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Abstract We study the problem of fair division of a heterogeneous resource
among strategic players. Given a divisible heterogeneous cake, we wish to divide
the cake among n players to meet these conditions: (I) every player (weakly)
prefers his allocated cake to any other player’s share (such notion is known as
envy-freeness), (II) the allocation is dominant strategy-proof (truthful) (III)
the number of cuts made on the cake is small. We provide methods for dividing
the cake under different assumptions on the valuation functions of the players.

First, we suppose that the valuation function of every player is a single
interval with a special property, namely ordering property. For this case, we
propose a process called expansion process and show that it results in an
envy-free and truthful allocation that cuts the cake into exactly n pieces.

Next, we remove the ordering restriction and show that for this case,
an extended form of the expansion process, called expansion process with
unlocking yields an envy-free allocation of the cake with at most 2(n − 1)
cuts. Furthermore, we show that in the expansion process with unlocking, the
players may misrepresent their valuations to earn more share. In addition, we
use a more complex form of the expansion process with unlocking to obtain

? A preliminary version of this paper is appeared in AAAI 2017 [1].
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an envy-free and truthful allocation that cuts the cake in at most 2(n − 1)
locations.

We also, evaluate our expansion method in practice. In the empirical results,
we compare the number of cuts made by our method to the number of cuts in
the optimal solution (n− 1). The experiments reveal that the number of cuts
made by the expansion and unlocking process for envy-free division of the cake
is very close to the optimal solution.

Finally, we study piecewise constant and piecewise uniform valuation func-
tions with m pieces and present the conditions, under which a generalized form
of expansion process can allocate the cake via O(nm) cuts.

Keywords cake cutting, envy-free, mechanism design, approximation, fairness

1 Introduction

The problem of dividing a cake among a set of individuals has been widely
studied in the past 60 years. The subject was first defined by Steinhaus [17].
The description of the problem is as follows: given a heterogeneous cake and
a set of players, with potentially different tendencies to different parts of the
cake, how to cut the cake and distribute it among the players in a fair manner?

Several notions are defined for measuring the fairness of an allocation (see
[16]). One of the most important notions is envy-freeness. An allocation of
the cake is envy-free, if each player (weakly) prefers his allocated share to any
other players’ share.

Envy-free resource allocation has been vastly studied in the literature. For
two players, the famous method of cut and choose guarantees envy-freeness
of the allocation. For three players, Selfridge and Conway designed a protocol
for finding an envy-free division of the cake. In their method, a player may
receive more than one piece (see [15] for details). Brams and Taylor generalized
this method to an arbitrary number of players [9]. However, their method
doesn’t guarantee any upper bound on the number of cuts. Recently, Aziz and
Mackenzie in [2], suggested a bounded envy-free protocol for any number of
agents.

In some settings, the number of cuts is important. In several papers (e.g.
[18], [4], [19], [5]) the cake cutting with minimum number of cuts has been
studied. In some cases, each cut might have an additional cost. As an example,
suppose that the cake models a processing time that must be fairly allocated
among a set of tasks. Every task-switch imposes an overhead; minimizing the
total amount of overhead would be equivalent to minimizing the number of
cuts on the cake. In addition, players may not have any value for very small
pieces made by a large number of cuts. In [10], this issue was illustrated by the
advertisement example: think of the cake as time and consider the allocation
of advertising time. In such a setting, a large number of cuts can yield so small
periods of time that are not useful for advertising. In an allocation with small
number of cuts, this issue is unlikely.
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Stromquist, in [18], proved the existence of an envy-free division of the cake
among n players with n−1 cuts which is the minimum number of cuts required
to divide a cake among n players. However, the proof is not constructive and
does not yield a polynomial time algorithm. He also proved in [19] that no
finite protocol can find an envy-free allocation with the minimum number
of cuts for n ≥ 3. Deng, Qi, and Saberi in [12] showed that the problem of
finding an envy-free allocation of the cake, with a minimum number of cuts is
PPAD-Complete. They also proposed an FPTAS for the case of three players.

In a number of recent papers (e.g. [10, 7, 5, 14, 11, 3]) some restricted classes
of valuation functions have been studied. Piecewise constant and piecewise
uniform valuation functions are two special classes of valuation functions
which are very important in practice. One of the important properties of these
valuation functions is that they can be described concisely. Kurokawa, Lai, and
Procaccia in [13] proved that finding an envy-free allocation (in Robertson-
Webb model) when the valuation functions are piecewise-uniform is as hard as
solving the problem without any restriction on the valuation functions.

The classic cake cutting algorithms assume that the agents are not strategic
and honestly report their valuations. However, this is not the case in many
real life situations. Recently, some studies considered the problem from a game
theoretic perspective and attempt to find truthful mechanisms for dividing
the cake. Similar to fairness, there are different notions for the concept of
truthfulness. Brams et. al. in [8], observed a weak notion of truthfulness:
players don’t risk telling a lie if there exists a scenario (for other players
valuations) in which lying results in a lower payoff. As an example, they
showed that cut and choose protocol is weakly truthful. Maya and Nisan [14]
designed truthful and Pareto-efficient mechanisms to divide the cake between
two players where each player is interested in a subset of the cake, uniformly.
In [11], Chen et al. considered a strong notion of truthfulness (denoted by
strategy-proofness), in which the players’ dominant strategies are to reveal
their true valuations over the cake. They presented a strategy-proof mechanism
for the case when the valuation functions are piecewise uniform. They also
designed a randomized algorithm that is envy-free and truthful in expectation
for piecewise linear valuation functions. However, their approach for dividing
the cake uses Ω(n2m) cuts, where m is the number of pieces in each valuation
function. Aziz and Ye [3] considered the problem when valuation functions are
piecewise constant/uniform. Based on parametric network flows, they designed
an envy-free algorithm that is group strategy-proof 1 for piecewise uniform
valuations. It is notable that their method becomes equivalent to Mechanism 1
from [11], in the case of piecewise uniform valuations.

1 Group strategy-proof means no group of players can misreport their valuations, such
that in the resulting allocation all of them earn more payoff
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1.1 Our work

We investigate the problem of finding envy-free and truthful mechanisms with
a small number of cuts. By truthful, we mean that the players must not gain
from misreporting their valuation, regardless of the action of other players. By
a small number of cuts, we mean that the number of cuts does not exceed
O(nm), where m is the complexity (i.e., number of steps) of each players’
(piecewise constant) valuation function. To the best of our knowledge, this is
the first study that aims to approximate the number of cuts.

The basis of our methods is a simple and elegant process called expansion
process. After describing the process, we start with the case where each player’s
valuation function is piecewise constant with only one step and maintains a
specific property that we name ordering property. For this case, we propose
EFISM, which is a polynomial time, strategy-proof and envy-free allocation
with n− 1 cuts (Theorem 1).

Next, we combine the expansion process with another process called unlock-
ing. Based on the expansion process with unlocking, we propose EFSC, which is
an envy-free allocation that cuts the cake into at most 2n− 1 pieces in polyno-
mial time (Theorem 2). To the best of our knowledge, no previous work tries to
approximate the number of cuts in a fair solution. Furthermore, using a more
complex form of the expansion process with unlocking, we propose EFGISM,
which is a recursive, polynomial time, truthful, and envy-free algorithm that
cuts the cake into at most 2n− 1 pieces (Theorem 3).

