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Abstract

We study two well-known planar visibility problems,
namely visibility testing and visibility counting, in
a model where there is uncertainty about the input
data. The standard versions of these problems are
defined as follows: we are given a set S of n segments
in R2, and we would like to preprocess S so that we
can quickly answer queries of the form: is the given
query segment s ∈ S visible from the given query
point q ∈ R2 (for visibility testing) and how many
segments in S are visible from the given query point
q ∈ R2 (for visibility counting).

In our model of uncertainty, each segment may or
may not exist, and if it does, it is located in one of
finitely many possible locations, given by a discrete
probability distribution. In this setting, the proba-
bilistic visibility testing problem (PVTP, for short)
is to compute the probability that a given segment
s ∈ S is visible from a given query point q and the
probabilistic visibility counting problem (PVCP, for
short) is to compute the expected number of seg-
ments in S that are visible from a query point q.
We first show that PVTP is #P -complete. In the
special case where uncertainty is only about whether
segments exist and not about their location, we show
that the problem is solvable in O(n log n) time. Us-
ing this, together with a few old tricks, we can show
that one can preprocess S in O(n5 log n) time into a
data structure of size O(n4) so that PVTP queries
can be answered in O(log n) time. Our algorithm for
PVTP combined with linearity of expectation gives an
O(n2 log n) time algorithm for PVCP. We also give a
faster 2-approximation algorithm for this problem.

1 Introduction

Background. Visibility testing and visibility count-
ing are basic problems in computational geometry.
Visibility plays an important role in robotics and com-
puter graphics. In robotics, for example, the efficient
exploration of an unknown environment requires com-
puting the visibility polygon of the robot or the num-
ber of visible objects from the robot or test whether
the robot sees a specific object. In some computer
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graphics applications, also, it is important to identify
the objects in a scene that are illuminated by a light
source.

Two points p, q ∈ R2 are visible from each other
with respect to S, if there exists no segment s ∈ S
intersecting line segment pq. We say that a segment
st ∈ S is visible from a point p, if a point q ∈ st can be
found from which p is visible. In this paper, we con-
sider two planar visibility problems; visibility testing
and visibility counting. For a set S of n segments
in R2 and a point q, in visibility testing problem, we
want to test whether q sees a given segment s ∈ S.
In visibility counting problem we want to count the
number of segments in S that are visible from q. For
simplicity we assume all the segments are contained
in a bounding box.

Uncertain data. It is not surprising that in many
real-world applications we face uncertainty about the
data. For geometric problems like visibility, this
means uncertainty about the location of the input set.
There are multiple ways to model such uncertainty.
For example, we can assume each object lies inside
some region, but not exactly where in that region, and
use this assumption to prove bounds on the quantity
of interest. Such a model is used in [8]. Alterna-
tively, we can use a discrete probability distribution
to model uncertainty. This “stochastic” approach is
used in [1, 10]. We choose the latter approach in this
paper. In particular, our model of uncertainty is very
similar to the model used in [10].

Related work. There is significant prior work on the
non-stochastic version of the problems studied in this
paper. There are some works dedicated not only to
the exact computing [5, 11, 13] of the problem but
also to approximate computing [3, 4, 7, 11]. In both,
time-space trade-offs haven been considered.

In real application there are situations where we
need to model the problems based on uncertain data
(See [1, 8, 9]). In [6], they compute visibility between
imprecise points among obstacles. This leads us to
define the uncertain model of VTP and VCP and pro-
pose algorithms to solve them.

Problem statement. Suppose we are given a set S of
n uncertain segments. More precisely, we are given a
discrete probability distribution for each si ∈ S, that
is, we have a set Di = {si,1, · · · , si,mi

} ∪ {si,0 =⊥}
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of possible locations with associated probabilities pi,j
such that Pr(si = si,j) = pi,j and

∑
j pi,j = 1. The

special segment ⊥ indicates that the segment si does
not exist in S. In this setting, the set S can be seen
as a random variable (or random set) as it consists of
probabilistic segments. This random variable gets its
value from a sample space of size Πi(mi + 1) with the
probability being equal to Πs∈SPr(s)Πs 6∈S(1−Pr(s))
. To this end, assume z = max{1+mi}, i.e., z denotes
the maximum size of the given distributions. A special
case that we will pay special attention to is when z =
2. This is the case where the uncertainty is only about
the existence of the segments, and not about their
location.

