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Abstract 

This paper aims to fill the gap between theoretical studies 
of redundant number representation dealing with digit-level 
algorithms, without considering circuit-level details or 
impact of digit-set encodings, and implementation-oriented 
studies that typically focus on one particular digit-set 
encoding. We recognize that radices of practical interest 
are powers of two, giving each high-radix digit a weight 
that is a power of two. Furthermore, digit sets are typically 
encoded in such a way that each bit of the encoded form 
has a power-of-2 weight within the corresponding position. 
These observations lead us to define the class of weighted 
bit-set (WBS) encodings for redundant number systems and 
study the general properties of this class of representations. 
While by no means completely general, the class of WBS 
encodings includes virtually every implementation of 
redundant arithmetic that we have encountered, including 
those based on hybrid redundancy. We derive general 
conditions for a WBS encoding to be viable or efficient and 
describe how arithmetic operations can be performed on 
redundant numbers of this type using standard arithmetic 
components such as full~half-adders and multiplexers. 

1. Introduction 

Contributions to redundant number representation are of 
two main types. In abstract studies, arithmetic algorithms 
are presented in terms of digit-level operations, specifying 
how each result digit is derived from operand digits and 
auxiliary quantities such as interdigit transfers [Parh00]. 
Implementation-oriented studies, on the other hand, are 
often based on specific encodings for digit sets encountered 
in solving particular design problems; e.g., design of a 
high-speed 2's-complement full-tree multiplier [Taka85]. 
Some contributions of this latter type have dealt with 
limited classes of digit-set encodings without directly 
associating them with a specific design problem. Falling 
into the latter category are hybrid-redundant representation 
schemes [Phat94], [Phat01] and representation paradigms 
of high-radix signed digit numbers [Jabe02]. 

This paper aims to fill the gap between the aforementioned 
contributions. When in carry-free addition, the transfer digit 
t;+ l, going from digit position i to digit position i + 1, is 

specified in terms of x i + y, (e.g., by supplying comparison 
constants and their associated selection intervals [Parh90]), 
no specific encoding of the digit set is implied; it is also not 
implied that one must actually add the digits x; and y; in the 
conventional sense and then compare the resulting sum to 
the boundary constants. Specifying t,+ 1 in terms of the 
relationship between x, + y, and comparison constants is 
simply an intuitive way of defining t;+ 1 = a:(x;, y), where I: is 
the transfer function. This is akin to defining a logic 
function via a logic expression; even though the expression 
directly corresponds to a logic circuit, one is free to choose 
any other implementation of the same logic function. 
Typically, choices for the comparison constants to 
determine t;+~ are flexible, thus leaving room for imprecise 
comparisons and a variety of circuit implementations based 
only on a subset of input bits. 

We recognize that radices of practical interest are 
invariably powers of 2; thus, in practice, a redundant 
number can be viewed as a collection of digits, each 
weighted by a corresponding power of 2. Within each digit 
position, a digit value is also practically encoded as a 
collection of weighted bits. For example, the possibly 
asymmetric digit set [-c~, [3], with (x < 2 n-' and [3 < 2 n-', 
might be encoded as an q-bit 2's-complement number, 
giving its bits the weights-2 q-l, 2 rl-2 . . . . .  2, 1. As another 
example, BSD numbers [Aviz61] are commonly encoded 
by representing the position-i digit as two bits weighted-2; 
and 2'; this is known as the (n, p) encoding [Parh90]. Under 
these conditions (i.e., power-of-2 radix and weighted-bit-set 
representation of each digit), the number as a whole is 
encoded by a collection of bits, each weighted by a positive 
or negative power of two. 

Definition 1 (WBS-encoded numbers): A weighted bit-set 
(WBS) encoding of width k is characterized by k integer 
pairs (Pk-l, nk-1) . . . .  (Pl' hi), (P0, no), where the 
representation has k radix-2 positions, indexed 0 to k -  1, 
and digit position i (0 < i < k) of weight 2; is comprised of 
n; negatively weighted and p, positively weighted bits. We 
require that Pk-~ + n~_~ > 0. The most negative (positive) 
representable value of a WBS encoding is -N (P), where 
N = (n~_~.. .  n~no),w o and P = (Pk-~. • • P~Po),wo. A given 
integer represented as (vk_ 1 . .. v~v0)tw o, with -n; < v; < p;, may 
have other WBS representations as well. • 