We evaluate the expansion with unlocking method in practice. We compare
the number of cuts made by our method to the number of cuts in the optimal
solution (n− 1). Interestingly, the number of cuts returned by our algorithm
is very close to n− 1, which shows that the algorithm is almost optimal (see
Section 8 for more details).

Finally, we consider the case where the valuation functions are piecewise
constant with m pieces. When the number of players is constant, we provide a
poly(m) time algorithm for envy-free division of the cake with n−1 cuts. Finally,
we consider the case that the players possess a particular property, namely
intersection property and show that under this assumption, a modification of
the expansion process yields a poly(m,n) time, envy-free algorithm that cuts
the cake in O(nm) locations.

2 Model Description and Preliminaries

Throughout the paper, we use the term interval for two purposes: valuation
functions and the shares allocated to the players. For brevity, denote the former
type of intervals by I and the latter by I. Also, we Suppose that for every
valuation interval Ii, Ii = [αi, βi] and for every share interval Ii, Ii = [ai, bi].

Given a set N of n players and a cake C. We represent the cake by the
interval [0, 1]. For every player pi ∈ N , a valuation function νi : [0, 1]→ R is
given.
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For each pi ∈ N and interval I = [a, b], we define Vi(I) as
∫ b
a
νi(x)dx. Our

assumption is that the valuations functions are normalized, such that Vi(C) = 1,
for each player pi. A piece of the cake, is a set of mutually disjoint sub-intervals
of [0, 1]. For a piece P , we define Vi(P ) as

∑
I∈P Vi(I).

A valuation function ν is piecewise constant, if there exists a set Sν =
{Iν1, Iν2, . . . , Iνk} of mutually disjoint intervals, such that for any two points
x, x′ in Iνi, ν(x) = ν(x′) = ri and for any point x that does not belong to
any interval in Sv, ν(x) = 0. To put it simply, a piecewise constant function
consists of a finite number of intervals, such that all the points in the same
interval have the same value, and for the points that do not belong to any
interval, the valuation is 0. We say ν has k steps, if |Sν | = k.

A division of the cake among a setN of n players is a setD = {P1, P2, . . . , Pn}
of pieces, with each piece Pi = {Ii,1, Ii,2, . . . , Ii,|Pi|} being a set of intervals with
the following two properties: (I) every pair of intervals are mutually disjoint
and (II) no piece of the cake is left behind:

⋃
i,j Ii,j = C.

The number of cuts in division D is (
∑
i |Pi|)−1. A division D = {P1, P2, . . .

, Pn} is envy-free, if for every player pi and piece Pj ∈ D the inequality
Vi(Pi) ≥ Vi(Pj) holds.

The majority of this paper is focused on the case, where each valuation
function is a single interval. For this case, we suppose that for every player
pi ∈ N , Svi = {Ii}, where Ii = [αi, βi]. Furthermore, denote by T the set
of valuation intervals, i.e., T = {I1, I2, . . . , In}. In this setting, the envy-free
notion for a division D can be interpreted as follows: for each player pi and
k 6= i we have ∑

j

|Ii,j ∩ Ii| ≥
∑
j

|Ik,j ∩ Ii|.

For a set of intervals X, we define DOM(X) as the minimal interval that
includes all members of X as sub-intervals; e.g., in the case that each val-
uation function is a single interval, for a set T ⊆ T we have DOM(T ) =
[minIj∈T αj ,maxIi∈T βi]. Furthermore, we define the density of X, denoted by
Φ(X) as λ(X)/|X| where λ(X) is the total length of DOM(X) that is covered
by at least one interval in X. We call a set X of intervals solid, if for every point
x ∈ DOM(X), there exists an interval I in X such that x ∈ I. For example, in
Fig 1, the set T is solid. For a solid set T , we have:

λ(T ) = |DOM(T )| = max
Ii∈T

βi − min
Ij∈T

αj .

Our assumption is that every piece of the cake is valuable for at least one
player. In Section 8, we demonstrate that slightly modified versions of our
algorithms can handle the situations where this assumption does not hold.

We end this section with a simple observation.

Observation 21 If a+b
c+d = e

f holds for positive real numbers a, b, c, d, e and f ,
we have:

a

c
≤ e

f
⇐⇒ b

d
≥ e

f
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C

a

b

cd

DOM(T )

T = {a, b, c, d}

Φ(T ) = |DOM(T )|/4

Fig. 1: Domain and density

According to Observation 21, If T is not solid, then there exists a subset
T ′ ⊂ T which is solid and Φ(T ′) ≤ Φ(T ). We use Observation 21 in the proof
of Lemmas 8 and 9.

3 The Expansion process

The main tool in our method for dividing the cake is a procedure called
expansion process. The expansion process expands some associated intervals to
the players, inside their desired area (i.e., valuation intervals). We use exp(T )
to refer to the expansion process on set T of (valuation) intervals. We initiate
the expansion process for T by associating a zero-length interval Ii at the
beginning of its corresponding Ii ∈ T , i.e., Ii = [ai = αi, bi = αi]. Denote by
S, the set of these Intervals. We expand the intervals in S concurrently, all
from the endpoint. The expansion is performed in a way that maintains two
invariants:(I) The expansion has the same speed for all the intervals so as the
lengths of the intervals remain the same and (II) Ii always remains within Ii.

During the expansion, the endpoint of an interval Ii may collide with the
starting point of another interval Ij . In this case, Ii pushes the starting point of
Ij forward during the expansion. The push continues to the end of the process.
If Ii pushes Ij , we say Ii is stuck in Ij . Note that by the way we initiate the
process, the intervals remain sorted according to their corresponding αi’s. In
the special case of equal αi for two players, the one with smaller βi comes first.

Definition 1 During the expansion, an interval Ii becomes locked, if the
endpoint of Ii reaches βi.

Definition 2 A chain is a sequence of intervals Iσ1
, Iσ2

, . . . , Iσk
, with the

property that for 1 ≤ i < k, Iσi
is stuck in Iσi+1

. A chain is locked, if Iσk
is

locked.

The size of a chain is the number of intervals in that chain. By definition, a
single interval is a chain of size 1.
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Fig. 2: An example of expansion process: (A): the intervals are single points,
(B): Id starts pushing Ib, (C): Ib starts pushing Ia, and (D): Ib becomes locked
and the expansion process terminates

The expansion ends when an interval becomes locked. The termination
condition ensures that the second invariant is always preserved. In Figure 2,
you can see a detailed example of the expansion process.

Definition 3 The expansion process for T is perfect, if the associated intervals
cover the entire DOM(T ). If the process terminates due to a locked interval
before entirely covering DOM(T ), the process is imperfect.

Note that if an expansion process on T ends perfectly, then for every
associated interval Ii, we have |Ii| = Φ(T ).

Observation 31 During the expansion process, every interval Ii is either
being pushed by another interval, or its starting point is still on αi.

3.1 Executing Expansion Process in Polytime

Despite the fact that we described the expansion process continuously, it can
be efficiently implemented via sweeping the events. As said, the expansion
process starts with allocating zero-length interval [ai = αi, bi = αi] to pi. We
expand the shares until one of these events occur:

1. A chain becomes locked.
2. Two consecutive chains Ci and Ci+1 get merged, i.e., the end-point of the

last share interval in Ci gets stuck in starting point of the first share interval
of Ci+1.

