i}+\epsilon^{\prime} n^{\delta-x} \\
& \text { - } \beta_{i}-\epsilon^{\prime} n^{\delta-x}-\epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right) \leq \beta_{i}^{\prime} \leq \beta_{i} \text {. }
\end{aligned}
$$

The proof of Lemma 5 is presented in Appendix B

5.1.2 Phase 2 for small distances

The second phase of our algorithm receives a set of $\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$ tuples in the form of $\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], e\right\rangle$. In this notation, a tuple contains a block of s, one of its corresponding candidate substrings generated in the first phase, and their edit distance. Then, a dynamic program selects a subset of these tuples to form a total transformation of s into \bar{s}. We run the dynamic program in a single machine. This is possible due to the size of the output of Phase 1 and assuming $0<x<5 / 17$. We denote the tuples by $T[1], T[2], \ldots$ We assume that the tuples are sorted in increasing order of ℓ_{i} where ties are broken arbitrarily. In the dynamic program, for any tuple $a=\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], e\right\rangle$, we compute $D[a]$ as an approximation of $\operatorname{ed}\left(s\left[1, r_{i}\right], \bar{s}[1, \kappa]\right)$ using a and tuples before a in T. The update rule of this dynamic program is:

$$
\begin{aligned}
& D[a]=\min \left\{e+\left(\ell_{i}-1\right)+(\gamma-1),\right. \\
& \left.\min _{\substack{\left.\left.\ell_{i}>r_{i}^{\prime}, \gamma>\kappa^{\prime}, b<a,\left\langle\ell_{i}^{\prime}, r_{i}^{\prime}\right], \gamma^{\prime}, \kappa^{\prime}\right], e^{\prime}\right\rangle=T[b]}}\left\{D[b]+e+\left(\ell_{i}-r_{i}^{\prime}-1\right)+\left(\gamma-\kappa^{\prime}-1\right)\right\}\right\} .
\end{aligned}
$$

In this notation, b is the last tuple used before a. Cost $\ell_{i}-r_{i}^{\prime}-1$ corresponds to removing the characters between two tuples in s, cost $\gamma-\kappa^{\prime}-1$ corresponds to adding the characters between two tuples in \bar{s}, and cost e corresponds to using the transformation of the tuple a. The time complexity of this algorithm is $\widetilde{O}_{\epsilon}\left(n^{4 x}\right)$ and its memory is $\widetilde{O}_{\epsilon}\left(n^{2 x}\right)$.

```
Algorithm 4: Computing an approximation of ed \((s, \bar{s})\)
based on the output tuples of the first round.
    Data: \(T[1], T[2], \ldots\)
    Result: an approximate value of ed \((s, \bar{s})\)
    \(m \leftarrow\) the size of \(T\);
    \(D \leftarrow\) an array of size \(m\) where all of its entries
    initialized to \(+\infty\);
    for \(a \in[1, m],\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], e\right\rangle=T[a]\) do
        \(D[a] \leftarrow\left(\ell_{i}-1\right)+(\gamma-1)+e ;\)
        for \(b \in[1, a-1],\left\langle\left[\ell_{i}^{\prime}, r_{i}^{\prime}\right],\left[\gamma^{\prime}, \kappa^{\prime}\right], e^{\prime}\right\rangle=T[b]\) do
            if \(\ell_{i}>r_{i}^{\prime}\) and \(\gamma>\kappa^{\prime}\) then
                \(D[a] \leftarrow\)
                \(\min \left\{D[a], D[b]+e+\left(\ell_{i}-r_{i}^{\prime}-1\right)+\left(\gamma-\kappa^{\prime}-1\right)\right\} ;\)
    answer \(\leftarrow \infty\);
    for \(a \in[1, m],\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], e\right\rangle=T[a]\) do
        answer \(\leftarrow \min \left\{\right.\) answer, \(\left.D[a]+\left(n-r_{i}\right)+(n-\kappa)\right\} ;\)
    return answer;
```

In Lemma 6, we show that our overall algorithm consisting of Algorithms 3 and 4 approximates the edit distance of s and \bar{s} within a factor of $3+\epsilon$.
Lemma 6. For an arbitrarily small $\epsilon>0$, there exists a massively parallel algorithm that approximates the edit distance of two strings of length n if their distance is no more than n^{δ} within a factor of $3+\epsilon$ in two rounds. The total computation of this algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-(1-x) / 6}\right)$ and its parallel running time is $\widetilde{O}_{\epsilon}\left(n^{(1-\delta)+(2-1 / 6)(1-x)}\right)$. Moreover, the algorithm uses $\widetilde{O}_{\epsilon}\left(n^{2 x-(1-\delta)}\right)$ machines each with a memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$.

The proof of Lemma 6 is presented in Appendix B

5.2 Large Distances ($\mathbf{n}^{\delta}>\mathbf{n}^{1-\mathrm{x} / 5}$)

Recall that for large distances, we use four phases as follows. The goal of the algorithm in the first round is to find many edges of G_{τ} with the help of the triangle inequality. We run our algorithm for all thresholds $\tau=\left(1+\epsilon^{\prime}\right)^{h}$ for $0 \leq$ $h \leq \log _{1+\epsilon^{\prime}}(2 n)$ and $\tau=0$ in parallel. In the following, we assume a threshold τ is fixed. The algorithm, in this case, consists of four phases which are described as follows.

5.2.1 Phase 1: high degree case

In this phase, we use a random sampling method to select a set of representative nodes R. Recall that we chose each node of G_{τ} with an independent probability of $2 \log n / n^{\alpha}$ where $0<\alpha<1$ is a parameter we fix later. We call a node high degree (dense) if its degree is at least n^{α}, and low degree (sparse), otherwise. Afterward, for each $z \in \mathrm{R}$, we find its edit distance to all other nodes of G_{τ}. We then use this information to generate several edges of G_{τ} as follows. We claim that for any edge of G_{τ} whose one of its nodes is a high degree node we generate it with high probability. Furthermore, some edges with a distance of at most 3τ may be generated in the output of the first phase.

