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ABSTRACT
We study fair allocation of indivisible goods to agents with
unequal entitlements. Fair allocation has been the subject
of many studies in both divisible and indivisible settings.
Our emphasis is on the case where the goods are indivisi-
ble and agents have unequal entitlements. This problem is
a generalization of the work by Procaccia and Wang [17]
wherein the agents are assumed to be symmetric with respect
to their entitlements. Although Procaccia and Wang show
an almost fair (constant approximation) allocation exists in
their setting, our main result is in sharp contrast to their
observation. We show that, in some cases with n agents,
no allocation can guarantee better than 1/n approximation
of a fair allocation when the entitlements are not necessar-
ily equal. Furthermore, we devise a simple algorithm that
ensures a 1/n approximation guarantee.

Our second result is for a restricted version of the problem
where the valuation of every agent for each good is bounded
by the total value he wishes to receive in a fair allocation.
Although this assumption might seem w.l.o.g, we show it
enables us to find a 1/2 approximation fair allocation via
a greedy algorithm. Finally, we run some experiments on
real-world data and show that, in practice, a fair allocation is
likely to exist. We also support our experiments by showing
positive results for two stochastic variants of the problem,
namely stochastic agents and stochastic items.
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1. INTRODUCTION
In this work, we conduct a study of fairly allocating in-

divisible goods among n agents with unequal claims on the
goods. Fair allocation is a very fundamental problem that has
received attention in both Computer Science and Economics.
This problem dates back to 1948 when Steinhaus [20] intro-
duced the cake cutting problem as follows: given n agents
with different valuation functions for a cake, is it possible
to divide the cake between them in such a way that every
agent receives a piece whose value to him is at least 1/n
of the whole cake? Steinhaus answered this question in
the affirmative by proposing a simple and elegant algorithm
which is called moving knife. Although this problem admits
a straightforward solution, several ramifications of the cake
cutting problem have been studied since then, many of which
have not been settled after decades [5, 18, 9, 16, 12, 10, 21,
8, 1]. For instance, a natural generalization of the problem
in which we discriminate the agents based on their entitle-
ments is still open. In this problem, every agent claims an
entitlement ei to the cake such that

∑
ei = 1, and the goal

is to cut the cake into disproportional pieces and allocate
them to the agents such that every agent ai’s valuation for
his piece is at least ei fraction of his valuation for the entire
cake. For two agents, Brams et al. [4] showed that at least
two cuts are necessary to divide the cake between the agents.
Furthermore, Robertson et al. [19] proposed a modified ver-
sion of cut and choose method to divide the cake between
two agents with portions e1, e2, where e1 and e2 are real
numbers. McAvaney, Robertson, and Web [15] considered
the case when the entitlements are rational numbers. They
used Ramsey partitions to show that when the entitlements
are rational, one can make a proper division via O(n3) cuts.

Recently, a new line of research is focused on the fair alloca-
tion of indivisible goods. In contrast to the conventional cake
cutting problem, in this problem instead of a heterogeneous
cake, we have a set M of indivisible goods and we wish to
distribute them among n agents. Indeed, due to trivial coun-
terexamples in this setting1, the previous guarantee, that is

1For instance if there is only one item, at most one agent
has a non-zero profit in any allocation.



every agent should obtain 1/n of his valuation for all items
from his allocated set, is impossible to deliver. To alleviate
this problem, Budish [6] proposed a concept of fairness for
the allocation of indivisible goods namely the maxmin share.
Suppose we ask an agent ai to divide the items between the
agents in a way that he thinks is fair to everybody. Of course,
agent ai does not take into account other agents’ valuations
and only incorporates his valuation function in the allocation.
Based on this, we define MMSi equal to the minimum profit
that any agent receives in this allocation, according to agent
ai’s valuation function. Obviously, in order to maximize
MMSi, agent ai chooses an allocation that maximizes the
minimum profit of the agents. We call an allocation fair
(approximately fair), if every agent ai receives a set of items
that is worth at least MMSi (a fraction of MMSi) to him.

It is easy to see that MMSi is the best possible guarantee
that one can hope to obtain in this setting. If all agents
have the same valuation function, then at least one of the
agents receives a collection of items that are worth no more
than MMSi to him. A natural question that emerges here is
whether a fair allocation with respect to MMSi’s is always
possible? Although the experiments are in favor of this
conjecture, Procaccia and Wang [17] (EC’14) refuted this
by an elegant and delicate counterexample. They show such
a fair allocation is impossible in some cases, even when
the number of agents is limited to 3. On the positive side
however, they show an approximately fair allocation can be
guaranteed. More precisely, they show that there always
exists an allocation in which every agent’s profit is at least
2/3MMSi. Such an allocation is called a 2/3-MMS allocation.
Amanatidis, Markakis, Nikzad, and Saberi [2] later provided
a proof for the existence of an MMS allocation for the case,
when there are large enough items and the value of each
agent for every items is drawn independently from a uniform
distribution. A generalized form of this result was later
proposed by Kurokawa et al. [14] for arbitrary distributions.
In a recent work, Caragiannis et al. [7] proved that the
maximum Nash welfare (MNW) solution, which selects an
allocation that maximizes the product of utilities, for each
agent guarantees a 2/(1 +

√
4n− 3) fraction of her MMS.