If the first event occurs, we terminate the process. For the second event, we
merge the chains Ci and Ci+1 and continue to expand the shares. To expand
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the shares after each merging event, we should know the maximum length L
that we can expand the shares, before the next event occures. Let C1, . . . ,Cm
be the maximal chains in the current state. For each share interval Ii, let ci
be its zero-based index in the corresponding maximal chain, i.e., number of
intervals that are pushing Ii. Simultaneous expansion of all the intervals by
length l simply shifts each interval Ii by ci × l, if no chain gets locked nor two
maximal chains merge. We can find maximum l by considering all possible
events.

L = min(min
i≤n
{βi − bi
ci + 1

},min
j<m
{gap(Cj ,Cj+1)

|Cj |
}) (1)

where gap(Cj ,Cj+1) denotes the size of currently unallocated piece of the cake
between chains Cj and Cj+1 and |Cj | denotes the number of intervals in Cj .
After expansion of the shares by size L, the process either terminates by a
locked chain, or a pair of chains get merged. Considering the fact that the
merged chains will remain together during the expansion process, number of
merge events is bounded by m− 1 < n. Thus, the expansion process can be
simulated in poly(n).

4 EFISM: Special Interval Scheduling

In this section, we assume that the valuation function of each player is a single
interval. In addition, we suppose that the intervals have the following property:

∀i, j αi ≤ αj ⇐⇒ βi ≤ βj . (2)

In other words, no interval is a sub-interval of another (unless they start or
end in the same place). For example, when all the valuation intervals have the
same length, Equation (2) is held.

For this case, we present a polynomial time, envy-free, and truthful alloca-
tion with n− 1 cuts. We name this algorithm as EFISM.

The idea of EFISM is repeatedly expanding the intervals and removing the
locked chains. Let T be the valuation intervals corresponding to the players inN .
We begin by calling exp(T ). As described in Section 3, the procedure terminates
either perfectly or imperfectly. In the first case we are done. Otherwise, at least
one chain is locked. Let C = Iσ1 , Iσ2 , . . . , Iσk

be a locked chain with maximal
size in S. Since C is maximal, no interval is pushing Iσ1

. By Observation 31,
aσ1

is exactly on ασ1
. Let T be the set of valuation intervals corresponding to

the intervals in C .

Lemma 1 DOM(T ) = [ασ1 , βσk
].

Proof. By the structure of expansion procedure, we know aσ1 ≤ aσ2 ≤ . . . ≤
aσk

. Furthermore, by Equation (2) we have bσ1
≤ bσ2

≤ . . . ≤ bσk
. By the fact
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C
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cd

e f

a b
cd

e f

a
c

e f
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e f

f

A B

C D

E

Fig. 3: An example of expansion and removing process: (A): Expansion starts
with single point intervals (B): Ib is locked and the maximal chain Id, Ib gets
removed (C): Expansion continues until Ic gets locked and removed (D): Ia, Ie
gets locked and removed (E): If is locked and removed. End of process.

that Iσk
is locked and regarding the definition of chain, we have aσ1

= ασ1
and

bσk
= βσk

. Therefore,

DOM(C ) = [ min
1≤j≤k

aσj
, max
1≤l≤k

bσl
] = [ασ1

, βσk
].

�

Now, we allocate each Iσi
to pσi

. Lemma 2 states that such an allocation is
envy-free for pσ1

, pσ2
, . . . , pσk

.

Lemma 2 For every interval Iσi and Iσj in C , we have Vσi(Iσi) ≥ Vσi(Iσj ).

Proof. By the second invariant of the expansion process, we know that Iσi

is entirely within Iσi
. Other intervals in C have the same length as Iσi

and
hence, their value for player pσi can not be more than Iσi .

�

Next, we remove players pσ1 , pσ2 , . . . , pσk
from N . We also remove DOM(T )

from C. By removing DOM(T ), the cake is divided into two sub-cakes: the piece
to the right of DOM(T ) and the piece to the left of DOM(T ), respectively
Cr and Cl. Let Nl and Nr be the set of players with their share inside Cl and
Cr. Also, let Tl and Tr be the sets of valuation intervals corresponding to Nl
and Nr. Now, we update the valuation functions of the players in Cl and Cr.
Specifically, for every player pi ∈ Nl with βi > ασ1 , we change the value of
βi to ασ1

. Similarly, for every player pj ∈ Nr with αj < βσk
, we change αj to

βσk
.
After removing the allocated part of the cake along with its corresponding

players and updating the valuations, we perform this expansion and removal
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Algorithm 1 EFISM algorithm

function EFISM(C = [a, b],N , T )
if C 6= ∅ then

exp(T ) . Expansion process on T
Let C = Iσ1 , Iσ2 , . . . , Iσk be a maximal locked chain
for 1 ≤ i ≤ k do

Allocate Iσi to pσi
Cl = [a, ασ1 ]
Cr = [βσk , b]
for every pk ∈ N do

if ak < aσ1 then
βk = min(βk, ασ1 )
Add pk to Nl
Add Ik to Tl

else if bk > bσk then
αk = max(αk, βσk )
Add pk to Nr
Add Ik to Tr

EFISM(Cl,Nl, Tl)
EFISM(Cr,Nr, Tr)

separately for both Tl and Tr. The process continues until all the players are
removed. In Algorithm 1, you can find a pseudocode for EFISM. In addition,
In Figure 3 you can find a detailed example of EFISM.

Theorem 1 EFISM is envy-free, truthful, and cuts the cake in exactly n− 1
locations.

Proof. Envy-freeness: We prove by induction on the number of players, n.
For n = 1, the claim holds trivially. For n > 1, consider the first expansion
process. If the process was perfect, by Lemma 2, the allocation is envy-free.
Otherwise, If the process was imperfect, let C be a maximal locked chain and
let NC be the players corresponding to the intervals in C . By Lemma 2, none
of the players in NC envy each other. Furthermore, since the entire DOM(C )
is allocated, the players in NC do not envy the players in Nl and Nr. By
induction hypothesis, the allocation of Cr and Cl is envy free for Nr and Nl,
respectively. Since Cl (Cr) has no value for the players in Nr (Nl), the players
in Nl and Nr do not envy each other.

Finally, regarding the facts that the expansion process for Tl and Tr expands
the associated intervals at least to the length of intervals in C , the players in
Nl ∪Nr do not envy the players in NC .

Number of cuts: During the algorithm, one piece of the cake is associated
to each player, which means that the total number of cuts on the cake is n− 1.
Note that no piece of C is left behind.

Truthfulness: For an arbitrary player pi whose true valuation interval is
Ii, we show his utility cannot be increased by lying. However, first of all, we
must clearly determine what do we mean by ”lying”?.

Note that the EFISM algorithm is proposed for the case that the valuation
intervals satisfy the ordering property, i.e., satisfy Equation (2). Regarding this,
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pi can change his valuation in a way that this property no longer is satisfied.
Here, we show that pi can not earn more payoff even by misreporting his
valuation in a way that the ordering property no longer satisfies. Note that this
type of misreporting can harm other properties of the algorithm; For example,
Figure 4 shows an example that removing the ordering property results in an
allocation that is no longer envy-free.

