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Competitive Strategies for Walking in Streets for a Simple Robot Using
Local Information

Azadeh Tabatabaei*

Abstract

We consider the problem of walking in an unknown
street, for a robot that has a minimal sensing capability.
The robot is equipped with an abstract sensor that only
detects the discontinuities in depth information (gaps)
and can locate the target point as it enters its visibility
region. First, we propose an online deterministic search
strategy that generates an optimal search path for the
simple robot to reach the target ¢, starting from s. The
path created by this strategy is 9-competitive which is
proven to be optimal. In contrast with previously known
research, the path is designed without memorizing any
portion of the scene that has been seen so far. The robot
using local information about the location of some gaps
achieves the target ¢ starting from s in a street. Then,
we present a randomized search strategy, based on the
deterministic strategy. Also, a randomized lower bound
on the competitive ratio has been proved.

1 Introduction

Path planning is a basic problem to almost all scopes of
computer science; such as computational geometry, on-
line algorithms, robotics, and artificial intelligence [3].
Especially, path planning in an unknown environment
for which there is no geometric map of the scene is
interesting in many real-life cases. Robot sensors are
the only tool for gathering information in an unknown
street. The amount of information derived from the en-
vironment depends on the capability of the robot. Due
to the importance of using a simple robot, including low
cost, less sensitive to failure, robust against sensing er-
rors and noise, many types of path planning for simple
robots have been studied [1, 5, 9].

In this paper, we consider the problem of walking a
simple robot in an unknown street. A simple polygon P
with two separated vertices s and t is called a street if
the left boundary chain L.pq;n, and the right boundary
chain R j 4, constructed on the polygon from s to ¢ are
mutually weakly visible. In other words, each point on
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the left chain can see at least one point on the right
chain and vice versa [6], see Figure 1(a). A point robot
which its sensor has a minimal capability that can only
detect discontinuities in depth information (gaps) and
the target point ¢, starts searching the street. The robot
can locate the target as soon as it enters its visibility
region. Also, the robot cannot measure any angles or
distances, or infer its position, see Figure 1. The goal
is to reach the target t using the information gathered
through its sensor, starting from s such that the tra-
versed path by the robot is as short as possible.

To evaluate the efficiency of a search strategy for the
robot, we use the notion of competitive of the compet-
itive analysis. The competitive analysis for a strategy
that leads the robot is the ratio of the (expected) dis-
tance traversed by the robot over the shortest distance
from s to ¢, in the worst case.

In this paper, first, we present a deterministic strat-
egy using local information about the location of two
special gaps which are updated during the walking. The
robot achieves the target, without memorizing environ-
ment and without using pebbles, in contrast with pre-
viously known research [10]. The search path is opti-
mal; the length of the generated path is at most 9 times
longer than the shortest path. Then, we present a ran-
domized strategy that generates a search path similar to
the deterministic one. We introduced the deterministic
strategy and the idea of randomization of that previ-
ously in [12].

Related Works: Klein proposed the first competi-
tive algorithm for walking in streets problem for a robot
that was equipped with a 360 degrees vision system [6].
Also, Icking, et al. presented an optimal search strat-
egy for the problem with the competitive factor of /2
[4]. Many online strategies for patrolling unknown en-
vironments such as streets, generalized streets, and star
polygons are presented in [3, 7, 13].

The limited sensing model (gap sensor) that our robot
is equipped with, in this research, was first introduced
by Tovar, et al. [14]. They offered Gap Navigation Tree
(GNT) to maintain and update the gaps seen along a
navigating path. Some strategies, using GNT for ex-
ploring unknown environments, presented in [8, 15].