Definition 2 (Characterization of WBS encodings): The 
encoding multiplicity of position i in a WBS encoding is the 
total number m, - n i + p, of bits in that position. The ordered 
collection m~_ 1 . . .  m,m o of the positional multiplicities is the 
multiplicity pat tern and M = N + P is the total multiplicity 
number ,  which may be represented as the possibly 
redundant radix-2 number (mk_~... m~m0)tw o. Similarly, the 
ith part ial  multiplicity number  M, is M, = (m,_~. . . m~mo),w o = 
N + P, w h e r e - N  (Pi) is the most negative (positive) 
representable value by the rightmost i positions in the 
encoding. The total encoding cost is E -  Y~0~,<~ m,, leading to 
the encoding efficiency e = Flog2(M + 1) ] /E .  • 

Definition 3 (Negabits and posibits): We use negabit  to 
denote a negatively weighted bit in [-1, 0] and posibi t  for a 
normal bit in [0, 1]. Graphically, • (o) stands for posibit 
(negabit) in a natural extension of standard dot notation. • 

Example 1 (Familiar WBS-encoded numbers)" The number 
representation systems whose descriptions follow are 
depicted in extended dot notation in Fig. 1. For unsigned 
carry-save representation, we have m; = p, = 2, n, = 0, Vi. 
Binary signed-digit (BSD) numbers with (n, p)-encoded 
digits have n, = p~ = 1, m, = 2. This represents, in effect, the 
l 's-complement encoding of the digit set [-1, 1]. 
Nonredundant 2's-complement number representation has 
m~ = 1, Vi, n~._l = 1, p~ - 1 for i < k - 1. For 2' s-complement 
carry-save representation, we have m, = 2, Vi, with n~._, = 2 
and p , -  2 for i < k -  1. In hybrid redundancy, with every 
fourth position being an (n, p)-encoded BSD digit, we have 
mi - Pi = 1 and n i = 0, except in positions whose index is 3 
mod 4, for which m, = 2, n , -  1. l 

Carry-save, • • • • • • • • Range = [0, 510] 
unsigned • • • • • • • • 

Binary signed-digit • • • • • • • • Range = [-255, 255] 
or borrow-save o O O o O o O O 

Standard O • • • • • • • Range = [-128, 127] 
2's-complement: 

Carry-save, o • • • • • • • Range = [-128, 127] 
2's-complement: 0 • • • • • • • (not [-256,254], due to the 

modular interpretation) 

Hybrid-redundant, • • • • • • • • Range = [-136, 255] 
4-bit spacing o 0 

Fig. 1. Dot.notation representations for several familiar 
8-position WBS-encoded number systems. 

2. General WBS Encodings 

In this section, we prove some general properties of WBS 
encodings. These general results are useful, because they 
cover, and tie together, numerous practical instances. 

Definition 4 (Equivalent WBS encodings): WBS encodings 
representing precisely the same set of integer values are 
equivalent.  Strongly equivalent  WBS encodings are 
equivalent and have the same width k. • 

Example 2 (equivalent WBS encodings): The 8-position 
WBS encoding shown at the top of Fig. 2 is equivalent to 
the 7-position WBS encoding shown below it, and strongly 
equivalent to the 8-position encoding appearing at the 
bottom of Fig. 2. • 

An 8-poisition • 0 • 0 • 0 • 0 Range = [-119, 170] 
WBS encoding E 0 o 

An encoding that is 0 • •  • • 0  Range= [ -119 ,170 ]  
equivalent to E O • • O • • 

O •  O •  

A strongly equivalent • 0 o • • o • 0 Range = [-119, 170] 
encodingforE o •  o 

! ........................................................................................................................................................................................................................... 

Fig. 2. Equivalent WBS encodings. 

Theorem 1: An interval [-N k, Pk] of integer values 
containing M k + 1 consecutive integers is representable by a 
WBS encoding with multiplicity pattern ink_,. . ,  mlmo iff for 
all i in the range 0 < i < k, we have M; > 2 ' -  1. 

