
Journal of VLSI Signal Processing 42, 149–158, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s11265-005-4177-6

An Efficient Universal Addition Scheme for All Hybrid-Redundant
Representations with Weighted Bit-Set Encoding

GHASSEM JABERIPUR
Sharif University of Technology and Shahid Beheshti University, Tehran, 19839-63113, Iran

BEHROOZ PARHAMI
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560,

USA

MOHAMMAD GHODSI
Computer Engineering Department, Sharif University of Technology, Tehran 11365, Iran

Received July 09, 2003; Revised September 08, 2004; Accepted December 22, 2004

Abstract. Redundant and hybrid-redundant number representations are used extensively to speed up arithmetic
operations within general-purpose and special-purpose digital systems, with the latter (containing both redundant
and nonredundant digits) offering cost advantages over fully redundant systems. We use weighted bit-set (WBS)
encoding as a paradigm for uniform treatment of five previously studied variants of hybrid-redundant systems. We
then extend the class of hybrid-redundant numbers to coincide with the entire set of canonical WBS numbers by
allowing an arbitrary nonredundant position, heretofore restricted to ordinary bits (posibits), to hold a negatively
weighted bit (negabit). This flexibility leads to interesting and useful symmetric variants of hybrid-redundant
representations. We provide a high-level circuit design, based solely on binary full-adders, for a constant-time
universal hybrid-redundant adder capable of producing a canonical WBS-encoded sum of two canonical WBS (or
extended hybrid) numbers. This is made possible by the use of conventional binary full-adders for reducing any
collection of three posibits and negabits, where negabits use an inverted encoding. We compare our adder to previous
designs, showing advantages in speed, cost, and regularity. Furthermore we explore representationally closed
addition schemes, holding the benefit of greater regularity and reusability, and provide high-level representationally
closed designs for all the previously studied variants of hybrid redundancy and for the new symmetric variants
introduced here. Finally, we present a new functionality for a conventional (4; 2) compressor in combining any
collection of five equally weighted negabits and posibits, and show its utility in the design of multipliers for
extended hybrid-redundant numbers.

Keywords: (4;2)-compressor, carry-free addition, computer arithmetic, digit set, redundant number system,
signed digit

1. Introduction

Redundant number representations are used exten-
sively to speed up arithmetic operations within both

general-purpose and special-purpose digital systems
[1, 2]. The speed advantage resulting from carry-free
arithmetic with redundant representations is often large
enough to offset the format conversion overheads, even



150 Jaberipur et al.

in signal processing and other applications with moder-
ate frequency of arithmetic operations. When the con-
version and reconversion circuitry can be shared among
multiple function units, redundant representations also
lead to savings in VLSI area and power dissipation,
thus making them even more attractive. Like conven-
tional digit sets, redundant digit sets can be encoded
in any desired way. However, in practice, encodings
comprised of weighted positive and negative bits have
been found to offer advatages in implementation sim-
plicity and modularity, including the applicability of
standard cells used in binary arithmetic [3]. We have
thus endeavored to develop a general theory of such
representations and the associated arithmetic circuits.

Uniform treatment of negatively weighted and
normal (positively weighted) bits is responsible for
the simplicity and widespread application of 2’s-
complement arithmetic [4, 5]. We use negabits in {−1,
0} for the former and posibits in {0, 1} for the latter
[3]. Negabits have been widely used in redundant num-
ber representations. For example, binray signed-digit
(BSD) numbers [1] are commonly encoded by using
two bits weighted −2i and 2i for the position-i digit;
viz. the (n, p) encoding [2]. Similarly, in some variants
of radix-2 hybrid-redundant numbers [6], redundant
digits such as stored-double-borrow (SDB), in [−2, 1],
or stored-borrow-or-carry (SBC), in [−1, 2], may be
represented by a collection of posibits and negabits,
leading to weighted bit-set (WBS) encodings [3]. For
example, the WBS encoding of a redundant SDB digit
consists of two negabits and one posibit in the same po-
sition, or, equivalently, of a negabit in position i + 1 and
a posibit in position i. Other possibly useful variants
of digits in redundant positions of a hybrid-redundant
number, as enumerated in [6], are stored-carry (SC),
in [0, 2], and stored-double-carry (SDC), in [0, 3]. The
latter digit set has also been used in the design of re-
dundant adders [7] and for synthesizing certain fast
area-efficient multipliers [8].

