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Simple Robot Free-Target Search in Rectilinear Streets
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Abstract

We consider the problem of searching for an arbitrary
(random) target in an unknown rectilinear-street using
a simple robot. A simple polygon with respect to two
given vertices u, v on the boundary is a street if the
clockwise and counter-clockwise chains from u to v are
weakly visible from each other. A simple robot, also
called gap-detector, can only detect the discontinuities
in the depth information (gaps) in a cyclical order. The
goal is to design a strategy for a simple robot to find an
arbitrary target t in a rectilinear-street, starting from
u or v, with a minimum path length. We propose a
strategy that guarantees a path which is at most

√
10

times longer than the shortest path.

1 Introduction

Path planning for robots in unknown environments is
one of the fundamental problems in the fields of compu-
tational geometry, online algorithms, and robotics [4].
In path planning problems, a robot must find a target
in a specified environment. Note that if we have the
geometric map of the environment and the position of
the target point, we can find the shortest-path easily.
However, we consider the case that the robot does not
have the information in advance. Such a robot should
follow an online algorithm to find the target. A simple
robot has access only to its local information about its
surroundings. We denote the start and target point of
the robot by s and t, respectively. The competitive ratio
is the length of the path traveled by the robot from s
to t, over the length of the shortest-path. A strategy is
called c-competitive if its competitive ratio is at most c.

A street is a simple polygon with two distinct vertices
u and v so that clockwise and counter-clockwise chains
from u to v (Lchain and Rchain resp.) are mutually
weakly visible [6]. In other words, every point on each
chain is visible to at least one point on another one. A
rectilinear-street is an orthogonal street (see Figure 1).

Using simple robots has quite a few advantages over
360◦ vision robots such as low cost, less sensitivity to
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failure, easy to replace and maintenance. Therefore, nu-
merous types of simple robots have been characterized
and deployed in path planning problems. [8, 12]

We use a simple point robot called gap-detector. To
understand what a gap-detector robot can do we need
to determine a sensor called a gap-sensor. A gap-sensor
is a minimal sensing model that was introduced by To-
var et al. [12]. It can only detect the discontinuities
in the depth information (gaps) in the robot’s visibil-
ity region and reports them in a cyclical order. It can
assign a label L (left-gap) or R (right-gap) to each gap
depend on the portion of the environment hidden be-
hind that gap (see Figure 1(a)). Tovar et al. proposed
a data structure, called Gap Navigation Tree (GNT),
to maintain and update the gaps that have been seen
during the robot’s movement. Also, the robot can de-
tect the target whenever the target enters its visibility
polygon. Later, this robot gets empowered by a 4-wind
compass sensor [11]. This latter sensor can illustrate
the four main directions (cardinal points: North, East,
South, and West), and it can report which gap is be-
tween which two main directions or if it is collinear with
a main direction.

A simple robot with those characteristics can only
move toward the gaps, the compass directions, and the
target (when it becomes visible). The robot can move
around the polygon through an arbitrary number of
steps. A step is a fixed distance specified by the robot’s
manufacturer. We assume the step is small enough com-
pared to the scale of the given polygon. For the sake of
simplicity, we assume that the given rectilinear polygon
is based on a grid with unit distance dg, and the robot’s
step is equal to dg/k for any k ∈ N.

As the robot moves, the combinatorial structure of
its visibility region changes by the occurrence of four
critical events. These critical events are: appearance,
disappearance, split, and merge of gaps [12]. An appear-
ance/disappearance event occur when the robot crosses
an inflection-ray of a gap. Also, a split/merge event oc-
cur when the robot crosses the bitangent-complement
of two polygon’s reflex vertices (see Figure 2(a)). When
a gap appears and the portion behind it was so far visi-
ble, we call it a primitive-gap. All other gaps are called
non-primitive-gaps. The robot stores all of these infor-
mation in GNT.

Previous Works. In 1992, Klein introduced street
polygons [6]. He considered the problem of searching
in a street, starting from u or v, for the other one. He
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presented a 5.73-competitive strategy and proved that
the lower bound on the competitive ratio is

√
2. After

several improvements, finally, Schuierer and Semrau [7]
and Icking et al. [5] independently presented optimal
strategies. The robot used in all previously mentioned
works equipped with a 360◦ vision system. Such a robot
can detect edges and vertices, measure the distances and
angles, and move freely in any direction.