Tabatabaei, et al. gave a deterministic algorithm for
the simple robot to reach the target ¢ in a street and
a generalized street, starting from s. The robot us-
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Figure 1: Street polygons and the dynamical changes
of the gaps as the robot walks towards a gap in street
polygons. The dark circle is the location of the robot,
and squares and other circles denote primitive and non-
primitive gaps respectively. (a) Existing gaps at the
start point. (b) A split event. (c¢) A disappearance
event. (d) An appearance event. (e) Another split
event. (f) A merge event.

ing some pebbles and memorizing some portion of the
streets has seen so far, explores the street. The target
t is achieved such that the traversed path is at most 11
times longer than the shortest path by using one pebble.
Also, they showed, allowing the use of many pebbles re-
duces the factor to 9 [10, 11].

Another minimal sensing model was presented by
Suri, et al. [9]. They assumed that the simple robot can
only sense the combinatorial (non-metric) properties of
the environment. The robot can locate the vertices of
the polygon in its visibility region and can report if there
is a polygonal edge between them. Despite the mini-
mal ability, they showed that the robot can accomplish
many non-trivial tasks. Then, Disser et al. empowered
the robot with a compass to solve the mapping problem
in polygons with holes [2].

2 Preliminaries

2.1 The Sensing Model and Motion Primitives

The robot has an abstract sensor that reports a cycli-
cally order list of discontinuities in the depth informa-
tion (gaps) in its visibility region, see Figure 1(a). All
the gaps and the target can be located by the robot as
they enter in the robots omnidirectional and unbounded
field of view. Each gap has a label of L (left) or R (right)
which displays the direction of the part of the scene that
is hidden behind the gap, see Figure 1.

The robot can orient its heading to each gap and
moves towards the gap in an arbitrary number of steps,
e.g., two steps towards gap g,. Each step is a constant
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distance which is already specified for the robot by its
manufacturer, it puts a stepper motor on the robot that
specifies its step size, for example lmm, 2mm,..., also,
the robot moves towards the target as it enters its visi-
bility region.

While the robot moves, combinatorial changes occur
in the visibility region of the robot called critical events.
There are four types of critical events: appearances,
disappearances, merges and splits of gaps. Appearance
and disappearance events occur when the robot crosses
inflection rays. Each gap that appears during the move-
ment, corresponds to a portion of the environment that
was already visible, but now is not visible. such gaps
are called primitive gaps and all the others are non-
primitive gaps. Merge and split events occur when the
robot crosses bitangent, as illustrated in Figure 1.

2.2 Known Properties

At each point of the search path, if the target is not
visible, the robot reports a set of gaps with the labels of
L or R (I-gap and r-gap for abbreviation) cyclically. Let
g; be a non-primitive [-gap that is on the right side of
the other left gaps, and g, be a non-primitive r-gap that
is in the left side of the other right gaps, see Figure 1(a).
Each of the two gaps is called the most advanced gap.
The two gaps have a fundamental role in path planning
for the simple robot.

Theorem 1 [/, 10] While the target is not visible, it is
hidden behind one of the two gaps, g; or g.

From Theorem 1, if there exist only one of the two
gaps (gr and g;) then the goal is hidden behind the
gap. Thus, there is no ambiguity and the robot moves
towards the gap, see Figure 2(a). When both of g, and
g1 exist, a funnel case arises, see Figure 2(b). At each
funnel case, the robot does not know that the shortest
path is along which ofg, and g;. So, usually, a detour
from the shortest path is unavoidable.

2.3 Essential Information

All we maintain during the search strategy is the loca-
tion of g; and g,.. As the robot moves in the street, the
critical events that change the structure of the robot’s
visibility region may dynamically change ¢; and g,.
Also, by the robot movement, a funnel case may end
or a new funnel may start. We refer to the point, in
which a funnel ends a critical point of the funnel.

The following events update the location of g; and
g as well as a funnel situation when the robot moves
towards g; or g,.

1. When g, /g; splits into g,/g; and another r-gap/I-
gap, then g,./g; will be replaced by the r-gap/I-gap,
(point 1 in Figure 2(b)).
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2. When g, /g; splits into g./g; and another I-gap/r-
gap, then l-gap/r-gap will be set as g;/g-. This
point is a critical point in which a funnel situation
ends, (point 2 in Figure 2(b)).