Table 1 depicts symbolic representations for BSD,
SDB, SBC, SC, and SDC digits, where a posibit (ne-
gabit) appears as • (◦). The double-position represen-
tations of these redundant digits have been used in
Table 2, which depicts five variants of radix-2h hy-
brid representations for h = 4. The WBS encodings
of Table 2 are all 2-deep encodings (i.e., contain no
more than 2 dots in any position) with no empty po-
sitions; these are known as canonical WBS encodings
[3]. The third entry of Table 2 is an example of allow-
ing a negabit in a nonredundant position. By allowing

Table 1. Single/double-position WBS representations.

Digit Single-position encoding Double-position encoding

BSD N/A

SDB

SBC

SC N/A

SDC

negabits to appear in arbitrary nonredundant positions,
canonical WBS encodings, which include all the vari-
ants of hybrid redundancy studied by Phatak et al. [6],
offer new hybrid-redundant systems not explored be-
fore. This nonredundant use of negabits can be seen
in 2’s-complement numbers and, more recently, in cer-
tain stored-transfer representations of redundant num-
bers [9]. In Section 3, we show that this possibility
leads to interesting new symmetric variants of hybrid-
redundant digit sets.

Addition of two canonical WBS operands is per-
formed by conceptually copying the bits of the 2-deep
operands in the bit placeholders of a 4-deep WBS rep-
resentation. However, with 2-deep operands, it is de-
sirable to convert the sum to a 2-deep encoding as
well. In Section 2, we explore an efficient and uni-
form implementation for constant-time addition of two
hybrid-redundant numbers with 2-deep result, where
the computed sum need not belong to the same hybrid-
redundant number system as the operands (i.e., redun-
dant positions of the result are shifted one position
to the left of the redundant position of the operands).
This property forces the use of additional hardware for
format conversion [6, 10]. We offer representationally
closed addition schemes for all the previously stud-
ied variants of hybrid-redundant number systems and
our new symmetric variants in Section 4. In these im-

Table 2. Five hybrid-redundant number systems.

Composition (digit pattern) WBS encoding with 3 digits

1 BSD, h – 1 binary

1 SDB, h – 1 binary

1 SBC, h – 1 binary

1 SC, h – 1 binary

1 SDC, h – 1 binary



Universal Addition Scheme for Hybrid-Redundant 151

plementations, an obtained result belongs to the same
number system as the operands.

To multiply two canonical WBS-encoded numbers,
we might first derive a partial product bit matrix, com-
posed of posibits and negabits, and then reduce it
through compression. In Section 5, we show that in-
verted encoding of negabits allows us to use standard
compressors, such as (3; 2) and (4; 2) counters, for par-
tial product reduction. The number of bitwise products
to be dealt with can be 4 times greater than in standard
binary multiplicaltion, given the depth of two for each
operand. But the second component of each hybrid-
redundant operand is relatively sparse compared to the
first component. Therefore, one way to reduce the com-
plexity of our multiplier is to reduce the number of po-
sitions holding 2 posibits through partial carry assim-
ilation. For example, if 4-bit segments of each 2-deep
operand are combined to yield 5-bit binary numbers,
with the most significant bit of one number aligned un-
der the least significant bit of the next higher segment,
a radix-16 carry-save representation results, for which
efficient multiplication circuits have been studied [11].