Bröcker and López-Ortiz considered two new types of
search in streets called Position-Independent search [2].
In the first type, the robot starts from u (or v) and
searches for an arbitrary target t on the boundary. In
the second type, both of the start and target points
are arbitrary points on the boundary. They presented
36.8 and 69.2-competitive strategies and proved the
lower bounds of 9 and 11.78 for these two types, re-
spectively. Bröcker and Schuierer showed that for the
rectilinear-streets, one can achieve better competitive
ratios [3]. In the first type, they presented an optimal
2.61-competitive strategy and proved a matching lower
bound. In the second type, a 59.91-competitive strategy
in L1-metric is proposed.

For the first time, Tabatabaei and Ghodsi [10] con-
sidered the gap-detector robots for the Klein’s prob-
lem [6]. They equipped the robot with a tool called peb-
ble. A pebble is a detectable object that the robot can
carry and put it everywhere in the polygon. They have
presented an 11-competitive strategy using one pebble.
They proved the competitive ratio can be improved to
9 using enough pebbles. Moreover, they showed consid-
ering rectilinear-streets, the gap-detector robot which
is empowered by a compass achieves the optimal com-
petitive ratio of

√
2. Wei et al. [13] and Tabatabaei

et al. [9] independently presented 9-competitive strate-
gies without using any pebbles. Furthermore, in [9] a
7-competitive randomized strategy has been proposed.
Additionally, a lower bound of 9 (4.59) on the compet-
itive ratio of all deterministic (randomized) strategies
has been proved [9, 13]. Recently, Tabatabaei et al.
showed that empowering the robot with a compass im-
proves the competitive ratio to 3

√
2 [11]. It also has

been shown that if two simple robots cooperate with
each other, the competitive ratio will decrease to 2 [1].

Our Contribution. We consider the first type of
the Position-Independent search (mentioned above) in-
troduced in [2] and call it Free-Target search. Inspiring
from [3] in which the authors considered a 360◦ vision
robot, we present a

√
10-competitive strategy using a

gap-detector robot. Please note that despite 360◦ vi-
sion robots, gap-detector robot’s vision and movement
are strictly limited.

Problem Definition. Given a rectilinear-street
polygon P (with respect to two vertices u, v), a sim-
ple robot R standing on a start vertex s ∈ {u, v}. Is
there an online strategy with the minimum path for R
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Figure 1: (a) A rectilinear-street, the robot R, and the
gaps (dashed lines). (b) Unexplored-regions of gaps at
point p and their intersection area Ip.

to move from s and find a given target point t in P?
In the rest of the paper, we call it Free-Target Search
(FTS) problem.

2 Strategy

This section presents an online strategy for the FTS
problem. Without loss of generality, assume that s = u.
A robotR needs to explore P to find t. The target t may
lie behind any gap. If the area behind a gap g is already
visited by R, the gap is primitive, the robot no longer
needs to explore g. Hence, only non-primitive gaps are
required to get visited. Hereinafter, when we use gap,
we mean a non-primitive gap. As we mentioned earlier,
the gap-detector robot has a compass sensor with four
main directions. Each gap either falls between two main
directions or is collinear with a main direction. Main
directions partition the environment to four quadrants:
NE, SE, SW, and NW. We assign each gap which falls
between two directions to the related quadrant. Con-
sider a gap g which is collinear with a main direction d,
one side of d is visible to R and the other side is invisi-
ble. For a gap g which is collinear with d, we assign it
to the quadrant contains the hidden part of g.

The strategy has three cases. Each case has an
initiation-point and an end-point. A procedure called
case-analysis determines which case the robot R should
choose for its next step. From the beginning point (s),
R should run case-analysis. At the end-point of each
case, the robot R stops moving and runs case-analysis.
Note that an end-point of a case is an initiation-point
of the next case.

Whenever t is visible byR, it stops and moves directly
toward t regardless of its previous direction. Based on
the position of R in P, and the circumstances of the
gaps around R, there are three cases mentioned in the
following. For a better presentation, based on the posi-
tion of R, each gap g is denoted by g(r, q) which r is a
reflex vertex that causes R not to see a part of P, and q
is a quadrant that g is assigned to it (see Figure 1(a)).