Let L be the length of allocated share to pi in case he tells the truth and
let C be the locked chain that includes Ii. Considering the expansion process
as a continuous process that the shares grow with the same speed, let t be
the (relative) time, when C becomes locked. Furthermore, let T be the set
of valuation intervals related to the share intervals in C . According to the
structure of the expansion process, Φ(T ) = L, and the size of every share
interval in C is exactly L.

Let α′i, β
′
i be the starting point and the ending points of the interval that

pi states. We want to show that no matter what the value of α′i and β′i are,
there would be no scenario in which pi achieves more than L from DOM(T ).

First, note that for every subset T ′ of T , Φ(T ′) ≥ L, which means if pi
tells the truth, no interval in T becomes locked during the expansion, before
time t. Thus, if pi lies in a way that a locked chain C ′ forms before time t,
Ii would be one of the intervals in C ′. In other words, pi can not force other
intervals in T to lock earlier, without participating in the locked chain. On
the other hand, if pi satisfies in any time earlier than t, his share would be less
than L.

Hence, the share of all the players in C remains at least L, even if pi lies.
Moreover, |DOM(T )| = L× |T | which means that pi can not gain an interval
with size more than L× |T | −L× (|T | − 1) = L from DOM(T ), independent
of what he submits as his valuation interval. Regarding the fact that if he
reports truthfully |Ii| = L, he can not gain more payoff by lying.

�

Remark that removing the ordering property described in the beginning of
this section may result in an inappropriate allocation. For example, consider
the input described in Figure 4. Obviously, running EFISM on this input does
not yield an envy-free allocation; here pc envies pb. In addition, the allocation
does not allocate the entire cake, because a piece between Ic and Ib is left over.
To overcome these issues, in the next section we introduce a more general form
of the expansion process

5 Expansion Process with Unlocking

In this section, we introduce a more general form of the expansion process.
The basic idea is the fact that during the expansion process, there might be
some cases that a locked chain becomes unlocked by re-permuting some of its
intervals, wihtout violating the expansion invariants.
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C

a b

c

Ic Ia Ib

Fig. 4: EFISM for intervals without ordering property

Definition 4 Let C = Iσ1
, Iσ2

, . . . , Iσk
be a maximal locked chain. A permu-

tation Iδ1 , Iδ2 , . . . , Iδr of the intervals in C is said to be C -unlocking, if the
following conditions are held:

(I) : All the intervals of the permutation are members of the locked chain,
i.e., ∀i, Iδi ∈ C , and the last interval of the permutation is the locked interval,
i.e., δr = σk.

(II) : For every j < r, the share associated to player pδj is totally within
the valuation interval of player pδj+1 (with its endpoint strictly less than the
endpoint of the valuation interval), i.e., ∀1≤j≤r−1, aδj ≥ αδj+1 and bδj < βδj+1 .

(III) : The share associated to player pδr is within the valuation interval of
player pδ1 (with its endpoint strictly less than the endpoint of the valuation
interval), i.e., αδ1 ≤ aδr and βδ1 > bδr .

The intuition behind the definition of unlocking permutation is as follows:
let Iδ1 , Iδ2 , . . . , Iδr be a C -unlocking permutation, where C = Iσ1 , Iσ2 , . . . , Iσk

.
Then, we can change the order of the intervals in C by placing Iδj in the
location of Iδj−1

for 1 < j ≤ r and placing Iδ1 in the location of Iδr . By the
definition of unlocking permutation, after such operations Iδr (Iσk

) is no longer
locked. Thus, Iσk

is not a barrier for the expansion process and the expansion
can be continued.

It is worthwhile to mention that there may be multiple locked intervals in
a moment. In such case, we separately try to unlock each interval. For a set T
of valuation intervals, we use U -exp(T ) to refer to the expansion process with
unlocking for T . See Figure 5 for an example of this process.

Definition 5 A locked chain C = Iσ1
, Iσ2

, . . . , Iσk
is strongly locked, if C

admits no unlocking permutation.

Definition 6 An expansion process with unlocking U -exp(.) is strongly locked,
if at least one of its chains is strongly locked.

Definition 7 A permutation graph for a locked chain C = Iσ1
, Iσ2

, . . . , Iσk

is a directed graph GC 〈V,E〉. For every interval Iσi
∈ C , there is a vertex

vσi
in V . The edges in E are in two types El and Er, i.e., E = El ∪ Er. The

edges in El and Er are determined as follows: (I) For each Iσi and Iσj , the
edge (vσi , vσj ) is in El, if i > j and ασi ≤ aσj .(II) For each Iσi and Iσj , edge
(vσi

, vσj
) is in Er, if i < j and βσi

> bσj
.
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Fig. 5: An example of Expansion process with Unlocking

See Figure 6 for an example of permutation graph. A trivial necessary and
sufficient condition for a chain C to be strongly locked is that GC contains no
cycle including vσk

. However, regarding the special structure of GC , we can
define a more restricted necessary and sufficient condition for a strongly locked
situation.

Definition 8 A directed circle C in GC is one-way, if it contains exactly one
edge from Er.

Note that no cycle in GC can contain only the edges from one of El or Er.
In Lemma 3, we use one-way cycles to give a necessary and sufficient condition
for a chain to be strongly locked.

Lemma 3 A chain C = Iσ1 , Iσ2 , . . . , Iσk
is strongly locked, if and only if GC

admits no one-way cycle containing vσk
.

Proof. To prove the non-trivial direction it suffices to show the existence of a
one-way cycle for any non-strongly locked chain C . Let C = vδ1=σk

, vδ2 , . . . , vδr=σk

be the shortest cycle in GC that includes vσk
. We claim that C contains ex-

actly one edge from Er (that is the edge (vδr−1
, vσk

)). As a contradiction, let
(vδi , vδi+1) be the first edge in Er that appears in C. By definition of Er, we
have δi+1 > δi. Furthermore, by definition of El, we have:

δ1 > δ2 > . . . > δi < δi+1.

Hence, δj > δi+1 > δj+1 for some 1 ≤ j ≤ i − 1. Note that since vδj has a
left edge to vδj+1

, it has an edge to vδi+1
as well (see the structure of the

expansion graph in Figure 6). Thus, C ′ = vσk=δ1 , vδ2 , . . . , vδj , vδi+1, . . . , vδr=σk

is a shorter cycle that includes vσk
, which is a contradiction.

�
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e

b

c

d

a

C

Ia Ib Ic Id Ie

Fig. 6: An example of a permutation graph. Here the locked chain Ia, Ib, Ic, Id, Ie
can be unlocked by repermuting Ia, Ib, Ic, Id, Ie to Ia, Ie, Ib, Ic, Id

5.1 Expansion Process With Unlocking Can be Executed in Polytime

In this section, we extend the simulation described in 3.1 for a locked situation.
Similarly, in each iteration, we expand all the shares by size L as determined
in Equation (1). The difference is: when encountering a locked chain, regarding
Lemma 3, we search for an unlocking one-way cycle (in polynomial time) and
re-permute the shares through it. The process terminates when a chain becomes
strongly locked.

As mentioned in Section 3.1, the number of expansions that join two
maximal chains is bounded by n. Thus, it only remains to bound the number
of alternating expansions and unlocking processes between maximal chain
merging stages.