Proof: The necessity part is easy to prove. If M; < 2 ; -  1 for 
some i, then positions 0 to i -  1 collectively represent fewer 
than 2; distinct values. At least one of the 2; mod-2 i 
equivalence classes must be unrepresented among these 
values. Given that bits in positions i and higher can only 
represent multiples of 2;, there must be gaps in the 
representation. We prove the sufficiency part by induction 
on k. Recall that the multiplicity m is nonzero for the most- 
significant position of our postulated WBS representation. 
This leads to m 0 > 0, because either position 0 is the only 
position or else the condition of the theorem statement 
guarantees M, = m 0 > 2 ~-  1. The base case is k = 1; a one- 
position WBS representation with m 0 > 0 and clearly covers 
all integers from - N  l = - n  o to P~ = P0. Now suppose that the 
theorem holds for any WBS representation with k -  1 or 
fewer positions. Let a k-position WBS representation be 
obtained by extending a ( k -  g)-position representation, 
w h e r e g >  1, withmk_ , > 0 a n d m j - 0 f o r k - g < j < k -  1; 
i.e., the leftmost g components of multiplicity pattern are 
mk_10 0 . . .  0. Then, by our assumptions, Mk_ , = Mk_ 2 . . . . .  
Mk_ ~ > 2 k-~- 1. This implies that positions 0 to k -  2 can 
collectively represent a continuous interval of integers with 
at least 2 ~-~ consecutive values. These values combined with 
multiples of 2 k representable by the bit(s) in position k -  1 
yield a continuous interval of integers overall, l 

Theorem 1 suggests that even though it is possible to avoid 
having any posibit or negabit in a particular position j of a 
WBS representation, doing so would require additional bits 
in lesser significant positions (two in position j -  1, four in 
position j -  2, etc.). Thus, for encoding efficiency, it is 
advantageous to enforce m, > 0 for all i. On the other hand, 
replacement of a pair of bits of the same polarity in position 
j by one bit in position j + 1, through the substitutions 
outlined in Fig. 3, keeps m~ < 2, and further improves 
encoding efficiency. These observations lead us to define 
the class of canonical WBS encodings. 



Defini t ion 5 ( ~  WBS ~ g ) :  A k-position WBS 
encoding is canonical  iff 1 < m, < 2 for 0 < i < k -  2. • 

T h e o r e m  2: Any WBS encoding with the multiplicity 
pattern mk_ ~ . . .  m~m o satisfying M > 2 ' -  1 for 0 < i < k, and 
thus representing a continuous interval of integers in view 
of Theorem 1, is strongly equivalent to a unique k-position 
canonical WBS encoding. 

Proof: We describe the process for deriving the canonical 
encoding from a given WBS encoding. Scan the 
multiplicities m, from the right until you find ~ > 3 for 
some j < k -  1. If no such position exists, the encoding is 
already in the desired canonical form. If you find mj > 3, 
take three of the bits in position j and make the substitution 
shown in Fig. 3. This does not change the set of values 
representable, and it reduces mj by 2. Repeating this process 
eventually leads to m~ < 2 for 0 < j < k -  1. To show that the 
resulting multiplicities satisfy m~ > 1, 0 < j < k -  1, we note 
that M~ - (0mj_ 2 . . . m0),w o has a value of Z -  2 when all the 
multiplicites assume the maximal value of 2. We can prove 
the uniqueness by contradiction. Suppose there are two 
equivalent but distinct canonical encodings and let I be the 
leftmost (most significant) position in which multiplicities 
differ. Then, the differece between the total multiplicity 
numbers of the two representations will be nonzero, 
because M -  M' > 2 ~ + (1 1 . . .  1),wo - (2 2 . . .  2)~wo = 1. • 

Corol lary  1: A given WBS encoding is redundant  iff in its 
equivalent canonical form, mj > 1 for some j < k. • 

............................................................................................................................................ 

Original 
dots in 
positionj 

Replaced with Multiples of 
dots in positions 2 j that are 
j +  1 and j representable 

• • 0 , 1 , 2 , 3  

• ) 
• • o - 1 0 , 1  2 
O ' ' 

• ) 
o o • - 2 , - 1  0,1 
o 

o ) 
O O O - 3 , - 2 , - 1 ,  0 
O 

............................................................................................................................................ 

Fig. 3. Substitutions used in the proof of Theorem 2. 