Each node of G_{τ} either corresponds to a block or a candidate substrings. The number of block nodes is n^{y} and the number of candidate substring nodes is computed as follows. The starting points of candidate substrings are divisible by $\mathcal{G}^{\prime}=\max \left\{\left\lfloor n^{\delta-y} \epsilon^{\prime}\right\rfloor, 1\right\}$. Therefore, the total number of starting point is at most $O\left(n / \mathcal{G}^{\prime}\right)=\widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y}\right)$ and the total number of nodes of G_{τ} is $\widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y}\right)$ Hence, the $\underset{\sim}{\text { expected size of }}|\mathrm{R}|$ is equal to $\left(2 \log n / n^{\alpha}\right) \cdot \widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y}\right)=$ $\widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y-\alpha}\right)$. For each representative, we compute its edit distance to all other nodes. Hence, the expected number of pairs of nodes which we compute their edit distance is equal to

$$
\widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y-\alpha}\right) \cdot \widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y}\right)=\widetilde{O}_{\epsilon}\left(n^{2(1-\delta)+2 y-\alpha}\right)
$$

By using the naïve DP algorithm for computing the edit distance between two nodes, the expected total running time of this phase is equal to

$$
\widetilde{O}_{\epsilon}\left(n^{2(1-\delta)+2 y-\alpha}\right) \cdot \widetilde{O}_{\epsilon}\left(\left(n^{1-y}\right)^{2}\right)=\widetilde{O}_{\epsilon}\left(n^{2+2(1-\delta)-\alpha}\right)
$$

Since each machine has a memory of size $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$ and the string size of each node is $\widetilde{O}_{\epsilon}\left(n^{1-y}\right)$, the machine can keep n^{y-x} representatives and n^{y-x} extra nodes. Therefore, the expected number of required machines is

$$
\begin{aligned}
& \widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y-\alpha}\right) \cdot \frac{1}{n^{y-x}} \cdot \widetilde{O}_{\epsilon}\left(n^{(1-\delta)+y}\right) \cdot \frac{1}{n^{y-x}} \\
& =\widetilde{O}_{\epsilon}\left(n^{2 x+2(1-\delta)-\alpha}\right)
\end{aligned}
$$

In the following, we explain how we find the neighbors of high degree nodes using the edit distance between representatives and all nodes. For a node z, we call the set of nodes with an edit distance of at most τ to z (including z itself) as $N_{\tau}(z)$. Since we computed the distance of each representative to all other nodes, this information is available to us for arbitrary τ^{\prime} s. For each $z \in \mathrm{R}$, we connect all nodes of $N_{\tau}(z)$ to $N_{2 \tau}(z)$. We claim that for each node with a degree of at least n^{α}, we found all of its neighbors with high probability. We may found some false positive
neighbors; however, any additional generated edge has an edit distance of at most 3τ. The pseudocode of this phase is shown in Algorithm 5 We prove our claims in Lemma 7 .

```
Algorithm 5: Computing the edit distances between
repsentative nodes \(v_{1}, v_{2}, \ldots\) and nodes \(u_{1}, u_{2}, \ldots\)
    Data: A subset of repsentative nodes \(z_{1}, z_{2}, \ldots, z_{\mu}\), a set of
        nodes \(v_{1}, v_{2}, \ldots, v_{\mu}\), and a number \(\tau\).
    Result: edit distances between given repsentative and given
        nodes
    for \(z \in\left\{z_{1}, z_{2}, \ldots, z_{\mu}\right\}\) do
        for \(v \in\left\{v_{1}, v_{2}, \ldots, v_{\mu}\right\}\) do
            compute the edit distance between \(z\) and \(v\);
            if \(v\) is a candidate substring node and ed \((z, v) \leq 2 \tau\) then
                Output \(\langle " c s ", v, z, \tau\rangle\);
            if \(z\) is a candidate substring node then
                Output \(\langle " c s\) ", \(z, z, \tau\rangle\);
                if \(v\) is a block node and \(\operatorname{ed}(z, v) \leq \tau\) then
                Output 〈"b", \(v, z, \tau\rangle\);
            if \(z\) is a block node then
                Output \(\langle " b ", z, z, \tau\rangle\);
```

Lemma 7. Let R be a random sampling of nodes of G_{τ} where each node is chosen with an independent probability of $p=$ $2 \log n / n^{\alpha}$. Let v be a block node of G_{τ} with a degree of at least n^{α}. For each candidate substring node $u \in N_{\tau}(v)$, there exist a representative $z \in \mathrm{R}$ with high probability such that $v \in N_{\tau}(z)$ and $u \in N_{2 \tau}(z)$. Moreover, if z is an arbitrary representative, v an arbitrary block node and u and candidate substring node, if $v \in N_{\tau}(z)$ and $u \in N_{2 \tau}(z)$ then $\operatorname{ed}(v, u) \leq 3 \tau$.

The proof of Lemma 7 is presented in Appendix B

5.2.2 Phases 2 and 3: low degree nodes

In the second and third phases, we treat the low degree block nodes as follows. Since a node being high degree or low degree in G_{τ} highly depends on τ we define overall high degree and overall low degree nodes independent of τ as follows.

All blocks in G_{τ} for $\tau=n$ are high degree. As τ decreases, some of its edges get deleted and each nodes eventually becomes low degree (sparse). For a block $s\left[\ell_{i}, r_{i}\right]$, we call it overall high degree if it is high degree for $\tau=$ $\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$. We call other blocks as overall low degree. We then consider larger blocks of size $n^{1-y^{\prime}}$. A larger block belong to one the two type:
i. Larger blocks that contain at most $\epsilon^{\prime} n^{\left(y-y^{\prime}\right)-(1-\delta)}$ overall low degree blocks.
ii. Larger blocks that contain more than $\epsilon^{\prime} n^{\left(y-y^{\prime}\right)-(1-\delta)}$ overall low degree blocks.
The overall low degree blocks of all larger blocks of type (i) can be ignored with a multiplicative error of no more than $1+\epsilon^{\prime}$. Therefore, from this point we only concentrate on larger blocks of type (ii). We claim that by sampling each low degree block with a probability of $p=$ $3\left(1 / \epsilon^{\prime 2}\right) \log ^{2} n / n^{\left(y-y^{\prime}\right)-(1-\delta)}$, we catch at least one overall low degree block for each larger block of type (ii) with high probability.