Although it is natural to assume the agents have equal
entitlements on the items, in most real-world applications,
agents have unequal entitlements on the goods. For instance,
in various religions, cultures, and regulations, the distribution
of the inherited wealth is often unequal. Furthermore, the
division of mineral resources of a land or international waters
between the neighboring countries is often made unequally
based on the geographic, economic, and political status of
the countries.

For fairly allocating indivisible items to agents with differ-
ent entitlements, two procedures are proposed in [5]. The
first one is based on Knaster’s procedure of sealed bids. In this
method, we have an auction for selling each item. Therefore,
for using it all the agents should have an adequate reserve of
money which is the main issue of the procedure. The second
procedure mentioned in [5] is based on method of markers
developed by William F. Lucas which is spiritually similar
to the moving knife procedure. In this method, first we line
up the items, and then the agents place some markers for di-
viding the items. This method suffers from high dependency
of its final allocation to the order of the items in the line.

Agent duplication is another idea to deal with unequal
entitlements. More precisely, when all of the entitlements

are fractional numbers, we can duplicate each agent ai to
some agents with similar valuation functions to ai. The
goal of this duplication is to reduce the problem to the case
of equal entitlements. After the allocation, every agent ai
owns all of the allocated items to her duplicated agents. For
instance, assume that we have three agents with entitlements
1/2, 2/5, and 1/10, respectively. In this case, we duplicate
the first agent to five agents and the second agent to four
agents each having an entitlement of 1/10. This way, we
can reduce our problem to the case of equal entitlements.
Although agent duplication may be practical when the items
are divisible, in the indivisible case, this method does not
apply to the indivisible setting. For instance, if the number
of the agents is higher than the number of available items, we
cannot allocate anything to some agents. Another issue with
this method is that it works only for fractional entitlements.

In this paper, we study fair allocation of indivisible items
with different entitlements using a model which resolves
the mentioned issues. Our fairness criterion mimics the
general idea of Budish for defining maxmin shares. Similar
to Budish’s proposal, in order to define a maxmin share for
an agent ai, we ask the following question: how much benefit
does agent ai expect to receive from a fair allocation, if we
were to divide the goods only based on his valuation function?
If agent ai expects to receive a profit of p from the allocation,
then he should also recognize a minimum profit of p ·ej/ei for
any other agent aj , so that his own profit per entitlement is
a lower bound for all agents. Therefore, a fair answer to this
question is the maximum value of p for which there exists an
allocation such that agent ai’s profit-per-entitlement can be
guaranteed to all other agents (according to his own valuation
function). We define the maxmin shares of the agents based
on this intuition.

Recall that we denote the number of agents with n and the
entitlement of every agent ai with ei. We assume the entitle-
ments always add up to 1. For every agent ai, we define the
weighted maxmin share denote by WMMSi, to be the highest
value of p for which there exists an allocation of the goods to
the agents in which every agent aj receives a profit of at least
p · ej/ei based on agent ai’s valuation function. Similarly,
we call an allocation α-WMMS, if every agent ai obtains an
α fraction of WMMSi from his allocated goods. Notice that
in case ei = 1/n for all agents, this definition is identical to
Budish’s definition. Since our model is a generalization of
the Budish’s model, it is known that a fair allocation is not
guaranteed to exist for every scenario. However, whether a
2/3 approximation or in general a constant approximation
WMMS allocation exists remains an open question.

Our main result is in contrast to that of Procaccia and
Wang. We settle the above question by giving a 1/n hardness
result for this problem. In other words, we show no algorithm
can guarantee any allocation which is better than 1/n-WMMS
in general. We further complement this result by providing a
simple algorithm that guarantees a 1/n-WMMS allocation to
all agents. As we show in Section 2, this hardness is a direct
consequence of unreasonably high valuation of agents with
low entitlements for some items. Moreover, in Section 3 we
discuss that not only are such valuation functions unrealistic,
but also an agent with such a valuation function has an
incentive to misrepresent his valuations (Observation 3.1).
Therefore, a natural limitation that one can add to the setting
is to assume no item is worth more than WMMSi for any
agent ai. We also study the problem in this mildly restricted



setting and show in this case a 1/2-WMMS guarantee can be
delivered via a greedy algorithm.

In contrast to our theoretical results, we show in practice
a fair allocation is likely to exist by providing experimental
results on real-world data. The source of our experiments
is a publicly available collection of bids for eBay goods and
services2. Note that since those auctions are truthful3, it
is the users’ best interest to bid their actual valuations for
the items and thus the market is transparent. More details
about the experiments can be found in Section 4. We also
support our claim by presenting theoretical analysis for the
stochastic variants of the problem in which the valuation of
every agent for a good is drawn from a given distribution.