T h e o r e m  3: Among all the strongly equivalent WBS 
encodings, the unique canonical WBS encoding has the 
highest encoding efficiency. 

Proof: We show, by contradiction, that the encoding cost 
E = Y,~;<~ m,. is minimal for the unique canonical encoding. 
If the canonical encoding does not have the lowest cost 
among all strongly equivalent WBS encodings, uniqueness 
of the canonical encoding implies that the lowest-cost 
strongly equivalent encoding is noncanonical. This is 
impossible, however, because the process of transforming a 
WBS encoding to its canonical form (as described in the 
proof of Theorem 2) is solely composed of repeated 
applications of the substitutions shown in Fig. 3, and each 
substitution reduces the encoding cost E by 1. • 

3. Periodic WBS Encodings 

Whereas arbitrary WBS encodings can be envisaged and 
used, circuit implementation in VLSI favors regularity in 
the number of bits associated with the various positions. 
Thus, we define the class of periodic WBS encodings. 

Definit ion 6 (Periodic WBS encodings): A k-position WBS 
encoding is periodic  iff there exist h < k with n~+j~ = n, and 
p~÷j~ = p, for all j; the smallest such h is the period.  • 

Assuming k to be a multiple of h, a periodic WBS-encoded 
number represents a generalized signed-digit (GSD) 
number system in radix 2 h utilizing the digit set [c~, 13], with 
o~ = -(nh_l. • • n~n0),w o and ~ = (Ph-l ' '"  PP0),wo" 

Given that full and half-adder cells, which are widely 
available and efficient, can be used to combine a set of bits 
with power-of-2 weights into another set of similarly 
weighted bits, periodic WBS encodings may be viewed as 
practically desirable GSD representations. In fact, all GSD 
representations that the authors have encountered in the 
literature are based on WBS encodings. Some examples are 
shown in Table I. For those digit sets in Table I that are 
symmetric, signed-magnitude encoding could conceivably 
be used, leading to a non-weighted-bit representation. 
However, we have been unable to find an actual 
implementation that is based on such a representation. 

Table I. Some commonly used periodic WBS redundant number system encodings. 

[-1, 1] 
[-2, 1] 
[-2, 2] 
[0, 2 ~] 

(n, p)-encoded binary signed-digit 
2' s-complement-encoded stored-double-borrow 
Minimally redundant radix-4 
Radix-2 ~ stored-carry 

[-1, 2 h- 1] Radix-2 h stored-borrow 
[-1, 2 h] 
[-2 ~-1, 2 h- 1 ] 
[-2 h, 2 h- 1 ] 
[-2 h-l- 1, 2 h-l] 

Radix-2 h stored-carry-or-borrow 
Radix-2 ~ hybrid, with (n, p)-encoded BSD position 
Radix-2 h hybrid, with redundant digit values in [-2, 1 ] 
Radix-2 h stored-transfer, with transfers in [-1, 1] 

2 1 , -1  
2 -2,  1 
3 - 2 , 1 , 1  

h + l  2 ~-l . . . . .  2, 1, 1 
2 h-1 . . . . .  2, 1, -1 h + l  

h + 2 2 h-~ . . . . .  2, 1, 1 , -1  
h + 1 -2  h-~, 2 ~-~ . . . . .  2, 1 
h + 1 - 2  h, 2 J'-~ . . . . .  2, 1 
h + 2 - 2  '-~, 2 h-2 . . . . .  2, 1, 1 , -1  



Theorem 4: For an interval [-N, P] of integers, that 
includes 0, and integer k satisfying 1 <_ k _< logz(N + P + 1), 
there exists a unique k-position canonical WBS encoding 
representing exactly [-N, P]. 