Consider an unlocking procedure, that unlocks a chain locked by a share
Iσi

that is positioned at cσi
(as defined in Section 3.1). We label this unlocking

by the pair (σi, cσi
). The point is that no other unlocking in this maximal

chain will be labeled by pair (σi, cσi
). We prove this by showing that after the

unlocking process, Iσi goes to a new place and never returns back to cσi . This
is due to the fact that after the unlocking and its subsequent expansion, the
endpoint of cσi

crosses βσi
and hence, Iσi

can never return back to place cσi

by any unlocking re-permutation. Since no two unlocking procedures can have
the same label, the total number of unlocking procedures is upper bounded
by O(n2). Thus, one can simulate the Expansion process with Unlocking in
polytime.

6 General Interval Scheduling

In this section, we assume that the valuation function of each player is an
interval, without any restriction on the starting and ending points of the
intervals. For this case, we suggest an envy-free and truthful allocation that
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Fig. 7: The cake C and the intervals a, b, c, d and e before and after shrinking
interval x.

uses less than 2n cuts. Our algorithm for finding a proper allocation is based
on the expansion process with unlocking. Generally speaking, we iteratively
run U -exp(.) on the remaining players’ shares. This process allocates the entire
cake or stops in a strongly locked situation. We prove some desirable properties
for this situation and leverage these properties to allocate a piece of the cake to
the players in the strongly locked chain. Next, we remove the satisfied players
and shrink the allocated piece (as defined in Definition 9) and solve the problem
recursively for the remaining players and the remaining part of the cake.

Definition 9 Let C be a cake and I = [Is, Ie] be an interval. By the term
shrinking I, we mean removing I from C and gluing the pieces to the left and
right of I together. More formally, every valuation interval [αi, βi] turns into
[f(αi), f(βi)], where

f(x) =


x x < Is

Is Is ≤ x ≤ Ie
x− Ie + Is Ie < x

(see Figure 7).

As a warm-up, we ignore the truthfulness property and show that the
expansion process with unlocking yields an envy-free allocation with 2(n− 1)
cuts.

6.1 EFSC: Envy-free allocation with 2(n− 1) cuts

In this section, we propose EFSC, which is polynomial time envy-free algorithm
with 2(n − 1) cuts. Our algorithm is as follows: in the beginning, we run U -
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exp(T ). The process either ends perfectly and the desired allocation is found, or
a strongly locked chain appears. For the case that the process ends imperfectly,
let C = Iσ1

, Iσ2
, . . . , Iσk

be a maximal strongly locked chain. Now, consider GC .
By Lemma 3, GC contains no one-way cycle. Let ` be the minimum index, such
that there is a directed path from vσk

to vσ`
using the edges in El. Regarding

the special structure of GC , Lemma 4 holds. This lemma is used to prove the
envy-freeness of EFSC.

Lemma 4 There is a directed path from vσk
to every vertex vσ`′ with `′ > `,

using the edges in El.

Proof. Let P = vσk=δ1 , vδ2 , . . . , vδr=σ`
be the path from vσk

to vσ`
using the

edges in El. By definition of the left edge,

σk = δ1 > δ2 > . . . > δr = σ`.

Note that if σ`′ = δj for some j, then we are done. Otherwise, since `′ > `,
δj < σ`′ < δj+1 for some 1 ≤ j < l. By the structure of the graph, vδj has a
left edge to vσ`′ . Thus, vσk=δ1 , vδ2 , . . . , vδj , vσ`′ is the desired path between vσk

and vσ`′ .
�

Based on Lemma 4 and the fact that GC contains no one-way cycle, there
is no edge from vσ`′ to vσk

in Er for any `′ ≥ `, which means:

∀`′ ≥ ` βσ`′ ≤ bσk
. (3)

On the other hand, there is no path from vσk
to vσ`′ for `′ < `, that is:

∀`′ ≥ ` ασ`′ > aσ`−1
. (4)

We now allocate every interval Iσ`′ to pσ`′ for ` ≤ `′ ≤ k, remove players
pσ`

, pσ`+1
, . . . , pσk

from N , and shrink the interval [aσ`
, bσk

]. Next, we continue
the expansion with unlocking process for the remaining players and the remain-
ing part of the cake. The iteration between expansion process with unlocking
and allocating the cake in a strongly locked situation goes on, until the entire
cake is allocated.

Theorem 2 EFSC is envy-free and cuts the cake in at most 2(n− 1) locations.

Proof. Envy-freeness: Let pi and pj be two arbitrary players. We want
to show that pi does not envy pj . To show this, let ri and rj be the steps,
that a piece of the cake is allocated pi and pj , respectively. There are three
possibilities: (I)ri < rj , (II)ri = rj and (III)ri > rj . For ri < rj , regarding
Inequality 4, |Ij ∩ Ii| would be less that |Ii|, which means pi does not envy
pj . If ri = rj , considering Lemma 2, pi does not envy pj . Finally, for the case
ri > rj , by the fact that the total size of the share allocated to pi is strictly
larger than the one allocated to pj , pi does not envy pj .

Number of cuts: We use induction to prove that the number cuts is at
most 2(n− 1). For n = 1, the expansion process allocates a single piece to the
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Fig. 8: Player b can increase his share by misreporting ab

player that requires no cut. Now, suppose that the proposition is true for every
n′ < n. We prove it for n players. First, note that if the process U -exp(.) ends
successfully, the cake is divided via n−1 cuts. Thus, assume that the process is in
a strongly locked situation. Let C = Iσ1

, Iσ2
, . . . , Iσk

be a strongly locked chain
and let ` be the minimum index such that there is a path from vσk

to vσ`
in GC .

In the algorithm we allocate Iσ`
, Iσ`+1

, . . . , Iσk
to players pσ`

, pσ`+1
, . . . , pσk

,
respectively, and shrink the allocated part. Every player in {pσ`

, pσ`+1
, . . . , pσk

}
gets a single piece of the cake ((k − `) cuts). Furthermore, by induction
hypothesis, the remaining part of the cake requires at most 2(n− k + `− 2)
cuts. Considering the cuts in the beginning and the ending points of the shares
related to C , we have 2(n−k+ `−2) + (k− `) + 2 = 2(n−1)−k+ ` ≤ 2(n−1)
cuts.

�

6.2 EFGISM: truthful, envy-free allocation with 2(n− 1) cuts

It is worth mentioning that EFSC is not truthful. Consider the example in
Figure 8. It can be observed that player b can increase his share by misreporting
αb. In this section, we try to resolve this issue. Our strategy to deal with this
difficulty is to run U -exp(.) only for a special subset of players in every step.
Lemma 5 constitutes the core of our method.

Lemma 5 Let T be a set of intervals, with the property that for every T ′ ⊂ T ,
Φ(T ′) > Φ(T ) (we call such set as irreducible). Then we can divide DOM(T )
into at most 2|T | − 1 pieces and associate them to the intervals, such that:(I)
total length of the pieces associated with any interval is exactly Φ(T ). (II) the
pieces allocated to any interval is totally within that interval.