A case ends (or a new case initiates) when a gap ap-
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Figure 2: (a) Examples of critical events: at points
p0, p2, p3, p5, the events disappearance, appearance,
split, and merge occur, respectively. (b) Case 1.

pears or disappears. The robot R stops when a case is
finished and run the case-analysis procedure. That is
because the proposed strategy works based on the po-
sitions of gaps around R. In fact, the number of quad-
rants the gaps are assigned to determines the strategy
cases. So, an appearance or disappearance event might
change the current case of R.

Furthermore, note that the below-mentioned strat-
egy guarantees that a merge or a split event can never
change the current case of R. That is because when
either a merge or split event occurs for more than one
gap, all such gaps must remain in the same quadrant.
So, the current case will not change. Consequently, the
robot considers those events only for updating GNT,
but ignores them for case-analysis; in fact, only appear-
ance and disappearance events will be considered for
case-analysis.

Case 1: If gap(s) is (are) assigned to one quadrant q
(see Figure 2(b)).
The robot moves alternatively toward two directions ad-
jacent to q, i.e., one step toward a direction and one step
toward another one. The robotR stops if a gap becomes
collinear with any of its two main directions, say d, then
R turns and moves directly toward d (see point p1 in
Figure 2(b)).

Case 2: If gaps are assigned to two adjacent quadrants
q and q′ (see Figure 3(a)).
The robot R moves along the main direction between q
and q′, e.g., if the quadrants be NE and NW, the robot
moves toward N.

Case 3: If gaps gi(ri, q), gj(rj , q
′), and gk(rk, q

′′), 1 ≤
i, k exist and at least some of them are located in two
non-adjacent quadrants (q, q′′) (see Figure 3(b)).
In this case, the gaps are assigned to at most three quad-
rants. There are at least two opposite side quadrants
q, q′′. We call each gap which is assigned to q or q′′ a
crucial-gap.
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Figure 3: (a) Case 2 (b) Case 3.

If j ≥ 1 (at least one gap is assigned to q′), then R
moves alternatively between two main directions of q′

(see Figure 3(b)).

Else there is no middle quadrant, and the opposite
quadrants q and q′′ must be either q1, q3 or q2, q4 (see
Figure 1(a)). Using the compass, R can distinguish
between these two. In such a case we need to find a
quadrant to be in the placed of q′. This is a quadrant
where it is not visited yet, and R should move towards
q′. We set q′ to be that quadrant, then R should move
alternatively between two main directions of q′. In the
following we will see how to find q′:

If q, q′′ == q1, q3, then choose an arbitrary gi(ri, q) and
see if gi is a right-gap then q′ equals to q2. Otherwise,
if gi is a left-gap then q′ equals to q4.

Else if q, q′′ == q2, q4, then choose an arbitrary gi(ri, q)
and see if gi is a right-gap then q′ equals to q3. Other-
wise, if gi is a left-gap then q′ equals to q1.

3 Analysis

This section covers the proof of correctness and com-
petitive ratio of FTS strategy mentioned in section 2.
For every gap g(r, q), r is a reflex vertex adjacent with
two edges of P, one of these two edges is visible to R,
and the other one is hidden. The extension of the hid-
den edge into the interior of P is called inflection-ray of
r [10]. WhenR crosses the inflection-ray of r, g(r, q) dis-
appears accordingly. Every inflection-ray partitions P
into two regions, one includes u and the other one con-
tains v [3]. The latter one is called unexplored-region
(see Figure 1(b)). Consider a point p as the current
position of R. We denote the intersection area of all
unexplored-regions of the gaps at point p as Ip. Ap-
pendix A covers all the lemmas and observations that
we used in the proof.

Theorem 1 Using the strategy presented in Section 2,
R always find t.

Proof. The robot R always faces one of the three cases
defined in Section 2 (based on Lemma 4 in Appendix A).
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Consider the point t′ from which R sees t. Thus it is
sufficient to prove that R always directs to Ip for p ∈
path(s, t′), regarding those three cases. Let investigate
each case as follows.

• Case 1: All of the gaps are located in a quadrant q,
and R moves along an L1-path through q. In fact, R
must cross the inflection-ray of a gap. Since Ip is behind
the unexplored-regions and R goes toward Ip, then R
must cross an inflection-ray.