Proof: A trivial one-position WBS encoding with the given 
range has n o = N, P0 = P, and M = m 0 = N + P. The unique 
k-position canonical encoding equivalent to the above can 
be easily derived by the construction of Theorem 2. • 

Corollary 2: For a radix-2 h GSD number system with digit 
set [-a ,  13], there is a unique periodic canonical WBS 
encoding with period h, where 1 < h < log2(a + [3 + 1). • 

The next to last entry in Table I exemplifies a case where 
the bits in the encoding of adjacent digits overlap in terms 
of their weights. Such overlaps are avoidable by simply 
regrouping the bits. Figure 4 shows an example where the 
bits in a periodic WBS encoding with h = 6 are grouped in 
three different ways, each leading to a distinct digit set in 
radix-64 interpretation. Such variations are indeed useful 
for optimizing circuit implementations. Note that in the 
second and third groupings in Fig. 4, the boundary groups 
in the least- and most-significant end need special 
treatment, but this is generally not problematic. Note also 
that if two digits in [-5, 65] are added, the obtained sum in 
[-10, 130] is representable by the third digit set in Fig. 4. 
Hence, these two options in Fig. 4 collectively represent a 
stored-transfer scheme for carry-free addition [Jabe01]. 
This observation leads to the following general result. 

h-bit group i + 1 ; h-bit group i h-bit group i -  1 Digit set 

[ -68,65]  

,, 

• • • • • • [ 'i~?~!iiiii~iii!i~i~?~'~'~'i!i • • • • • °1 [ -68 ,1911  ::::::::::::::::::::: . : .? ================================== :.:.:.:.:+:.:.:.:.:.:.:..:.:q 

lo I ~ z ~  ! iii~ t ,  o Iol • o'~ 
. . . . . .  : : : : : : : : '  : 7  : : : : : : :  ,, 

Fig. 4. Three different interpretations of the same 
periodic WBS encoding. 

Theorem 5: Any stored-transfer scheme for radix-2 h GSD 
addition, where transfers are encoded as a set of posibits 
and negabits, can be explained in terms of bit grouping in a 
suitably chosen WBS encoding. 

Proof: A stored-transfer scheme [Jabe01] is characterized 
by a main digit set [a, b] and a transfer set { c 0, c~ . . . . .  cd_ 1 }, 
together constituting the radix-2 h digit set [c~, 13]. If the 
transfer values are encoded as a set of posibits and negabits, 
as assumed, and the main digit set is encoded likewise, the 
overall representation is a periodic WBS encoding whose 
parameters ~ ,  nj, and pj within one period or radix-2" digit, 
0 < j < h, are obtained by adding the respective parameters 
of the main digit set and the transfer set. • 

4. Framework for WBS Arithmetic 

Numbers with arbitrary digit sets can be added digitwise to 
produce a sum with a digit set whose range is the sum of 
the ranges of the operands. This wider digit set can be kept 
intact and the result used as an operand in further arithmetic 
operations. It is also possible to convert the wider digit set 
to another, more convenient, one for further processing. 
Often, however, it is required to obtain results with the 
same digit set as inputs. Such representationally closed 
arithmetic is desirable for reusability of the arithmetic cells 
and regularity in VLSI circuit implementation [Jabe00]. 
We note that when comparing a representationally closed 
scheme against a scheme that is not closed, fairness dictates 
that the overhead of conversion from the intermediate 
representation to the ultimate encoding be taken into 
account in any cost/speed comparison. 

In circuit implementations, posibits are more easily dealt 
with than a mix of posibits and negabits, because they can 
be combined and regrouped using standard full adder, half- 
adder, and parallel counter cells. This motivates us to 
define 2's-complement-like WBS encodings in which 
negabits appear only in the most significant position k -  1, 
with all other positions holding only posibits. 

Definition 7 (Two's-complement-like WBS encodings): 
A k-position WBS encoding is 2's-complement-like (2CL) 
if m i = p;, 0 < i < k -  2. In a canonical 2CL-WBS encoding, 
we h a v e l < m ; = p i  < 2 , 0 < i < k - 2 .  • 

Theorem 6: For any k-position WBS encoding, there exists 
a unique (k + 1)-position canonical 2CL-WBS encoding. 
Furthermore, the latter can be constructed efficiently. 