3. When g; or g, disappears, the robot may achieve
a critical point in which a funnel situation ends,
(point 3 in Figure 2(a)).

Note that the split and disappearance events may occur
concurrently, (point 3 in Figure 2(b)). Furthermore, by
moving towards g, and g;, these gaps never merge with
other gaps.

Cn‘tical point
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Figure 2: The bold path is the robot search path, the dotted
path is shortest path, and v; and v, are the corresponding
reflex of g; and g, respectively. (a) There is only g-. (b) gr
and ¢; are the two most advanced gaps at the start point s,
in which a funnel case arises. The angle between the gaps,
©, is the opening angle at the start point.
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Figure 3: (a) pipi+1 is a detour from the shortest path. (b)
The worst case.

3 Algorithm

Now, we present our strategy for searching the street,
from s to t. Since the target is constantly behind one of
gr and g;, during the search, the location of the two gaps
is maintained and dynamically updated as explained in
the previous section.

3.1 A Deterministic Strategy

At each point of the search path, especially at the start
point s, there are two cases:

e If only one of the two gaps (g, and g¢;) exists, or
they are collinear then the goal is hidden behind
the gap. The robot moves towards the gap until
the target is achieved or a funnel situation arises,
see Figure 2(a).

e If there is a funnel case, to bound the detour, the
robot moves towards g, and g; alternatively, as fol-
lows:

Move towards g, up to one step;
d <+ 3;
repeat
Move towards g; up to d steps;
if Critical point not achieved then
d <+ 2.d;
Move towards g, up to d steps;
end if
d < 2.d;
until Critical point of the funnel achieved;

At the critical point, one of g, or g¢; disappears,
or g, and g; are collinear. So, the robot moves
along the existing gap direction until the target is
achieved or a new funnel situation arises, as illus-
trated in Figure 2(b).

3.2 The Randomized Strategy

Now, we present a randomized search strategy based
on the above deterministic strategy. The difference be-
tween them is using a random variable at the beginning
of the above algorithm (in the funnel case). We choose
random variable X from {0,1} u.a.r to lead the robot
towards g, or g; at the first movement while in the de-
terministic strategy, the robot moves towards g,.

3.3 Correctness and Analysis

Throughout the search, the robot path coincides with
the shortest path unless a funnel case arises. Then, to
prove the competitive ratio of our strategy, we compare
the length of the path and the shortest path in a funnel
case. In the case, the angle between g, and g; that is
always smaller than 7 is called the opening angle [4],
see Figure 2(b). In lemma 3, we show that our robot
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detour from the shortest path depends on the size of the
angle.

Also, we inspire from the doubling strategy by Baeza-
Yates, et al. [1] to compute the competitive ratio of
our strategy. In the strategy, a robot moves back and
forth on a line such that the distance to the start point
doubles at each movement until the target is reached.

Theorem 2 [1] The doubling strategy for searching a
point on a line has a competitive factor of 9, and this is
optimal.

Lemma 3 By our strategy, the detour from the short-
est path for a small opening angle, in the funnel case,
is shorter than detour for a large opening angle.

Theorem 4 Qur deterministic strategy guarantees a
path at most 9 times longer than the shortest path. Also,
the strategy is optimal.

The proof of Theorem 4 shows that our deterministic
strategy to reach the goal in street is a planar general-
ization of the doubling strategy for search a point on a
line.

Theorem 5 The randomized strateqy generates a
search path to achieve target t in the street, starting from
s, with an expected competitive ratio of 7.

3.4 Randomized Lower Bound

To achieve a randomized lower bound of the competitive
ratio we consider a special funnel case which it’s open-
ing angle is very closed to 7. so we can consider it as a
problem of searching on the line, see Figure 3(b). Kao,
Reif, and Tate [5] proved that the randomized lower
bound of the competitive ratio for searching on the line
is 1+ (14 r)/Inr where r is the multiplication factor of
the randomized SmartCow algorithm and it is optimal.
If we let r=3.59112 we can achieve the expected com-
petitive factor of 4.59112 which is optimal and no other
strategy can achieve this bound.