To compute the edit distance between the chosen block and all of their candidate substrings, we need an expected number of machines of at most

$$
p \cdot n^{y} \cdot \frac{\widetilde{O}_{\epsilon}\left(n^{\delta}\right)}{n^{1-x}}=\widetilde{O}_{\epsilon}\left(n^{x+y^{\prime}}\right)
$$

Moreover, the expected total running time of computing these distances is at most

$$
p \cdot n^{y} \cdot \widetilde{O}_{\epsilon}\left(n^{y}\right) \cdot \widetilde{O}_{\epsilon}\left(n^{2(1-y)}\right)=\widetilde{O}_{\epsilon}\left(n^{2-\left(y-y^{\prime}\right)+(1-\delta)}\right)
$$

Suppose we find an overall low degree block $s\left[\ell_{i}, r_{i}\right]$ in G_{τ} where $\tau \leq \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right) \leq\left(1+\epsilon^{\prime}\right) \tau$. Also recall that, one of the candidate substrings such as $\bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]$ is guaranteed to be approximately optimal. If all of blocks in the same larger block as $s\left[\ell_{i}, r_{i}\right]$, such as $s\left[\ell_{j}, r_{j}\right]$ forced to be transformed it into $\bar{s}\left[\alpha_{i}^{\prime}+\left(\ell_{j}-\ell_{i}\right), \beta_{i}^{\prime}+\left(r_{j}-r_{i}\right)\right]$ the imposed multiplicative error is bounded by $2+3 \epsilon^{\prime}$. In the following, we use this technique to extend low degree block.

In the third round, every pair of low degree block and its neighbors is extended to $n^{y-y^{\prime}}$ nearby blocks, which are in the same larger block. Note that since a low degree node has at most n^{α} neighbors, the total number of pairs is limited. More precisely, the expected number of generated pairs is at most

$$
p \cdot n^{y} \cdot n^{\alpha} \cdot n^{y-y^{\prime}}=\widetilde{O}_{\epsilon}\left(n^{y+\alpha+(1-\delta)}\right)
$$

Since n^{y-x} pairs can be process in a single machine, the expected number of machines needed in this round is equal to

$$
\widetilde{O}_{\epsilon}\left(n^{x+\alpha+(1-\delta)}\right)
$$

Moreover, the expected total running time of the third round is

$$
\widetilde{O}_{\epsilon}\left(n^{y+\alpha+(1-\delta)}\right) \cdot \widetilde{O}_{\epsilon}\left(n^{2(1-y)}\right)=\widetilde{O}_{\epsilon}\left(n^{2-y+\alpha+(1-\delta)}\right)
$$

5.2.3 Phase 4: computing the overall transformation

The DP algorithm of this phase is similar to that of small distances. In this round, we receive at most $\widetilde{O}_{\epsilon}\left(n^{2 y}\right)$ tuples in the form of $\left\langle\left[\ell_{i}, r_{i}\right],[\gamma, \kappa], e\right\rangle$. In this notation, the tuple corresponds to a block, its corresponding candidate substring and their edit distance. Then, a dynamic program selects a subset of these tuples to form a total transformation of s into \bar{s}. We run the dynamic program in a single machine. We again denote the tuples by $T[1], T[2], \ldots$ and assume that the tuples are sorted in increasing order of ℓ_{i} where ties are broken arbitrarily. The time complexity of this algorithm if trivially implemented is $\widetilde{O}_{\epsilon}\left(n^{4 y}\right)$. However, by suitable data structure the time complexity is improved to $\widetilde{O}_{\epsilon}\left(n^{2 y}\right)$. Moreover, the memory complexity of this algorithm is $\widetilde{O}_{\epsilon}\left(n^{2 y}\right)$. The rest of the algorithm is the same as the second round of small distances. A minor difference is that if the candidate substring of two tuples intersects, we may choose both of them, but we add the cost of removing the common part.

In Lemma 8 , we show that our overall algorithm consisting of Algorithms 5, 6, 7, and a dynamic program similar to Algorithm 4. approximates the edit distance of s and \bar{s} within a factor of $3+\epsilon$. The proof of Lemma 8 is presented in Appendix B

```
Algorithm 6: Computing the edit distances between
representative nodes \(v_{1}, v_{2}, \ldots\) and nodes \(u_{1}, u_{2}, \ldots\)
    Data: The blocks \(s\left[\ell_{i}, r_{i}\right]\) for, a subset of candidate substrings for
        these blocks, all tuples of type " b " \(\left(T_{b}[1], T_{b}[2], \ldots\right)\) for
        these blocks and all tuples of type "cs" \(\left(T_{c s}[1], T_{c s}[2], \ldots\right)\)
        for these candidate substrings.
    Result: edit distances between high degree blocks and low
        degree extension for low degree blocks
    for \(\tau \in\left\{0,\left(1+\epsilon^{\prime}\right)^{a}\right.\) for \(\left.0 \leq a \leq \log _{\epsilon^{\prime}} n\right\}\) do
        for all given blocks \(s\left[\ell_{i}, r_{i}\right]\) do
            if there exists a tuple \(T_{b}[a]\) of type " \(b\) " for the given block
            and \(\tau\) then
                    let \(z\) be the third value of \(T_{b}[a]\);
                    for every \(T_{c s}[b]\) containing \(z\) and \(\tau\) do
                    let \(u\) be the third value of \(T_{c s}[b]\);
                    Output \(\left\langle\right.\) "high degree", \(\left.\left[\ell_{i}, r_{i}\right], u, \tau\right\rangle\);
                else
                    if a random variable with a common seed between
                    machines is less than
                    \(p=3\left(1 / \epsilon^{\prime 2}\right) \log ^{2} n / n^{\left(y-y^{\prime}\right)-(1-\delta)}\) then
                    compute the edit distance \(s\left[\ell_{i}, r_{i}\right]\) and all of
                    related candidate substrings in the input;
                    for any candidate interval \(\bar{s}[\gamma, \kappa]\) where
                    \(\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[\gamma, \kappa]\right) \leq \tau\) do
                            for any block \(s\left[\ell_{j}, r_{j}\right]\) which is the same larger
                            block as \(s\left[\ell_{i}, r_{i}\right]\) do
                            Output <"extend", \(\left[\ell_{j}, r_{j}\right],\left[\gamma+\left(\ell_{j}-\right.\right.\)
                            \(\left.\left.\left.\ell_{i}\right), \kappa+\left(r_{j}-r_{i}\right)\right], \tau\right\rangle\);
```