• Case 2: By the strategy, R moves toward a main di-
rection d until an appearance/disappearance event hap-
pens. So similar to Case 1, R must cross an inflection-
ray of a gap. In fact, at least one gap must get dis-
appeared when R moves toward d and R reaches the
inflection-ray of the disappeared gap. Since Ip (for any
p ∈ path(s, t′)) is behind all of the unexplored-regions,
R must be directed to Ip. When R moves toward d,
there must be a gap that get disappeared, otherwise P
is not street. We claim that there are at least one gap
whose inflection-ray is perpendicular to d. By contradic-
tion, assume all inflection-rays of all gaps are collinear
with d. Then, the intersection of the unexplored-regions
of gaps must be null, and as a result Ip = ∅, which is not
possible. So, there must be a gap that got disappeared
while R moves toward d (see Figure 4(b)).

• Case 3: In this case, Ip (for any p ∈ path(s, t′)) lies in
the middle quadrant q′. The strategy leads R to move
alternatively along two main directions adjacent to q′

(the unexplored middle quadrant). So, R moves along
an L1-path toward Ip.

In all cases, we showed that R always pointed to Ip
(p ∈ path(s, t′)) and never got away from it. As a result,
R must finally find t, and this concludes the proof. �

The following theorem demonstrates that the compet-
itive ratio of the strategy is

√
10. Moreover, Theorem 3

demonstrates that when t = v the competitive ratio is√
2. Again, Appendix B covers their proofs.

Theorem 2 Given a rectilinear-street polygon P (u, v),
and a simple robot R, the strategy presented in Section 2
is
√

10-competitive.

Theorem 3 If t = v, the competitive ratio is
√

2 and
it is optimal.

4 Conclusion

We studied the problem of Free-Target Search in an un-
known rectilinear-street for a simple robot. The robot
starts from one of two distinguished points u or v and
searches for an arbitrary target point t. We used a gap-
detector robot that has a minimal sensing capability.

Our strategy generates a path, starts at u (or v) to
t, with a competitive ratio of

√
10. This paper opens

several research lines. We plan to consider the prob-
lem when the robot starts from an arbitrary point on
the boundary. Another research line is to study the
problem in more general environments like streets and
generalized-streets.
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independent street searching. In Workshop on Algo-
rithms and Data Structures, pages 241–252. Springer,
1999.
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Figure 4: Examples of forbidden cases in which R sees
some gaps at p but Ip = ∅. These cases does not occur
through the robot’s path in a street. If such a cases
occur the polygon is not a street.

Appendix

A Correctness

This section covers the proof of correctness of the FTS strat-
egy mentioned in section 2. For every gap g(r, q), r is a reflex
vertex adjacent with two edges of P, one of these two edges
is visible to R, and the other one is hidden. The extension
of the hidden edge into the interior of the polygon is called
inflection-ray of r [10]. When R crosses the inflection-ray of
r, g(r, q) disappears accordingly. Every inflection-ray parti-
tions the polygon into two regions, one includes u and the
other one contains v [3].The latter one is called unexplored-
region (see Figure 1(b)). Consider a point p as the cur-
rent position of R. We denote the intersection area of all
unexplored-regions of the gaps at point p as Ip. In this sec-
tion, we consider proving the following theorem.

Theorem 1: Using the strategy presented in section 2,
R always find t.

Before proving the statement, let demonstrate some pre-
liminaries.

Observation 1 If R sees at least one gap at p, the point v
must lie in Ip.

Proof. By contradiction, let assume that v is in the
unexplored-region of a gap g(r0, q) but not in Ip. As a re-
sult, the intersection of the boundary of P and Ip does not
contain v. Also, we already know that Ip does not contain
u. If a part of the boundary of P does not contains nei-
ther u nor v, then it must belongs to either one of Lchain or
Rchain of P. Consider a reflex vertex r1 whose unexplored-
region contains Ip but not v. As a result, the points on the
hidden-edge of r1 is not visible from the other chain, which
contradicts the definition of a street polygon. �

Note that if there is at least one non-primitive gap, since
Ip always contains at least v, Ip 6= ∅. So, the cases illustrated
in Figure 4 can never occur.

Remark 2 Since the polygon is rectilinear, for every gap
g(r, q), the unexplored-region of g can lie in q and at most
one of its adjacent quadrants, but it never lies in the opposite
(non-adjacent) quadrant of q.