1.1 Our Model
Let N be a set of n agents, and M be a set of m items.

Each agent ai has an additive valuation function Vi for the
items. In addition, every agent ai has an entitlement to
the items, namely ei. The entitlements add up to 1, i.e.,∑
ei = 1.
Since our model is a generalization of maxmin share, we

begin with a formal definition of the maxmin shares for equal
entitlements, proposed by Budish [6]. In this case, we assume
all of the entitlements are equal to 1/n. Let Π(M) be the
set of n-partitionings of the items. Define the maxmin share
of agent ai (MMSi) of player i as

MMSi = max
〈A1,A2,...,An〉∈Π(M)

min
j∈[n]

Vi(Aj). (1)

One can interpret the maxmin share of an agent as his
outcome as a divider in a divide-and-choose procedure against
adversaries [6]. Consider a situation that a cautious agent
knows his own valuation on the items, but the valuations
of other agents are unknown to him. If we ask the agent to
run a divide-and-choose procedure, he tries to split the items
in a way that the least valuable bundle is as attractive as
possible.

When the agents have different entitlements, the above
interpretation is no longer valid. The problem is that the
agents have different entitlements and this discrepancy must
somehow be considered in the divide-and-choose procedure.
Thus, we need an interpretation of the maxmin share that
takes the entitlements into account.

Let us get back to the case with the equal entitlements.
Another way to interpret maxmin share is this: suppose that
we ask agent ai to fairly distribute the items in M between
n agents of N , based on his own valuation function. In an
ideal situation (e.g., if the goods are completely divisible),
we expect ai to allocate a share with value Vi(M)/n to every
agent. However, since the goods are indivisible, some sort of
unfairness is inevitable. For this case, we wish that ai does
his best to retain fairness. MMSi is in fact, a parameter that
reveals how much fairness ai can guarantee, regarding his
valuation function.

Formally, to measure the fairness of an allocation by ai,
define a value F i

A for any allocation A = 〈A1, A2, . . . , An〉 as

F i
A =

minj Vi(Aj)

Vi(M)/n
.

In fact, we wish to make sure ai reports an allocation A∗

2http://cims.nyu.edu/ munoz/data/
3An action is called truthful, if no bidder has any incentive
to misrepresent his valuation

such that F i
A∗ is as close to 1 as possible. The maxmin share

of ai is therefore defined as

MMSi = F i
A∗(Vi(M)/n). (2)

It is easy to observe that Equations (1) and (2) are equiva-
lent, since the fairest allocation in the absence of different
entitlements is an allocation that maximizes value of the
minimum bundle:

MMSi = F i
A∗(Vi(M)/n)

=
minj Vi(A

∗
j )

Vi(M)/n
(Vi(M)/n) = min

j
Vi(A

∗
j )

Now, consider the case with different entitlements. Let
ei be the entitlement of agent ai. Similar to the second
interpretation for MMSi, ask agent ai to fairly distribute
the items between the agents, but this time, considers the
entitlements. In an ideal situation (e.g., a completely divisible
resource), we expect the allocation to be proportional to the
entitlements, i.e. ai allocates a share to agent aj with value
exactly Vi(M)ej (note that when the entitlements are equal,
this value equals to Vi(M)/n for every agent). But again,
such an ideal situation is very rare to happen and thus we
allow some unfairness. In the same way, define the fairness
of an allocation A = 〈A1, A2, . . . , An〉 as

F i
A = min

j

Vi(Aj)

Vi(M)ej
(3)

Let A∗ = 〈A∗1, A∗2, . . . , A∗n〉 be an allocation by ai that
maximizes F i

A∗ . The weighted maxmin share of agent ai is
defined in the same way as MMSi, that is:

WMMSi = F i
A∗Vi(M)ei = ei min

j

Vi(A
∗
j )

ej

In summery, the value WMMSi for every agent ai is defined
as follows:

WMMSi = max
〈A1,A2,...,An〉∈Π(M)

min
j∈[n]

Vi(Aj)
ei
ej
.

For more intuition, consider the following example:

Example 1. Assume that we have two agents a1, a2 with
e1 = 1/3 and e2 = 2/3. Furthermore, suppose that there
are 5 items b1, b2, b3, b4, b5 with the following valuations for
a1: V1({b1}) = V1({b2}) = V1({b3}) = 4, V1({b4}) = 3 and
V1({b5}) = 9. For the allocation A = 〈{b5}, {b1, b2, b3, b4}〉,
we have FA = min( 9

24·(1/3)
, 15

24·(2/3)
) which means FA =

15/16. Moreover, for allocation A′ = 〈{b1, b2}, {b3, b4, b5}〉,
we have FA′ = min( 8

24·(1/3)
, 16

24·(2/3)
) which means FA′ = 1.

Thus, A′ is a fairer allocation than A. In addition, A′ is the
fairest possible allocation and hence, WMMS1 = 1·24·1/3 = 8.

Example 1 also gives an insight about why agent duplication
(as introduced in the Introduction) is not a good idea. For
this example, if we duplicate agent a2, we have three agents
with the same entitlements. But any partitioning of the
items into three bundles, results in a bundle with value at
most 7 to a1.

Finally, an allocation of the items in M to the agents in
N is said to be α−WMMS, if the total value of the share
allocated to each agent ai is worth at least αWMMSi to him.

http://cims.nyu.edu/~munoz/data/
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