Proof. We use induction on |T |. For |T | = 1 the claim trivially holds: we can
associate DOM(T ) to the interval in T that needs no cut. Suppose that the
proposition is true for |T | < k. We prove it for |T | = k. Consider U -exp(T ). If
U -exp(T ) ends perfectly, then we are done. Otherwise, let C = Iσ1

, Iσ2
, . . . , Iσk
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be a maximal strongly locked chain after the process. Considering GC , let ` be
the minimum index, such that there is a directed path from vσk

to vσ`
using

the edges in El. In Lemma 6 we show ` is strictly greater than 1. This fact
is later used to break the problem into two strictly smaller sub-problems and
solve each sub-problem recursively.

Lemma 6 Let C = Iσ1
, Iσ2

, . . . , Iσk
be a maximal strongly locked chain after

running U -exp(T ) and let ` be the minimum index, such that there is a directed
path from vσk

to vσ`
in GC using the edges in EL. Then, we have ` > 1.

Proof. By contradiction, suppose ` = 1. Regarding Equation (3), for all i we
have βσi ≤ bσk

. Now, we show that for all i, ασi ≥ aσ1 . Let

x = min
1≤i≤k

ασi

and
j = arg min

1≤i≤k
ασi .

In the beginning of the expansion process, the starting point of Iσj
is on

x. During the expansion, there may be situations that Iσj
is replaced by

another interval Iσj′ , but by the definition of unlocking permutation, ασj′ = x.
Furthermore, the starting point of the rear interval in C always remains on
x, because C is maximal and hence, no interval pushes the interval with the
starting point on x. Therefore, in a strongly locked situation, ασ1

= x and for
everey i > 1, we have ασi

≥ x. Thus, DOM(TC ) = [aσ1
, bσk

], where TC is the
valuation intervals corresponding to the share intervals in C . Since, [aσ1

, bσk
]

is covered by C , Φ(TC ) = |Iσ1 | = |Iσ2 | = · · · = |Iσk
|. On the other hand, since

U -exp(T ) was imperfect, |Iσk
| < Φ(T ), which contradicts the irreduciblinty of

T . �

By Lemma 4, we know that Equations (3) and (4) are held for C . Now, let

x = βσk
− (k − `+ 1)Φ(T ). (5)

In Lemma 7, we show that the location of x in [0, 1] is some value between
aσ`−1

and aσ`
. This fact, allows us to break DOM(T ) into two pieces, both of

which preserve the properties defined in Lemma 5.

Lemma 7 Let x = βσk
− (k− `+ 1)Φ(T ), where ` is the minimum index, such

that there is a directed path from vσk
to vσ`

. Then, we have aσ`−1
< x < aσ`

.

Proof. Regarding Inequality (3) and the fact that bσk
= βσk

(note that C is
strongly locked) we have

∀`≤i≤k βσi ≤ βσk
.

Furthermore, by Inequality (4),

∀`≤i≤k ασi
> aσ`−1

.
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Now, let T ′ = {pσ`
, pσ`+1

, . . . , pσk
}. We have:

Φ(T ′) =
DOM(T ′)
|T ′| <

βσk
− aσ`−1

k − `+ 1
.

On the other hand, regarding Equation (5),

Φ(T ) =
βσk
− x

k − `+ 1
.

Considering the fact that T has the minimum possible density, x > aσ`−1
.

Since U -exp(T ) was imperfect, we have: |Iσ1
| = |Iσ2

| = . . . = |Iσk
| < Φ(T ).

Hence,

x = bσk
− (k − `+ 1)× Φ(T )

< bσk
− (k − `+ 1)× |Iσk

|
< bσ`−1

= aσ`
.

Note that since the interval Iσ`−1
is stuck in Iσ`

, we have bσ`−1
= aσ`

. �

Now, we show that the piece [x, βσk
] can be allocated to players pσ`

, pσ`+1
, . . . , pσk

using 2(k − ` + 1) − 2 cuts. For this, consider the valuation intervals T ′ =
{I ′σ`

, I ′σ`+1
, . . . , I ′σk

} such that:

∀`≤i≤k I ′σi
= [max(x, ασi

), βσi
]

Note that DOM(T ′) = [x, βσk
] and hence,

Φ(T ′) =
βσk
− x

k − `+ 1
=

bσk
− x

k − `+ 1
(6)

Regarding Inequality (5), Φ(T ′) = Φ(T ).

Lemma 8 T ′ is irreducible, i.e., for all T ′′ ⊂ T ′, we have Φ(T ′′) > Φ(T ′).

Proof. We say interval I ′σi
is trimmed in T ′, if ασi < x. Note that for every

interval I ′σi
that is not trimmed, I ′σi

is exactly Iσi . Hence, if T ′′ contains no
trimmed interval, regarding irreducibility of T , we have

Φ(T ′′) > Φ(T ) = Φ(T ′).

Thus, it only remains to prove the claim for the case that T ′′ contains a
trimmed interval. By Observation 21, we can assume that DOM(T ′′) is solid.
Let j be the maximum index, such that I ′σj

∈ T ′′. Since Iσj
is entirely within

Iσj
, βσj

≥ bσj
. Since b′σj

= bσj
,

DOM(T ′′) = [x, bσj
].

On the other hand, T ′′ contains at most j − `+ 1 intervals. By Inequality
(6),

Φ(T ′) =
bσk
− x

k − `+ 1
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and

Φ(T ′′) ≥ bσj
− x

j − `+ 1
.

Thus, we have

Φ(T ′) =
bσk
− x

k − `+ 1
=

(bσj
− x) + (bσk

− bσj
)

(j − `+ 1) + (k − j) (7)

Note that

(bσk
− bσj

)

(k − j) = |Iσ1
| = |Iσ2

| = . . . = |Iσk
|

< Φ(T )

= Φ(T ′). (8)

Combining Inequalities (7) and (8) together with Observation 21 yields:

(bσj
− x)

(j − `+ 1)
> Φ(T ′)⇒ Φ(T ′′) > Φ(T ′).

�

Lemma 8 states that the set of intervals in T ′ admit the properties described
in Lemma 5. Furthermore, regarding Lemma 6, T ′ is a strict subset of T .
By induction hypothesis, we know that one can cut DOM(T ′) into at most
2(k− `+ 1)−2 pieces and allocate them to players pσ`

, pσ`+1
, . . . , pσk

such that
both the properties in Lemma 5 are satisfied. Denote by NT , the players with
valuations in T . We shrink DOM(T ′) and remove the players pσ`

, pσ`+1
, . . . , pσk

from NT . Lemma 9 assures that the conditions in Lemma 5 are held for the
remaining cake and remaining players.

Lemma 9 Let T ′′ be the intervals related to the players in NT ′′ = NT \
{pσ`

, pσ`+1
, . . . , pσk

} after shrinking DOM(T ′). Then, T ′′ is irreducible and
Φ(T ′′) = Φ(T ′).

Proof. We have Φ(T ) = Φ(T ′), which means:

DOM(T )

|T | =
DOM(T ′)
|T ′| .

Thus,
DOM(T )− DOM(T ′)

|T | − |T ′| = Φ(T ) = Φ(T ′),

that is Φ(T ′′) = Φ(T ).
Call an interval Ii shrinked, if Ii ∪ DOM(T ′) 6= ∅. Consider a set T̂ ⊂ T ′′

of intervals. If T̂ contains no shrinked interval, then Φ(T̂ ) has the same value
as before shrinking DOM(T ′), which by irreducibility, we have:

Φ(T̂ ) > Φ(T ) = Φ(T ′′).
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On the other hand, assume that T̂ contains at least one shrinked interval. Let
T̂ ′ be the set of intervals in T̂ ∪ T ′ before shrinking T ′. Since T̂ has a shrinked
interval, T̂ ′ is solid. By irreducibility, we know:

Φ(T̂ ′) > Φ(T ) = Φ(T ′) = Φ(T ′′).