Algorithm 7: Computing the edit distances between a
block and a candidate substring which came from a
low degree extension.
Data: a block $s\left[\ell_{i}, r_{i}\right]$ and a candidate substring $\bar{s}[\gamma, \kappa]$.
Result: the edit distance between $s\left[\ell_{i}, r_{i}\right]$ and $\bar{s}[\gamma, \kappa]$
Use the naïve DP algorithm to compute ed $\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[\gamma, \kappa]\right)$;
Output 〈"low degree ext", $\left[\ell_{i}, r_{i}\right],[\gamma, \kappa]$, ed $\left.\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[\gamma, \kappa]\right)\right\rangle$;

Lemma 8. For an arbitrarily small $\epsilon>0$, there exists a massively parallel algorithm that approximates the edit distance of two strings of length n if their distance is at most n^{δ} within a factor of $3+\epsilon$ in four rounds. This algorithm uses $\widetilde{O}_{\epsilon}\left(n^{\max \left\{2 x+2(1-\delta)-\alpha, x+y^{\prime}, x+(1-\delta)+\alpha\right\}}\right)$ machines each with a memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. The total computation of this algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-x / 4}\right)$.

5.3 Overall Algorithm

By substituting $\delta=1-x / 5, \alpha=(3 / 5) x, y=(6 / 5) x, y^{\prime}=$ $(4 / 5) x$, and $x \leq 5 / 17$, and using Lemmas 6 and 8 we can conclude the following theorem.

Theorem 9. Let $0 \leq x \leq 5 / 17$ and $\epsilon>0$ be two arbitrary numbers. There exists a massively parallel algorithm that approximates the edit distance between two strings of length n within a factor of $3+\epsilon$ in four rounds. The total computation of this algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-\min \left(\frac{1-x}{6}, \frac{2 x}{5}\right)}\right)$, and it uses $\widetilde{O}_{\epsilon}\left(n^{(9 / 5) x}\right)$ machines each with a memory of $\widetilde{O}_{\epsilon}\left(n^{1-x}\right)$. Moreover, the parallel running time of our algorithm is $\widetilde{O}_{\epsilon}\left(n^{2-\min \left(\frac{5+49 x}{30}, \frac{11 x}{5}\right)}\right)$.

References

[1] M. Boroujeni and S. Seddighin, "Improved MPC algorithms for edit distance and Ulam distance," in SPAA. ACM, 2019, pp. 3140.
[2] W. J. Masek and M. S. Paterson, "A faster algorithm computing string edit distances," Journal of Computer and System Sciences, vol. 20, no. 1, pp. 18-31, 1980.
[3] A. Backurs and P. Indyk, "Edit distance cannot be computed in strongly subquadratic time (unless SETH is false)," in STOC. ACM, 2015, pp. 51-58.
[4] A. Andoni, R. Krauthgamer, and K. Onak, "Polylogarithmic approximation for edit distance and the asymmetric query complexity," in FOCS. IEEE, 2010, pp. 377-386.
[5] Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and R. Kumar, "Approximating edit distance efficiently," in FOCS. IEEE, 2004, pp. 550-559.
[6] T. Batu, F. Ergun, and C. Sahinalp, "Oblivious string embeddings and edit distance approximations," in SODA. SIAM, 2006, pp. 792-801.
[7] B. Haeupler, A. Rubinstein, and A. Shahrasbi, "Near-linear time insertion-deletion codes and $(1+\varepsilon)$-approximating edit distance via indexing," in STOC. ACM, 2019.
[8] P. Indyk, "Algorithmic applications of low-distortion geometric embeddings," in FOCS. IEEE, 2001, pp. 10-33.
[9] G. M. Landau, E. W. Myers, and J. P. Schmidt, "Incremental string comparison," SIAM Journal on Computing, vol. 27, no. 2, pp. 557582, 1998.
[10] A. Andoni and K. Onak, "Approximating edit distance in nearlinear time," in STOC. ACM, 2009, pp. 199-204.
[11] M. Boroujeni, S. Ehsani, M. Ghodsi, M. HajiAghayi, and S. Seddighin, "Approximating edit distance in truly subquadratic time: Quantum and MapReduce," in SODA. SIAM, 2018, pp. 11701189.
[12] D. Chakraborty, D. Das, E. Goldenberg, M. Koucky, and M. Saks, "Approximating edit distance within constant factor in truly subquadratic time," in FOCS. IEEE, 2018, pp. 979-990.
[13] M. Kouckỳ and M. Saks, "Constant factor approximations to edit distance on far input pairs in nearly linear time," in STOC. ACM, 2020, pp. 699-712.
[14] J. Brakensiek and A. Rubinstein, "Constant-factor approximation of near-linear edit distance in near-linear time," in STOC. ACM, 2020, pp. 685-698.
[15] A. Andoni and N. S. Nosatzki, "Edit distance in near-linear time: it's a constant factor," 2020, arXiv:2005.07678 [cs.DS].
[16] E. Goldenberg, A. Rubinstein, and B. Saha, "Does preprocessing help in fast sequence comparisons?" in STOC. ACM, 2020, pp. 657-670.
[17] T. Naumovitz, M. Saks, and C. Seshadhri, "Accurate and nearly optimal sublinear approximations to Ulam distance," in SODA. SIAM, 2017, pp. 2012-2031.
[18] D. Aldous and P. Diaconis, "Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem," Bulletin of the American Mathematical Society, vol. 36, no. 4, pp. 413-432, 1999.
[19] D. E. Critchlow, Ulam's Metric. Wiley, 2006.
[20] M. Hajiaghayi, S. Seddighin, and X. Sun, "Massively parallel approximation algorithms for edit distance and longest common subsequence," in SODA. SIAM, 2019, pp. 1654-1672.
[21] J. Dean and S. Ghemawat, "MapReduce: Simplified data processing on large clusters," in OSDI. USENIX, 2004, pp. 10-10.
[22] T. White, Hadoop: The Definitive Guide, 1st ed. O'Reilly Media, Inc., 2009.
[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, "Spark: Cluster computing with working sets," in HotCloud. USENIX, 2010, pp. 10-10.
[24] H. Karloff, S. Suri, and S. Vassilvitskii, "A model of computation for MapReduce," in SODA. SIAM, 2010, pp. 938-948.
[25] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev, "Parallel algorithms for geometric graph problems," in STOC. ACM, 2014, pp. 574-583.
[26] M. T. Goodrich, N. Sitchinava, and Q. Zhang, "Sorting, searching, and simulation in the MapReduce framework," in ISAAC. Leibniz, 2011, pp. 374-383.
[27] P. Beame, P. Koutris, and D. Suciu, "Communication steps for parallel query processing," in PODS. ACM, 2013, pp. 273-284.
[28] A. Czumaj, J. Lacki, A. Madry, S. Mitrovic, K. Onak, and P. Sankowski, "Round compression for parallel matching algorithms," in STOC. ACM, 2018, pp. 471-484.
[29] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii, "Filtering: a method for solving graph problems in MapReduce," in SPAA. ACM, 2011, pp. 85-94.
[30] S. Im, B. Moseley, and X. Sun, "Efficient massively parallel methods for dynamic programming," in STOC. ACM, 2017, pp. 798811.
[31] M. Saks and C. Seshadhri, "Estimating the longest increasing sequence in polylogarithmic time," in FOCS. IEEE, 2010, pp. 458-467.