Theorem 6 There is no on-line randomized strategy
for walking in the streets for a simple robot that achieves
an expected competitive ratio of less than 4.59112.

4 Conclusions

In this paper, we have improved the previously known
strategy for walking in streets for a simple robot. The
point robot can only detect the gaps and the target
in the environment. The robot using local information
about the location of some gaps, along a 9-competitive
optimal path achieves the target t starting from s in
a street. Also, based on the improved strategy, a ran-
domized strategy that has better performance is pro-
posed. The expected length of the generated path by

the random strategy is 7 times longer than the shortest
path. Moreover, a randomized lower bound of 4.59112
is proved. It would be absorbing if there are competitive
search strategies for more general classes of polygons.
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Appendix and the expected values calculated as

Proof of lemma 3 E[Dlm =c| =D
k+1

In each funnel case, the robot moves some steps towards g, E[D] = Z Prob(m = ¢)E[D|m = d
c=k

or g, alternatively.
In the alternative movement, one of the directions is cor-

rect and the other is a deviation. Assume that at point p; Thus, the resulting expected distance traveled is

when a funnel case arises the robot moves toward g, while o .

the target is behind g;. The robot achieves point p;+1. In 1 p 1 i
E[D]= ]2 2 —[2 2

order to achieve the target, it should traverse at least dis- D] 2[ z_; o+ 2[ z_; +l

tance § = \/pingﬂ + piv? — 2pipit1pivi cos p, by the law of _ 1[2(2“2 1 o 4 51 1[2(2“1 s 2 4 5
cosines, see Figure 3(a). It can be verified that ¢ is strictly 2 2
increasing as a function of ¢ by taking the derivative with l[ )

respect to ¢ where 0 < p < 7. -

2k—2+6]+%[(5)2’“—2+5]

= 1[(14)2’“ +26—4]=(7)2"+06-2
Proof of Theorem 4 2
<72 +6) =7n
In a funnel case, when the opening angle ¢ is adequately

near to 7, the simple robot can only move towards left or
right. Searching the target in the street in the limited case is
similar to searching a line. So walking in street is at least as
hard as searching a point on a line. Then, the competitive
ratio of 9 is the lower bound for leading the robot in street,
see Figure 3(b). From Lemma 3, there is a further deviation
from the shortest path for large opening angles. The angle
never exceeds w. Then, for computing a competitive factor,
we consider it equals 7. Starting from s, the robot moves one
step towards g,, then moves 142 steps towards ¢;, and again
moves forth 2422 steps towards g,., moves back 22422 steps
towards g;, and so on. In other words, the robot moves back
and forth on the line that contains g; and g, such that the
distance to the start point s doubles until the critical point
is reached. By Theorem 2, the competitive factor for the
search strategy is 9. Then, the problem of walking in street
polygons for a simple robot in the worst-case coincides with
the searching a point on a line problem. So, the ratio of 9 is
optimal.

Proof of Theorem 5

As shown in Theorem 4, in the worst case, when ¢ comes
close to m, our problem is similar to the problem of searching
on the line and our deterministic strategy coincides with
the doubling strategy. In the first randomized strategy by
choosing the direction of the first movement u.a.r, we have
two cases depend on which direction is selected and each of
which makes the robot traveling different distances. In the
worst case, the critical point is on the n = 2¥ +§ (where k
is an integer and § is a real value satisfying 0 < § < 1) from
the origin and the greatest distance for search is taken. Let
m be the first stage where robot travels distance at least 2*
on the same path as the critical point exists. The value m
satisfies m € {k, k + 1}. At the beginning of the search, the
algorithm chooses a random direction, so Prob(m = c¢) = 3
for ¢ = k,k 4+ 1. If D is the random variable denoting the
distance traveled by the randomized strategy, then it is easy
to see that when m = ¢ we have

D:zi2i+n
1=0