On the other hand, |DOM(T̂ )| = |DOM(T̂ ′)| − |DOM(T ′)|. Thus, we have:

Φ(T̂ ) =
|DOM(T̂ )|
|T̂ |

=
|DOM(T̂ ′)| − |DOM(T ′)|

|T̂ ′| − |T ′|

Regarding Observation 21, we have Φ(T̂ ) > Φ(T ) = Φ(T ′′). �

According to Lemma 9, we can use induction hypothesis to show that T ′′

can be allocated to the players in NT ′′ via 2(`− 1)− 2 cuts. Total number of
cuts would be

2(`− 1)− 2 + 2(k − `+ 1)− 2 = 2k − 4

cuts plus two cuts on x and βσk
that results in 2k − 2 cuts. �

Based on lemma 5, we introduce EFGISM as follows: among all subsets of
N , we find a subset whose corresponding intervals have the minimum density
(and the set with minimum size, if there were multiple options). Let N be this
subset and let T be the intervals corresponding to the players in N . In Lemma
10, we show that T (and consequently N) can be found in polynomial time.

Lemma 10 Let N be a subset whose corresponding intervals have the min-
imum density and let T be the set share intervals which have the minimum
density.Then, T can be found in polynomial time.

Proof. There are n2 different possible choices for the starting point and the
ending points of DOM(T ). By fixing these points, in order to minimize the
density of T , we must add all the intervals that are within the selected domain
to T . Thus, the set T can be found by minimizing over all possible choices of
domain. �

Since T has the minimum possible density, T is irreducible. Hence, we
can allocate to every player in N , a piece from DOM(T ) with the properties
defined in Lemma 5. Afterwards, we remove the players in N from N and
shrink DOM(T ) from C. Next, we recursively allocate the remaining piece of
the cake to remaining players using EFGISM. In Algorithm 2 you can find a
pseudocode for EFGISM.
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Algorithm 2 EFGISM algorithm

function EFGISM(N , T , C)
if C 6= ∅ then

T = arg minT ′⊆T Φ(T ′)
N = players with interval in T
Allocate(N,DOM(T )) . By Lemma 5
Shrink(C,DOM(T )) . T is also updated
EFGISM(N \N, T , C)

Theorem 3 EFGISM is envy-free, truthful, and uses at most 2(n− 1) cuts.

Proof. Envy-freeness and truthfulness: We credit the proof for envy-
freeness and truthfulness to [11]. In [11], the following statement is proved
(restated for the case of intervals):

”Let A be the algorithm that in each step finds a set T of intervals
with minimum Φ(T ) and allocates it to the agents corresponding to the
intervals in T , such that every agent gets a share of size Φ(T ) that is
totally within his valuation interval; then A is envy-free and truthful.”

Regarding the fact that our algorithm has the same structure as stated above,
the algorithm is envy-free and truthful.

Number of cuts: We use induction to prove that the algorithm cuts the
cake in at most 2(n− 2) locations. For n = 1, the algorithm trivially allocates
the entire cake to the player which needs no cut (2× (1−1)). Now, consider the
first step of the algorithm, when a set T of intervals are selected. By Lemma 5,
we cut T into at most 2(T − 1) points. Furthermore, we shrink DOM(T ) and
solve the problem recursively for the remaining part. By induction hypothesis,
the recursive part needs at most 2(n− T − 1) cuts. In addition, two cuts are
needed in the beginning and ending point of DOM(T ). Thus, total number of
cuts would be:

2(T − 1) + 2(n− T − 1) + 2 = 2(n− 1).

�

7 Piecewise Constant Functions

In this section, we study a more general case of the problem in which the
valuation functions of the players are piecewise constant. Denote by m the
maximum number of intervals that every valuation function can have; that
is, for every player pi, |Si| ≤ m. Here, we assume that for every pi, |Si| = m.
This is without loss of generality, since one can break an interval into several
sub-intervals. Thus, for every player pi, we suppose Si = {Ii,1, Ii,2, . . . , Ii,m}.
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This section consists of two parts. In the first part, we show that for a
constant number of players, one can find an envy-free allocation with n − 1
cuts in time poly(m). Next, in the second part, we utilize the expansion process
with unlocking to devise a poly(n,m) time envy-free algorithm with O(nm)
cuts on the cake.

Recall that finding an envy-free allocation with n− 1 cuts for n players is
PPAD-complete even for the case of n = 3 [12]. In Theorem 4, we show that for
a constant number of players with piecewise constant valuation, the problem
can be solved in time poly(m).

Theorem 4 An envy-free allocation with n−1 cuts can be found for a constant
number of players whose valuation functions are piecewise constant with m
steps in time poly(m).

Proof. Firstly, note that from [18] we know that there exists an envy-free
allocation with n− 1 cuts. In such an allocation, there are n− 1 cutting points.
Let 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ 1 be those cutting points. In addition, the
valuation of each player can be specified by 2m constant points (2 constant
points for each step) and m constant values which describe the density of
each step. Therefore, there are at most 2mn constant points on the cake in a
way that each player likes the cake between two consecutive constant points
uniformly. In other words, the density value of the cake between two consecutive
constant points is a uniform value for each of the players.

Now, if we know the range of each cutting point (it can be between which
of the two consecutive constant points), then we can write the value of the
i’th piece created by the cutting points ([ci−1, ci]) for each player pj as a linear
combination of the cutting points. However, in order to satisfy envy-freeness,
we also need to know how the pieces will be allocated to the players. If we know
all this information is given, then we can formulate the problem as a linear
program (n(n− 1) constraints for envy-freeness, n− 1 constraints guarantees
0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ 1, and other constraints fix the range of the cutting
points). Any feasible solution to the linear program is an envy-free allocation
with n− 1 cuts.

If we couldn’t find a feasible solution for one linear program then we need
to check the next possibility of the range of the cutting points and allocation
of the pieces. In the worst case, we need to check every possibility which means

that we need to solve n×(2mn+n−1)!
(2mn)! = O(mn) different linear programs. Finally,

we know that such an allocation exists and at least one of these linear programs
finds a feasible solution. Hence, for constant n, by solving a polynomial number
of different linear programs, we can find an envy-free allocation. �

In the second part, we exploit the expansion method with unlocking to
find a proper allocation. Here, we assume that the valuation functions have
a special property, namely, intersection property. Denote by Ri,j,k the set of
intervals in Sk that have a non-empty intersection with Ii,j . We suppose that
for every valuation interval Ii,j and every player pk(k 6= i), |Ri,j,k| ≤ 1. For
this case, we prove Theorem 5.
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Theorem 5 Let N be a set of players whose valuation functions are piecewise
constant with m steps. Assuming that the intersection property holds, there
exists a poly(m,n) time allocation algorithm that is envy-free and cuts the cake
in O(nm) places.