Proof: We describe the process for deriving the canonical 
2CL-WBS encoding from a WBS encoding W. Consider a 
WBS encoding W' with the same multiplicity pattern as W, 
but with p ; -  m;, Vi. Clearly, the range of W' is [0, N + P]. 
Now form (k + 1)-bit 2CL representation of the constant-N 
with a single posibit in each of the positions 0 through k -  1 
and one or more negabits in position k. Obtain the WBS 
encoding W" by adding to each position of W' a posibit 
(one or more negabits in the case of position k) where the 
2CL representation o f - N  contains l s. Clearly, the range of 
W" includes [-N, P]. The desired canonical 2CL-WBS 
encoding is obtained by applying the first substitution of 
Fig. 3 to positions 0 to k -  1 that have more than 2 posibits 
until each of them holds 1 or 2 posibits. The process of 
converting a WBS number to a 2CL-WBS encoding can be 
implemented in parallel using time that is logarithmic in the 
depth d of the starting representation. • 

5. WBS Addition and Multiplication 

In this section, we briefly describe algorithms for addition, 
subtraction, and multiplication of canonical 2CL-WBS 
numbers. Arithmetic algorithms for other operations, 



perhaps with a different encoding for each operand, can be 
developed by using either pre- or postoperation conversion. 
With preconversion, operands are changed to 2CL-WBS 
format before an operation. Postconversion allows an 
intermediate result (e.g., juxtaposition of bits for addition, 
or matrix of bitwise products for multiplication) to be 
formed based on the original operand bits. 

Addition of two 2CL-WBS operands is performed by 
conceptually copying the bits of the 2-deep operands in the 
bit placeholders of a 4-deep WBS representation. This is 
then followed by conversion to canonical 2CL-WBS 
representation. Subtraction is similar, except that the 
posibits (negabits) of the second operand become negabits 
(posibits) in the intermdiate 4-deep result. 

To multiply two 2CL-WBS encoded numbers, we might 
first derive a partial product bit matrix, and then reduce it 
through compression. The number of bitwise products to be 
dealt with can be 4 times greater than in standard binary 
multiplicaltion, given the depth of two for each operand. 
One way to reduce the complexity of our multiplier is to 
reduce the number of positions holding 2 posibits through 
partial carry assimilation. For example, if 4-bit segments of 
each 2-deep operand are combined to yield 5-bit binary 
numbers, with the MSB of one number aligned under the 
LSB of the next higher number, a radix-16 carry-save 
representation results for which efficient multiplication 
circuits have been studied [Ferg99]. 

6. WBS Coversions 

Conversions of interest are: (1) 2's complement to WBS, 
(2) WBS to 2's complement, (3) One WBS form to another. 
Because the last category is quite varied, with conversion 
strategies differing depending on the source/target formats, 
we do not discuss it here in any detail except to note that 
any WBS-to-WBS conversion between formats of the same 
period can be viewed as digit-set conversion which can be 
performed in parallel and carry-free manner. A possible 
conversion strategy is to use the 2CL-WBS format as an 
intermediate format, thus needing to supply only a method 
for converting from 2CL-WBS to an arbitrary WBS. 

Conversion from 2's-complement to 2CL-WBS is trivial, 
while conversion to a periodic WBS format can be done 
either directly as digit-set conversion or by first going to 
2CL-WBS as an intermediate format. In either case, circuit 
implementation will be parallel and regular (consisting of 
identical cells), except in the most-significant end where 
the number sign must be processed differently. Conversion 
from WBS to 2's complement can similarly go through 
2CL-WBS as an intermediate representation. The first 
phase (arbitrary WBS to 2CL-WBS) is carry-free whereas 
the second phase, like all redundant to nonredundant 
conversions, requires full carry propagation and is thus a 
logarithmic-time process at best. 

7. Conclusion 

In this paper, we introduced the class of weighted bit-set 
(WBS) redundant number representations that can lead to a 
fairly general strategy for obtaining efficient circuit 
implementations for redundant arithmetic using readily 
available, and highly optimized, building blocks developed 
for conventional binary arithmetic. For a given generalized 
signed-digit or hybrid-redundant representation, one can 
derive a suitable WBS encoding. The resulting encoding 
has the advantage that its intradigit propagation can be 
limited to posibit transfers, whereas in other instances, 
including hybrid redundancy, positive and negative carries 
coexist, leading to slower circuit implementations. 

Extended WBS encodings that allow general two-valued 
digits, dubbed twits (e.g., having values in {-1, 1 }, {0, 2}, 
or {0,-2}), are being investigated as a natural continuation 
of this work. This generalization not only enhances the 
encoding efficiency but also leads to speed gains in many 
instances. We have shown elsewhere that twits can be 
processed by essentially the same circuits that are applied 
to bits or negabits in this paper and are in the process of 
developing more complex twit-based arithmetic algorithms. 
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