Observation 3 Consider p as the current position of R, if
there exist gaps in two opposite quadrants (q, q′′), Ip must
be in the unexplored middle quadrant (q′).

Proof. Since Ip 6= ∅, the unexplored-regions of the gaps
g(r, q), g(r′′, q′′) must have an intersection region. The
unexplored-regions of two opposite quadrants can only in-
tersect in an unexplored quadrant named middle quadrant
and denoted by q′. That is because their common region
cannot be in q or q′′ and must be somewhere in q′ (see Fig-
ure 1(b)). �

In the next lemma, we show that regardless of the robot’s
position, the gaps can only lie in at most three quadrants.

Lemma 4 At each point p of the robot’s path, all the gaps
must be located in at most three quadrants.

Proof. Assume a situation where there are some gaps in
three quadrants; w.l.o.g. assume that they are located in
NE, NW, and SE. Hence, according to the Observation 3,
Ip will be located in the middle quadrant, i.e., NW. By con-
tradiction, assume there exists a gap g(r, SW ). As we saw
in Remark 2, the unexplored-region of g(r, SW ) could be
located in any of the quadrants except NW. Consequently,
Ip is empty (Ip = ∅) and contradicts Observation 1 (see
Figure 4(c)). �

Denote a path generated by the strategy from x to y by
path(x, y). We show that the strategy generates a path from
s = u to t (path(s, t)). Consider the point t′ from which R
sees t. It is sufficient to show that the strategy generates a
path from s toward Ip for any p ∈ path(s, t′).

At each point p ∈ path(s, t′) if there exist at least one gap,
we know v is in Ip. So, R travels a path from s toward v.
Hence, either the whole polygon is cleared before reaching
v, or v is reached by R. At the latter case, R traveled a
path(s, v). Klien [6] proved that every path from s = u to
v explores the whole polygon. Therefore, at both cases, the
whole polygon gets explored and R surely sees t.

Consider a point pf on the boundary of last unexplored
Ip p ∈ path(s, t′), when R reaches Ipf all the gaps must
disappear, and the whole polygon is clear. That is because
v lies in Ipf . So, the robot already passed over the path
path(s, pf ), and lies on pf , and the only unexplored region of
P (Ipf ) gets visible for R. For every p′ ∈ path(pf , t) Ip′ = ∅.
So, we only need to show that R always moves toward Ip
for any p ∈ path(s, t′). We will show that considering the
strategy’s cases, the robot can eliminate each non-primitive-
gap only once. Hence, the total path of R is finite, and the
strategy will terminate.

Proof. [Proof of Theorem 1] Based on Lemma 4, R always
faces one of the three cases defined in Section 2. Thus it is
sufficient to prove that R always directs to Ip for any p ∈
path(s, t′), regarding all those three cases. We investigate
each case separately, as follows.

• Case 1: All of the gaps are located in a quadrant q, and
R moves along an L1-path through q. In fact, R must
cross the inflection-ray of a gap. Since Ip is behind the
unexplored-regions and R goes toward Ip, then R must
cross an inflection-ray.

• Case 2: By the strategy, R moves toward a main direc-
tion d until an appearance/disappearance event happens.
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So similar to Case 1, R must cross an inflection-ray of a
gap. In fact, at least one gap must get disappeared when
R moves toward d and R reaches the inflection-ray of the
disappeared gap. Since Ip (for any p ∈ path(s, t′)) is be-
hind all of the unexplored-regions, R must be directed to
Ip. When R moves toward d, there must be a gap that
get disappeared, otherwise P is not street. We claim that
there are at least one gap whose inflection-ray is perpen-
dicular to d. By contradiction, assume all inflection-rays
of all gaps are collinear with d. Then, the intersection
of the unexplored-regions of gaps must be null, and as a
result Ip = ∅, which is not possible. So, there must be
a gap that got disappeared while R moves toward d (see
Figure 4(b)).

• Case 3: In this case, Ip (for any p ∈ path(s, t′)) lies in
the middle quadrant q′. The strategy leads R to move
alternatively along two main directions adjacent to q′ (the
unexplored middle quadrant). So, R moves along an L1-
path toward Ip.