It is natural to define the probabilistic version of
visibility testing and visibility counting problems in
the above setting where S is a random set:

• Probabilistic Visibility Testing Problem (PVTP):
compute the probability that a given segment s ∈
S is visible from a given query point q.

• Probabilistic Visibility Counting Problem
(PVCP): compute the expected number of
segments in S being visible from q.

Our results. We first show that PVTP is #P -
complete. We then turn our attention to the spe-
cial case where z = 2. We present an algorithm run-
ning O(n log n) time that answers PVTP. Then, we
present a simple way of putting n uncertain segments
into a data structure of size O(n4) such that queries
can be answered in O(log n) time. Finally, we do-
nate our attention to PVCP whose complexity class
is unknown to us. Here, we present a polynomial-time
2-approximation algorithm that approximately solves
PVCP. We then show how to preprocess S into a data
structure of size O(n4) in order to approximately an-
swer each query in O(log n) time.

2 Probabilistic visibility testing

We start by a simple polynomial-time reduction from
#perfect-matching problem to PVTP in order to show
PVTP is #P -complete. The #perfect-matching prob-
lem of computing the number of perfect matching in
a given bipartite graph, is known to be #P -complete
[12]. We next explain the details.

Suppose a bipartite graph G = (U, V,E) is input to
#perfect-matching problem where U = {u1, · · · , un}
and V = {v1, · · · , vn} are vertex parts of G and E
is the edge set of G. For the given bipartite graph,
we construct an instance of PVTP and introduce a
query point q and a query segment s such that each
perfect matching uniquely corresponds to one element
of the sample space of uncertain segments in which s
is not visible from q. Consider n intervals [i, i + 1] on

the x-axis where i changes from 0 to n − 1. Imag-
ine the interval [i, i + 1] corresponds to the vertex vi;
denoted by I(vi). For each vertex ui ∈ U , we de-
fine an uncertain segment Di = {I(vj)|{ui, vj} ∈ E}
with the uniform distribution—note that in this in-
stance each uncertain segment always exist. We add
one more uncertain segment s consisting of one seg-
ment with probability 1 whose endpoints are (0,−1)
and (n,−1). To this end, consider the query point q is
anywhere above the x-axis with x-coordinate greater
than 0 and less than n.

Segment s is not visible from q iff the interval [0, n]
is completely covered by the uncertain segments de-
fined on the x-axis. There are n such uncertain seg-
ments and each covers exactly 1 unit of [0, n]. There-
fore, each uncertain segment must cover exactly one
of n unit intervals. This is the intuition behind one-
to-one correspondence between perfect matching and
the subset of the sample space in which s is not visible
from q. Therefore, we conclude the following theorem.

Theorem 1 PVTP is #P -complete.

From now on, we restrict ourself to the special
case where z = 2, i.e., each uncertain segment ei-
ther does not exist or exists in only one possible lo-
cation. Suppose we are given n uncertain segments
s1, · · · , sn. Let Pr(si ∈ S) = pi which of course im-
plies Pr(si 6∈ S) = 1− pi.

Next, we explain how to compute Pr(q sees s) for
the given segment s and point q. If s 6∈ S, q of
course can not see s. Therefore, Pr(q sees s) =
Pr(q sees s|s ∈ S)Pr(s ∈ S). This reduces our task to
computing of Pr(q sees s|s ∈ S). Let ∆ be a triangle
with vertex q and side s. Every other uncertain seg-
ment that does not intersect ∆, can not prevent q to
see s. Therefore, we can restrict ourself to uncertain
segments intersecting ∆. We project these uncertain
segments to s with respect to q. Now, as the main
ingredient, we must solve the following problem:

• Suppose we are given n uncertain intervals I =
{I1, · · · , In} on the real line; each Ii exists with
probability pi. Compute the probability that the
given interval [a, b] is covered by the uncertain
intervals, denoted by Pr([a, b] is covered).