Mahdi Boroujeni is a Ph.D. candidate at Sharif Univerity of Technology. He received his B.S. and M.S. in computer engineering from the Sharif University of Technology. His main research interest is efficient approximation algorithms for string similarity problems.

Mohammad Ghodsi has been a faculty member of Sharif University of Technology (SUT) since 1979. Presently, he is a full professor in the computer engineering department of SUT. He received his B.S. in EE from SUT in 1975, M.S. in EECS from UC Berkeley in 1978, and Ph.D. in computer science from PSU, in 1989. His main research interests include computational geometry and the design of efficient algorithms.

Saeed Seddighin is a Research Assistant Professor at TTIC. He completed his Ph.D. in computer science from the University of Maryland. He also spent 7 months as a postdoc at Harvard University. He is interested in approximation algorithms and algorithmic game theory. Prior to joining Maryland, Saeed received his B.S. from the Sharif University of Technology.

Appendix A
 Local Ulam Distance

In this appendix, we first present an almost linear time sequential algorithm for Ulam distance and then use it to solve the local version of the Ulam distance problem. Note that, insertion, deletion, and substitution are allowed as elementary operations.

Since we have no repetitive character in either of the strings, the number of matching pairs of characters is at most n. We solve this problem using a similar dynamic programming formula to that of edit distance. Let P be the set of (i, j) 's where $s[i]=\bar{s}[j]$. Let $d_{i, j}$ be an auxiliary variable defined as the Ulam distance between $s[1, i]$ and $\bar{s}[1, j]$ where $(i, j) \in P$. Then, the following condition holds.

$$
\begin{aligned}
& d_{i, j}=\min \{\max (i-1, j-1), \\
& \left.\min _{i^{\prime}<i, j^{\prime}<j,\left(i^{\prime}, j^{\prime}\right) \in P}\left\{d_{i^{\prime}, j^{\prime}}+\max \left(i-i^{\prime}, j-j^{\prime}\right)\right\}\right\}
\end{aligned}
$$

To execute this dynamic programming faster, we use a data structure to compute the above mentioned update rule in $\widetilde{O}(1)$ time. First, we elliminate the $\max \left(i-i^{\prime}, j-j^{\prime}\right)$ operation from the equation. To this end, we partition $\left(i^{\prime}, j^{\prime}\right)$'s into two sets:

- the set A_{\geq}of $\left(i^{\prime}, j^{\prime}\right)^{\prime}$ s where $i^{\prime}-j^{\prime} \geq i-j$, and
- the set $A_{<}$of $\left(i^{\prime}, j^{\prime}\right)^{\prime}$ s where $i^{\prime}-j^{\prime}<i-j$.

For A_{\geq}we have $\max \left(i-i^{\prime}, j-j^{\prime}\right)=j-j^{\prime}$, and for $A_{<,}$ $\max \left(i-i^{\prime}, j-j^{\prime}\right)=i-i^{\prime}$ holds. What remains is to store and query $\left(i^{\prime}, j^{\prime}\right)$. We store each pair in a 3D coordinate of $\left(i^{\prime}, j^{\prime}, i^{\prime}-j^{\prime}\right)$ along with the value of $d_{i^{\prime}, j^{\prime}}-j^{\prime}$. To find the \min in set A_{\geq}, we search in the subspace $[0, i-1] \times[0, j-$ $1] \times[0, i-j]$ and find the minimum value $m v_{1}=d_{i^{\prime}, j^{\prime}}-j^{\prime}$. We also store the same pair in another data structure by the coordinate of $\left(i^{\prime}, j^{\prime}, j^{\prime}-i^{\prime}\right)$ by the value of $d_{i^{\prime}, j^{\prime}}-i^{\prime}$. We then query in the subspace $[0, i-1] \times[0, j-1] \times[0, j-i-1]$ and and find the minimum value $m v_{2}=d_{i^{\prime}, j^{\prime}}-i^{\prime}$. In conclusion, the folowing equation holds.

$$
d_{i, j}=\min \left\{\max (i-1, j-1), m v_{1}+j, m v_{2}+i\right\}
$$

We use a multidimensional dynamic range tree to find the minimum of the update rule. Each query takes time $O\left(\log ^{2} n\right)$. Afterward, a post-processing in $O(n)$ is performed to find the final answer.

$$
\operatorname{ulam}(s, \bar{s})=\min _{(i, j) \in P}\left\{d_{i, j}+\max (n-i, n-j)\right\}
$$

Therefore, the total time complexity is $n \cdot O\left(\log ^{2} n\right)+O(n)=$ $\widetilde{O}(n)$.