In all cases, we showed that R always pointed to Ip (p is a
point in path(s, t′)) and never got away from it. As a result,
R must finally find t, and this concludes the proof. �

B Competitive Ratio

In this section, we intend to prove that the strategy stated
in section 2 provides a competitive ratio of

√
10 for a simple

robot R.
During the robot’s movement, whenever t becomes visible,

R can detect it and move toward it. Let denote the last
intersection of all unexplored-regions that R may see in its
path (path(s, t)) by Ipf , where pf is a point on the boundary
of last unexplored Ip (for any p ∈ path(s, t′)).

Consider a situation where R lies on pf . In such a case, t
is located in Ipf and R moves directly toward t. Note that
if t is not in Ipf , R must have seen it before reaching pf .

In the following theorem, we show that all cases provide
an L1-shortest-path but Case 3. In fact, the competitive
ratio for the first two cases is

√
2, while it is

√
10 for case 3.

Theorem 2: Given a rectilinear-street polygon P (u, v),
and a simple robot R, the strategy presented in Section 2 is√

10-competitive.

Proof. When t is not visible to R, it is hidden behind a gap
g(r, q). Consider a situation where t is located on the line
containing an inflection-ray. Suppose R is not reached that
inflection-ray yet, and the target point t is on the hidden
edge g(r, q). In this situation, R cannot see t until it reaches
the inflection-ray of r. Regarding the positions of t and
r, in other situations R might see t before it reaches the
inflection-ray of r, and it will pass a shorter path to meet
t (see Figure 5(a)). Hence, when t is on the hidden edge
of a gap, R has to pass longer path concerning any other
position of t.

For the first two cases, we show that when R reaches t, the
robot’s path length is at most equal to an L1-shortest-path
from s to t. This is because R approaches to quadrant(s) in
which there exist gap(s). Note that R never gets away from
gaps. We consider each case separately in the following.
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Figure 5: Worst case for finding t.

• Case 1: In this case, t is behind one of the gaps. Since all
of the gaps are located in the same quadrant (q), and R
moves toward q (one step in each direction alternatively),
then its path length is equal to the L1-shortest-path (see
Figure 2(b)).

• Case 2: In this case, the gaps are in two adjacent quad-
rants q, q′, and R moves toward the main direction be-
tween them. Since t is behind one of the gaps when R
goes straight between q, q′, it guarantees an L1-path as R
will never go away from t, and then its length is equal to
the L1-shortest-path (see Figure 3(a)).

In the above cases, R passes through an xy-monotone path,
and the length of the path is equal to an L1-shortest-path.
If t is found during case 1 and 2, it can be showed the path
of R can be extended by an L1-shortest path to t. Hence, it
guarantees the competitive ratio of

√
2 concerning the L2-

shortest-path.
Regarding case 3 (see Figure 3(b)), since Ip is in the mid-

dle quadrant q′, R approaches to q′. If t is behind a gap
in q′, it will be similar to case 1, and the robot’s path is an
L1-shortest-path. However, if t is behind one of the crucial
gaps, R is getting away from t. So, the worst case is when
the case 3 arises and t is behind a crucial gap; we denote the
start point of such a case by p. After p, R may face many
case 3 continuously because of some disappearance events.
We consider all of them together and denote the endpoint
of the last one by p′. We denote by p′′ the point on the
inflection ray of the reflex vertex r related to that crucial
gap which is perpendicular to p. According to Figure 5(b),
R travels 2x+x+y+z while the length of the shortest-path
is

√
x2 + y2 + z. So, the competitive ratio is at most

max

{
2x + x + y + z√

x2 + y2 + z

}
.

If we set z = 0, by finding the function’s extremum point,
we get

√
10 as the maximum possible competitive ratio.

Please note that if t is not visible at p′, after p′ R may
face other cases until t is visible, but in those cases, the
competitive ratio is less and greatest deviation occurs when
t is found in a case 3. �

In the following theorem, we show that if the target point
t is located in the same position of v, then the presented
strategy guarantees an optimal competitive ratio.
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Theorem 5 If t = v, the competitive ratio is at most
√

2
and it is optimal.

Proof. The proof is coming from Theorem 2 and Observa-
tion 1. In other words, in Observation 1 we showed that v
always lies in Ip (for any p ∈ path(s, t′)), and in Theorem 2
we showed that the strategy guarantees an L1-shortest-path
toward Ip. Since t = v ∈ Ip Then it gives a competitive ratio
of at most

√
2, which is optimal [6]. �
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