Computing the desired probability seems needs
Θ(2n) time as the size of the sample space can be
Θ(2n) in the worst case. But, we next show how the
dynamic paradigm helps us to perform the computa-
tion in O(n log n) time. For simplicity, we can assume
the intervals have been sorted by their right endpoints
and intersection of each Ii with [a, b] is not empty.
Let r(Ii) (l(Ii)) be the right (left) endpoint of Ii. We
present the following recursive formula.

For each point a′ ∈ [a, b], let sol(a′) be the probabil-
ity that [a′, b] is covered. So, sol(a) is the probability
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that [a, b] is covered. Let S(a′) = {I ′1, ..., I ′l} be the
set of intervals that cover a′ and they are sorted ac-
cording to their right endpoints.

Lemma 2 We define sol(b) = 1, then we have

sol(a′) =
∑l
j=1 p

′
j(
∏j−1
i=1 (1− p′i))sol(r(I ′j)).

Proof. Suppose that a′ ∈ [a, b], so if [a′, b] is covered,
then at least one of the segments in S(a′) should be
chosen. There are l segments that cover a′. Since the
segments in S(a′) are sorted according to their right
endpoints then, the probability that I ′j is the first seg-

ment that covers a′ is p′j
∏j−1
i′=1(1 − p′i). Recursively

[a′, b] is covered with the probability of sol(r(I ′j)). So,

we have sol(a′) =
∑l
j=1 p

′
j(
∏j−1
i′=1(1− p′i))sol(r(I ′j)).

�

Each right endpoint of the intervals can be covered
by O(n) of the intervals. In the recursive formula,
we call each right endpoint at most once. For each
sol(r(I ′j)) we have to compute

∏j−1
i′=1(1−p′i), since the

segments are sorted according to their right endpoint,
for each sol(r(I ′j)) we multiply

∏j−2
i′=1(1−p′i)(the value

of previous step) by 1− p′j , which means we can com-

pute sol(a) in O(n2) time. Next we propose a faster
algorithm.

To fill the array sol, we sweep the endpoints from
right to left and keep the track of all intervals inter-
secting the sweep line in a binary search tree (BST,
for short) over the right endpoint of intervals support-
ing insertion/deletion in O(log n) time. We augment
each node of the BST with extra values in order to
expedite our computation as we explain next.

Upon processing a right end-point, say r(Ii), we
compute sol(r(Ii)), which is the sum of all the nodes
of tree. This can be computed in O(log n) time.
Then, we implicitly multiply all the nodes by (1− pi)
and then add r(Ii) to the tree with the value of
pisol(r(Ii)). For the left endpoint of an interval, l(Ii),
we delete Ii, from the tree and implicitly divide all the
right endpoints greater than r(Ii) by (1 − pi). This
also can be done in O(log n) time. There are O(n)
endpoints, so the running time is O(n log n).

Theorem 3 Given a point and a segment, PVTP can
be answered in O(n log n) time when z = 2.

Now, we preprocess the segments such that for
any given query point q, PVTP can be answered in
O(log n) time. First, connect each pair of the end-
points by a line and extend it until it hits the bound-
ing box. These lines will partition the bounding box
into O(n4) regions. For a fixed segment s ∈ S, the
answer to PVTP for all the points in a given region
is the same, because the combinatorial order of seg-
ments that cover s is the same for all the points in-
side that region. Therefore, in the preprocessing time

we choose a point qi from each region ri and com-
pute Pr(qi sees s) in O(n log n) time. So, for a given
set of segments S and a segment s ∈ S, we prepro-
cess the segments in O(n5 log n) time and O(n4) space
such that for any given query point q, we locate the
region ri containing q in O(log n) time and return
Pr(qi sees s) = Pr(q sees s).

3 Probabilistic visibility counting

In this section we study the probabilistic visibility
counting problem. We start with a few notations.
For each subset T ⊂ S, let mq(T ) be the number of
segments visible from q when the set of segments is
T . So, the expected number of segments visible from
q can be written as: E(mq) =

∑
T⊆S Pr(T )mq(T ),

where Pr(T ) denotes the probability that the set of
realized segments is T .

Another way to compute E(mq) is using linearity
of expectations: E(mq) =

∑n
i=1 Pr(q sees si).