In local Ulam distance the goal is to find the best substring of \bar{s} in term of its Ulam distance to s. More specificly,

$$
\operatorname{lulam}(s, \bar{s})=\min _{i, j}\{\operatorname{ulam}(s, \bar{s}[i, j])\} .
$$

To solve the local Ulam distance problem, similar to the (original version of) Ulam distance, we compute $l d_{i, j}$'s for $(i, j) \in P$ where $l d_{i, j}=\operatorname{lulam}(s[1, i], \bar{s}[1, j])$. However, the equation is a bit different, where $\max (i-1, j-1)$ term is replaced by just $i-1$.
$l d_{i, j}=\min \left\{i-1,{ }_{i^{\prime}<i, j^{\prime}<j,\left(i^{\prime}, j^{\prime}\right) \in P}\left\{l d_{i^{\prime}, j^{\prime}}+\max \left(i-i^{\prime}, j-j^{\prime}\right)\right\}\right\}$.

Moreover, the post-processing is also a little different.

$$
\text { Iulam }(s, \bar{s})=\min _{(i, j) \in P}\left\{l d_{i, j}+(n-i)\right\}
$$

As you see, the modifications do not change the query types from the data structure. Therefore, a similar solution works here, too. Furthermore, the substring associated with the solution can also be determined in the same time complexity.

APPENDIX B
 Missing Proofs

Proof of Lemma 1
Proof. Assume that $\bar{s}[\gamma, \kappa]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ does not intersect for the sake of contradiction. Let d^{*} be equal to $\operatorname{ulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}[\gamma, \kappa]\right)$. By definition, $d^{*} \leq u_{i}$. Moreover, at least $\mathcal{B}-d^{*}$ characters of $s\left[\ell_{i}, r_{i}\right]$ are present in $\bar{s}[\gamma, \kappa]$. Similarly, at least $\mathcal{B}-u_{i}$ characters of $s\left[\ell_{i}, r_{i}\right]$ are present in $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Since each character of $s\left[\ell_{i}, r_{i}\right]$ appears at most once in \bar{s} we conclude that

$$
\left(\mathcal{B}-d^{*}\right)+\left(\mathcal{B}-u_{i}\right) \leq \mathcal{B} \Longrightarrow \mathcal{B} \leq d^{*}+u_{i} \leq 2 u_{i}
$$

This contradicts the assumption that $u_{i}<\mathcal{B} / 2$. Therefore, $\bar{s}[\gamma, \kappa]$ and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ do intersect.

To prove the second part, let $k_{1}=\left|\alpha_{i}-\gamma\right|$. If $\alpha_{i}<\gamma$, then there are k_{1} characters in $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ which are not in $\bar{s}[\gamma, \kappa]$. Recall that, at least $\mathcal{B}-d^{*}$ characters of $s\left[\ell_{i}, r_{i}\right]$ are present in $\bar{s}[\gamma, \kappa]$; therefore, at most d^{*} of them are outside of $\bar{s}[\gamma, \kappa]$. We immediately conclude that at least $k_{1}-d^{*}$ insert/substitute edit operations are needed for transforming $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Hence,

$$
k_{1}-d^{*} \leq u_{i} \Longrightarrow k_{1} \leq u_{i}+d^{*} \leq 2 u_{i}
$$

The situation where $\alpha_{i} \geq \gamma$ is similar. Therefore, $\left|\alpha_{i}-\gamma\right| \leq$ $2 u_{i}$. The proof of $\left|\beta_{i}-\kappa\right| \leq 2 u_{i}$ is also identical.

Proof of Lemma 2

Proof. Since $s[p]$ is mapped to $\bar{s}[q]$ in the optimal transformation of $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$, we conclude that at least $\left|\left(p-\ell_{i}\right)-\left(q-\alpha_{i}\right)\right|$ edit operation is needed. Therefore, $\left|\left(p-\ell_{i}\right)-\left(q-\alpha_{i}\right)\right| \leq u_{i} \Longrightarrow\left|\alpha_{i}-\left(q-\left(p+\ell_{i}\right)\right)\right| \leq u_{i}$. Similarly, at least $\left|\left(r_{i}-p\right)-\left(\beta_{i}-q\right)\right|$ edit operation is needed; therefore, $\left|\left(r_{i}-p\right)-\left(\beta_{i}-q\right)\right| \leq u_{i} \Longrightarrow\left|\beta_{i}-\left(q-\left(p-r_{i}\right)\right)\right| \leq$ u_{i}.

Proof of Lemma 3

Proof. Let u_{i}^{*} be the actual value and u_{i} be its estimated value. Also, note that in Algorithm 2, $\hat{u}_{i}=\left(1+\epsilon^{\prime}\right) u_{i}$. We check the case where $u_{i}^{*}=0$ in line 2 and 3 . For $1 \leq u_{i}^{*}<$ $\mathcal{B} / 2$, choose a j such that $\left(1+\epsilon^{\prime}\right)^{j} \leq u_{i}^{*}<\left(1+\epsilon^{\prime}\right)^{j+1}$. For $u_{i}=\left(1+\epsilon^{\prime}\right)^{j}$, we check the correct range for α_{i} since according to Lemma 1. $\left|\alpha_{i}-\gamma\right| \leq 2 u_{i}^{*}<2\left(1+\epsilon^{\prime}\right)^{j+1}=$ $2 \hat{u_{i}}$. Moreover, in that step, the gap size is equal to $\mathcal{G}_{i}=$ $\epsilon^{\prime} u_{i} \leq \epsilon^{\prime} u_{i}^{*}$. Therefore, the first $s p$ not before α_{i} satisfies the condition (i). Similarly, the last $e p$ not after β_{i} in the same step of our algorithm satisfies the condition (ii).