Proof. Consider an instance of the problem with nm players where the val-
uation function of player pi,j is Ii,j . We run EFGISM for this instance. By
the properties of EFGISM, we know that the resulting allocation is envy-free
and cuts the cake in at most 2(nm− 1) locations. Let Pi,j be the set of inter-
vals allocated to pi,j in EFGISM. We show that the allocation that allocates
Pi =

⋃
1≤j≤m Pi,j to player pi is also envy-free.

To prove envy-freeness, we use a structural property of the expansion
process: by the first invariant of the expansion process, the final solution
allocates to every player pi,j a set of pieces that are totally within Ii,j . In
addition, note that for interval Ii,j , |Ri,j,k| ≤ 1 holds for every player pk. We
have Vi(Pi) =

∑
1≤j≤m Vi(Pi,j) and Vi(Pk) =

∑
1≤j≤m Vi(Pk,j). Furthermore,

by the intersection property, at most one valuation interval of pk, say Ik,l has a
non-empty intersection with Ii,j . By the envy-freeness of EFGISM, we know that
pi,j prefers his share to the share allocated to pk,l, that is Vi,j(Pi,j) ≥ Vi,j(Pk,l).
Regarding the fact that Ii,j ∩ Ik,l′ = ∅ for all l′ 6= l, we have Vi,j(Pi,j) ≥∑
l Vi,j(Pk,l). Thus, ∑

j

Vi,j(Pi,j) ≥
∑
j

∑
l

Vi,j(Pk,l)

Vi(Pi) ≥
∑
j

∑
l

Vi,j(Pk,l). (9)

The right hand side of Equation (9) is at least Vi(Pk). �

8 Expansion Process with Unlocking in Practice

In addition to obtaining worst-case guarantee on the number of cuts, we wish
to evaluate the behavior of the expansion process with unlocking method in
practice. Our experiments aim at illustrating the performance of the expansion
and unlocking method from the aspect of the number of cuts. As we show in this
section, the expansion and unlocking method achieves significant performance
in practice.

In Sections 3.1, and 5.1 we briefly discussed the implementation details of
the expansion and unlocking processes. We implemented both the processes
and the codes are available in ce.sharif.edu/~m_farhadi/source.

As mentioned in Section 2, our basic assumption is that every piece of
the cake is valuable to at least one player. In Lemma 11 we show that this
assumption is w.l.o.g since every algorithm for the former can be extended to
the case that the cake has zero-valued pieces, without any additional cuts. In
fact, Lemma 11 demonstrates how to prevent additional cuts on the cake when
parts of it have zero valuation to all the players.

ce.sharif.edu/~m_farhadi/source
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Fig. 9: The hatched pieces are allocated to pn in EFGISM

Lemma 11 The assumption that every piece of the cake is valuable to at least
one player is w.l.o.g.

Proof. Let {Z1, . . . , Zq} be the set of maximal intervals that are zero valued for
all the players. Shrink every Zi in C into a point zi to achieve a new cake Cc in
which our valuation assumption holds. Now, utilizing the algorithms proposed
in this paper (or any other allocation algorithm), we divide Cc among the
players. Next, for each Zi, we allocate it to the player that received (left / right
neighborhood) of zi. Zi will introduce a single cut (at its right / left endpoint)
in C only if Cc contains a cut at zi. Thus, the number of cuts is identical for
C and Cc. Finally, considering the fact that each Zi has a zero valuation for
all the players, one can easily verify that envy-freeness and truthfulness of the
mechanism are preserved. �

8.1 Study Design

To test the performance of the expansion and unlocking procedure, we ran a
set of experiments on the EFSC method. We generated cake cutting instances
with between 2 and 500 players. For every 2 ≤ i ≤ 500, we generated 4
tests containing i players. For every test, we draw the valuation interval
of every player uniformly from (0, 1). To generate a random interval, we
separately sampled the end-points from U(0, 1). For every test, we calculated
two objectives:

– Ctot: total number of cuts that are made on the cake by EFSC.
– Cmax: the maximum number of pieces allocated to any player by EFSC.

Note that, despite the fact that the average number of pieces allocated to
any player in EFGISM is less than 2n/n = 2, there are situations in which a
player may receive Ω(n) pieces. For example, consider the instance in Figure 9.
Since in EFSC the share allocated to every player is totally within his valuation
interval, the hatched parts of the cake will be allocated to pn, which means his
share includes n pieces of the cake.

We compare Ctot and Cmax obtained from every test to the values in the
optimal solution. We already know that in the optimal allocation, the number of
cuts is n−1 and every player receives a continuous piece of the cake. Therefore,
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Fig. 11: #SL in different instances

we compare Ctot with n−1 and Cmax with 1. We call the ratio Ctot/(n−1) the
approximation factor of the algorithm. Furthermore, we call Cmax the slabbing
factor of the algorithm.

8.2 Experimental Results

The results of the performed experiments are depicted in Figures 10, 11, and 12.
Figure 10 shows the approximation factor of EFSC for different problem sizes.
As you can see, the approximation factor rapidly approaches 1 by increasing n.
The average approximation factor over all the experiments was 1.001.

Note that the number of cuts in EFSC is exactly equal to n − 1 + #SL,
where #SL is the number of times that the algorithm is encountered a strongly
locked situation. In fact, for every strongly locked situation, we need one
additional cut on the cake. In Figure 11 you can find the number of strongly
locked chains occurred in the experiments. As you can see, none of the tests
encountered more than 12 strongly locked situations. The average number
of strongly locked situations over the performed experiments is 3.96. As an
interesting open question, one can theoretically provide an upper-bound on
the expected number of strongly locked situations.

It is worth to mention that in 0.024 of the tests (49 tests out of 2000 total
tests), the returning allocations were optimal. However, the ordering property
defined in Section 4 are not necessarily preserved in these instances.

As mentioned, in contrast to the number of cuts, our method provides no
approximation better than n− 1 on the number of pieces allocated to a single
player. But the worst-case scenarios such as the one illustrated in Figure 9 are
very unlikely to happen in practice. In our experiments, no player received more
than 5 pieces in any test. Furthermore, in average, the maximum number of
pieces allocated to the players in every test was 2.052. In Figure 12 you can find
the value of average slabbing factor for different problem sizes. Interestingly, the
average number of the slabbing factor is a decreasing function of the problem
size.
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9 Discussion

In this paper, we introduced the expansion process for envy-free and truthful
allocation of the cake with a small number of cuts. The process is designed for
the case that the valuation of each player is a single interval. A future direction
would be generalizing this process for piecewise-uniform and piecewise-constant
valuations. We believe that a generalized form of EFGISM can handle the case
that the valuation functions are piecewise-uniform with k steps, with O(nk)
cuts. To present such an algorithm, we only need to extend Theorem 5 for
more generalized valuations.

In a very recent work, Bei et al. [6] proved that no deterministic truthful and
envy-free mechanism exists with n−1 cuts. Thus, a gap between n−1 and 2n−1
cut remains. We conjecture that the number of cuts made by the expansion
process with unlocking is optimal for the case that the valuation functions
are single intervals, i.e., no allocation can guarantee both envy-freeness and
truthfulness with less than 2n− 1 cuts.

The experimental results in Section 8 demonstrate the high performance
of the expansion and unlocking process in term of the number of cuts. An
interesting direction would be supporting these results by providing theoretical
proofs for the stochastic settings.
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