For the case z = 2, we can use the above iden-
tity and the algorithm in the previous section to com-
pute E(mq) in O(n2 log n) time with no preprocessing.
Also as in the previous section, we can use preprocess-
ing to reduce query time: the answer of PV CP is the
same for all the points in each region in the space
partition. So, we can compute this number for all the
regions in O(n6 log n) preprocessing time and O(n4)
space, such that for any query point q, E(mq) can
be answered in O(log n) time. Now, we show how to
approximately solve this problem more efficiently.

3.1 Approximation of PVCP

In this section we propose a 2-approximation solution
for PVCP. First, we present a theorem (the prelimi-
nary version of this theorem was published in [4]):

Theorem 4 Let S be a set of disjoint line segments
in the plane and ve(q) be the number of visible end-
points of the segments and mq be the number of vis-
ible segments, then we have

mq ≤ ve(q) ≤ 2mq

Proof. We define four types of visible segments.

• R: the visible segments that their right endpoints
are visible to q and their left endpoints are not
visible to q.

• L: the visible segments that their left endpoints
are visible to q and their right endpoints are not
visible to q.

• LR: the visible segments that their right and left
endpoints are visible to q.

• Mid: the visible segments that their right end-
points and left endpoints are not visible to q.
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So, we have, mq = R + L + LR + Mid. Note that
for each segment si of type Mid or R, there should
be a segment sj of type R or LR, such that the ray
emanating from q to the right endpoint of sj cross si
after crossing the right endpoint of sj . This means
Mid + R ≤ R + LR. So, we have

mq = R + L + LR + Mid ≤ R + L + 2LR ≤
2(R + L + LR + Mid) = 2mq or mq ≤ veq ≤ 2mq.

�

Now, we use Theorem 4 to approximate PVCP. Let
mq(T ) and veq(T ) be the number of visible segments
and visible endpoints, respectively in T ⊂ S w.r.t T ,
so we have mq(T ) ≤ veq(T ) ≤ 2mq(T ). So, we can
conclude that,∑

T⊂S Pr(S = T )mq(T ) ≤
∑
T⊂S Pr(S =

T )veq(T ) ≤
∑
T⊂S Pr(S = T )2mq(T ).

Or in other words,

E(mq) ≤ E(veq) ≤ 2E(mq).

So, we compute E(veq) =
∑n
i=1 Pr(r(si) sees q) +

Pr(l(si) sees q).

Pr(r(si) sees q)) =
∑z
j=1 pi,jPr(r(si,j) sees q).

Let sk,1′ , sk,2′ , ..., sk,l′ be the possible locations of sk in

Dk that cross r(si,j)q, the probability that sk does not

intersect r(si,j)q is pi,jk = (1−pk,1′−pk,2′− ...−pk,l′).

Pr(q sees r(si)) =
∑z
j=1 pi,jp

i,j
1 .pi,j2 ....pi,jn

We have 2nz possible locations for the endpoints and
we can compute P (q sees r(si)) in O(zn), so E(ve(q))
is computed in O(n2z2).

For z = 2 we present a faster algorithm. Suppose
that a ∈ si is an endpoint of si. Let s′1, s

′
2, ..., s

′
k be the

set of segments that intersect aq, since the probability
of selection of the segments are independent, we have

Pr(q sees a) = pi.(1− p′1)(1− p′2)...(1− p′k).

Which yields: E(vep) =
∑
a∈si Pr(q sees a).

So, for each endpoint, we need the segments that
intersect aq. We use the following theorem:

Theorem 5 [2] Let S be a set of n segments in the
plane and n ≤ k ≤ n2, we can preprocess the segments
in Oε(k) such that for a given query segment s, the
number of segments crossed by s can be computed in
Oε(n/

√
k).

By Theorem 5 we can compute Pr(q sees a) in
O(n/

√
k). So, for 2n endpoints, E(vep) is computed

in n.O(n/
√
k). If k = n

4
3 , then we have:

Theorem 6 Let, S be a set of given segments and
q be a given point. If each segment is chosen with
probability pi, then, the expected number of visible
endpoints from q can be computed in O(n

4
3 ) which is

a 2-approximation of E(mq).
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