For $\mathcal{B} / 2 \leq u_{i} \leq n$, also choose a j such that $\left(1+\epsilon^{\prime}\right)^{j} \leq$ $u_{i}<\left(1+\epsilon^{\prime}\right)^{j+1}$. It is guaranteed by the statement of the lemma that at least $\epsilon^{\prime} \mathcal{B} / 2$ unchanged character exists
in the optimal transformation of $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. We discussed that I hits at least one of the unchanged characters with a probability of at least $1-1 / n^{2}$. Let $s[p]=\bar{s}[q]$ be such a character. According to Lemma 2, $\left|\alpha_{i}-\gamma\right| \leq u_{i}^{*} \leq$ $\left(1+\epsilon^{\prime}\right)^{j+1}=\hat{u_{i}}$. Similarly, $\left|\beta_{i}-\kappa\right| \leq u_{i}^{*} \leq \hat{u_{i}}$. Since in this step $\mathcal{G}_{i}=\epsilon^{\prime} \hat{u_{i}} \leq \epsilon^{\prime} u_{i}^{*}$, the first $s p$ not before α_{i} and the last $e p$ not after β_{i} satisfy both (i) and (ii) conditions.

Proof of Theorem 4

Proof. The number of machines, the size of the memory of each machine, and the computational complexity of our algorithm are already discussed. Here, we prove the approximation factor of our algorithm is at most $1+\epsilon$. To prove such an upper bound on the approximation factor of our solution, we compare our solution size with ulam (s, \bar{s}). It follows from the definition that

$$
\operatorname{ulam}(s, \bar{s})=\sum \operatorname{ulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)
$$

What we compute in our algorithm is almost the same, except: (i) we compute ulam ($\left.s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]\right)$ instead of $\operatorname{ulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ for an almost optimal candidate substring $\bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]$, and (ii) for some blocks whose unchanged characters in $\operatorname{ulam}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ are less than $\epsilon^{\prime} \mathcal{B} / 4$, we substitute all characters of s into \bar{s} with some additional insert or remove operations if necessary.

We first claim that by ignoring the blocks of type (ii) we do not lose more than a multiplicative $1+\epsilon^{\prime}$ factor in our algorithm. Recall that, we only ignore such transformations only if $u_{i} \geq \mathcal{B} / 2$. Therefore, by completely substituting the whole block $s\left[\ell_{i}, r_{i}\right]$ into the substring $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ we have a solution with a cost at most $u_{i}+2\left(\epsilon^{\prime} \mathcal{B} / 4\right)=u_{i}+\epsilon^{\prime}(\mathcal{B} / 2) \leq$ $u_{i}\left(1+\epsilon^{\prime}\right)$.

Now, let Let $s\left[\ell_{i}, r_{i}\right]$ be a block of type (i), where we found an optimal candidate substring of $\bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]$ instead of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$. Recall that by Lemma 3 we have:

- $\alpha_{i} \leq \alpha_{i}^{\prime} \leq \alpha_{i}+\epsilon^{\prime} u_{i}$
- $\beta_{i}-\epsilon^{\prime} u_{i} \leq \beta^{\prime} \leq \beta_{i}$

Therefore, in case (i), the additional cost is at most $\left(\beta_{i}-\beta_{i}^{\prime}\right)+\left(\alpha_{i}^{\prime}-\alpha_{i}\right) \leq 2 \epsilon^{\prime} u_{i}$ for deleting or inserting the characters that do not lie in the optimal candidate substring. This implies that ulam $\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]\right) \leq$ $\left(1+2 \epsilon^{\prime}\right)$ ulam $\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$. Therefore, the total error of our algorithm is bounded by a multiplicative factor of $\left(1+2 \epsilon^{\prime}\right) \leq 1+\epsilon$ since we choose $\epsilon^{\prime}=\epsilon / 2$.

Proof of Lemma 5

Proof. Assuming ed $(s, \bar{s}) \leq n^{\delta}$, we know that $\ell_{i}-n^{\delta} \leq$ $\alpha_{i} \leq \ell_{i}+n^{\delta}$ which starting points for $s\left[\ell_{i}, r_{i}\right]$ cover. Let α_{i}^{\prime} be the smallest starting point for $s\left[\ell_{i}, r_{i}\right]$ not less than α_{i}. Considering the gap between starting points, $\alpha_{i}^{\prime}-\alpha_{i}<\mathcal{G}$ holds. It only remains to show that one of the ending points for α_{i}^{\prime} has the desired property. Recall that we construct the endpoints in forms of $\gamma+\mathcal{B} \pm\left(1+\epsilon^{\prime}\right)^{a}$ and $\gamma+\mathcal{B}$. Considering the range of β_{i} in the statement, β_{i} lies between $\alpha_{i}^{\prime}+\mathcal{B}-$ $\left(1+\epsilon^{\prime}\right)^{a}$ and $\alpha_{i}^{\prime}+\mathcal{B}+\left(1+\epsilon^{\prime}\right)^{a}$ for $a=\log _{1+\epsilon^{\prime}} \min \left\{\mathcal{B} / \epsilon^{\prime}, n^{\delta}\right\}$.

Let $i p$ be equal to $\alpha_{i}+\mathcal{B}$. Note that, $\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right) \geq \beta_{i}-i p$. Also if $\beta_{i} \neq i p$, let $\left(1+\epsilon^{\prime}\right)^{a} \leq\left|\beta_{i}-i p\right|<\left(1+\epsilon^{\prime}\right)^{a+1}$. Let κ be defined as below:

- $i p$ if $\beta_{i}=i p$,
- $i p+\left(1+\epsilon^{\prime}\right)^{a}$ if $\beta>i p$, and
- ip $-\left(1+\epsilon^{\prime}\right)^{a+1}$ if $\beta<i p$.

Therefore, $0 \leq \beta_{i}-\kappa \leq \epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$. Let $\beta^{\prime}=$ $\kappa-\alpha_{i}+\alpha_{i}^{\prime}$. Since $\left|\alpha_{i}+\alpha_{i}^{\prime}\right| \leq \mathcal{G}=\epsilon^{\prime} n^{\delta-x}$, we can conclude that $0 \leq \beta_{i}-\beta_{i}^{\prime} \leq \epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)+\epsilon^{\prime} n^{\delta-x}$.

Proof of Lemma 6
Proof. We already discussed the number of machines, memory of each machine, and the time complexity of our algorithm. Here, we prove the approximation factor of our algorithm is at most $1+\epsilon$. Recall that $s\left[\ell_{i}, r_{i}\right]^{\prime}$ s span s and $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$'s span \bar{s}. Therefore,

$$
\operatorname{ed}(s, \bar{s})=\sum_{i} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)
$$

Algorithm 4 sums up similar values except:
(i) we use a $1+\epsilon^{\prime}$ estimated value of ed $\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]\right)$ instead of ed $\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$,
(ii) we use a $3+\epsilon^{\prime}$ approximation value of $\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]\right)$ instead of its exact value,
(iii) or if $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ is either too large or too small, we remove all characters of $s\left[\ell_{i}, r_{i}\right]$ and insert all characters of $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$.
If the case (iii) happends for a block, we have an additive error of at most $2 \epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ since the number of unchanged characters in the optimal transformation of $\operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ is no more than $\epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$.

If the case (i) happens, we have an additive error of at most $2 \mathcal{G}+\epsilon^{\prime} \operatorname{ed}\left(s\left[\ell_{i}, r_{i}\right], \bar{s}\left[\alpha_{i}, \beta_{i}\right]\right)$ since some unchanged character in the optimal transformation of $s\left[\ell_{i}, r_{i}\right]$ into $\bar{s}\left[\alpha_{i}, \beta_{i}\right]$ fell outside of $\bar{s}\left[\alpha_{i}^{\prime}, \beta_{i}^{\prime}\right]$. Recall that $\mathcal{G}=\epsilon^{\prime} n^{\delta-x}$ and $n^{\delta}<\left(1+\epsilon^{\prime}\right)$ ed (s, \bar{s}). Therefore, considering only error of case (i) and (iii), the total error is boundede by a multiplicative factor of at most $1+4 \epsilon^{\prime}$.

Case (ii) also imposes a $3+\epsilon^{\prime}$ factor. Moreover, we lose a $1+\epsilon^{\prime}$ for considering different values for n^{δ}. Therefore, the total error of our algorithm is bounded by a multiplicative factor of $\left(3+\epsilon^{\prime}\right)\left(1+4 \epsilon^{\prime}\right)\left(1+\epsilon^{\prime}\right)\left(1+\epsilon^{\prime}\right)=3+19 \epsilon^{\prime}+o\left(\epsilon^{\prime}\right) \leq 3+\epsilon$ since we choose $\epsilon^{\prime}=\epsilon / 22$.

Proof of Lemma 7

Proof. For a block node v with a degree of at least n^{α} we chose one of its neighbors as a representative with a probability of

$$
\begin{aligned}
& P\left[\mathrm{R} \cap N_{\tau}(v) \neq \emptyset\right]=1-(1-p)^{\left|N_{\tau}(v)\right|} \\
& \geq 1-\left(1-\left(2 \log n / n^{\alpha}\right)\right)^{n^{\alpha}}=1-e^{-2 \log n}=1-\left(1 / n^{2}\right)
\end{aligned}
$$

Using the union bound we conclude that we choose a neighbor of every high degree node with a total probability of at least $1-(1 / n)$.

Now, let (v, u) be a pair of block and candidate substring with a distance of at most τ where the degree of v in G_{τ} is at least n^{α}. We showed that there exists a node $z \in \mathrm{R} \cap N_{\tau}(v)$ with high probability. By symmetry, $v \in N_{\tau}(z)$ also holds. Triangle inequality ensures that $u \in N_{2 \tau}(z)$. Therefore, our algorithm outputs $\langle " b ", v, z, \tau\rangle$ and $\langle " c s ", u, z, \tau\rangle$ with high probability. Therefore, our algorithm (in the next round) connects v and u.

On the other hand, let (v, u) be an edge that our algorithm outputs. There is a representative z such that
$u \in N_{\tau}(z)$ and $v \in N_{2 \tau}(z)$, or $v \in N_{\tau}(z)$ and $u \in N_{2 \tau}(z)$.
Therefore,

$$
\mathrm{ed}(u, v) \leq \mathrm{ed}(u, z)+\mathrm{ed}(z, v) \leq \tau+2 \tau=3 \tau
$$

Proof of Lemma 8
Proof. We already discussed the number of machines, the memory of each machine, and the time complexity of our algorithm. Here, we prove the approximation factor of our algorithm is at most $3+\epsilon$.

Recall that we have two types of larger blocks based on the number of overall high degree blocks. The error corresponding to larger blocks of type (i) is because of (a) triangle inequality (a multiplicative error of 3), (b) discretizing τ^{\prime} s (a multiplicative error of $1+\epsilon^{\prime}$), (c) ignoring overall low degree blocks (a multiplicative error of $1+\epsilon^{\prime}$), and (d) using approximately optimal substring instead of optimal ones $\left(1+\epsilon^{\prime}\right)$.

The error corresponding to larger blocks of type (ii) is because of (a) low degree extension (a multiplicative error of 2), (b) using approximately optimal substring instead of optimal ones for extension $\left(1+\epsilon^{\prime}\right)$.

Moreover, we lose a $1+\epsilon^{\prime}$ for considering different values for n^{δ}. Therefore, the total error of our algorithm is bounded by a multiplicative factor of

$$
\begin{aligned}
& 1+\epsilon^{\prime} \cdot \max \left\{3 \cdot\left(1+\epsilon^{\prime}\right)^{2}\left(1+4 \epsilon^{\prime}\right), 2 \cdot\left(1+\epsilon^{\prime}\right)\right\} \\
& =3+21 \epsilon^{\prime}+o\left(\epsilon^{\prime}\right) \leq 1+\epsilon
\end{aligned}
$$

since we choose $\epsilon^{\prime}=\epsilon / 22$.

[^0]: - M. Boroujeni and M. Ghodsi are with the Department of Computer Engineering, Sharif University of Technology, E-mails: safarnejad@ce. sharif.edu and ghodsi@sharif.edu. M. Ghodsi is also with the School of Computer Science, Institute for Research in Fundamental Sciences S. Seddighin is with the Toyota Technological Institute at Chicago, E-mail: saeedreza.seddighin@gmail.com.
 A preliminary version of this paper was presented at SPAA 2019 [1].
 Manuscript received Month Day, Year; revised Month Day, Year.

[^1]: 3. summing the running time of all machines