2. Adding Hybrid-Redundant Numbers

The first step in our addition scheme for WBS encoding
of hybrid-redundant numbers is to construct a 4-deep
WBS number by simply merging the posibits and ne-
gabits in like positions of the two operands, as shown
by the vertical alignments of operands in the examples
of Table 3. The equal-weight grouping offered in [6]
may be considered as a special case. Next we need to
reduce the 4-deep result to an equivalent 2-deep result.
In the case of SC and SDC hybrid numbers (Table 1),

Table 3. Addition of 2-deep operands with 4-deep results

Composition (digit pattern) 4-deep addition results

1 BSD, h – 1 binary

1 SDB, h – 1 binary

1 SBC, h – 1 binary

1 SC, h – 1 binary

1 SDC, h – 1 binary

Figure 1. Reduction of the addition result to a 2-deep result.

any conventional reduction scheme may be used for
this purpose [12].

For example, one full-adder (FA) per nonredundant
position and two FAs in redundant positions are all
we need to reduce the 4-deep interim sum of two SC
hybrid operands to a 2-deep result (Fig. 1). Note that
the sum in Fig. 1 is encoded slightly differently from
the operands in that its least-significant group is one
position longer (i.e., has h + 1 positions). It is easily
seen that a reduction scheme similar to that of Fig. 1 is
applicable to the addition of SDC hybrid numbers.

The second, third, and fifth rows of Table 1 depict
two equivalent encodings for SDB, SBC, and SDC dig-
its, as defined in the second paragraph of Section 1 and
summarized in Table 1. The equivalent 3-deep and 1-
deep representations for an SDC digit bring to mind
the functionallity of a binary full-adder and suggest
that similar devices for 3-deep to 1-deep conversions
of SDB and SBC digits might be feasible. For example,
take the PPM cell used in the design of a borrow-save
adder [13], a dual-purpose (rather complex) logic for
addition of two SDB or SBC digits [6], and four vari-
ants of half-adders that reduce various possible com-
binations of equally weighted posibits and negabits to
carry and sum bits of appropriate kinds [14]. All these
seemingly different functionalities can be realized by
standard full-adders, provided that we use an inverted
encoding for a negabit; that is, encoding −1 as 0 and 0
as 1, which is exactly the opposite of the conventional
encoding for negabits.

Table 4 (respectively 5), shows the functionality of
a conventional full-adder in reducing a collection of
two negabits (posibits) and one posibit (negabit), all
in position i, to a negabit (posibit) in position i + 1
and a posibit (negabit) in position i. We have used the
convention of [3] for variable names: uppercase letters
for negabits; lowercase for posibits. The contents of
the first three and the last two columns of each table
are identical to the truth table for a full-adder, hence
the functionality of full-adders for reducing any set of



152 Jaberipur et al.

Table 4. Reduction of two negabits and one posibit.

Xi Yi ci Xi + Yi + ci Ci+1 si

0 0 0 −2 0 0

0 0 1 −1 0 1

0 1 0 −1 0 1

0 1 1 0 1 0

1 0 0 −1 0 1

1 0 1 0 1 0

1 1 0 0 1 0

1 1 1 1 1 1

three posibits and inversely encoded negabits; the case
of three negabits is obvious.

To reduce a 4-deep sum of two hybrid-redundant
operands to a 2-deep one, we use one full-adder per
nonredundant position and two full-adders for each
redundant position. Figures 2a and 2b depict adder
cells for redundant and nonredundant positions, respec-
tively. Here, following the convention in [3], primed
variables denote the first components of the operands
and the result (first row of dots in dot notation), double-
primed variables represent bits in the second com-
ponents (second row of dots), and nonprimed vari-
ables indicate intermediate carries. A full-adder in a
nonredundant position receives two inputs from the
same nonredundant position of the operands and a
carry from the previous full-adder, producing a nonre-
dundant sum bit and a carry to the next position
(Fig. 2b). In a redundant position, the top full-adder,
as in Fig. 2a, reduces three of the bits to a sum bit,
feeding the lower full-adder, and a carry to the next
higher positioned full-adder. The lower full-adder ab-
sorbs the carry from the last position, recieves the
sum bit from the top full-adder, and the fourth bit
of the redundant position, producing a nonredundant

Table 5. Reduction of two posibits and one negabit.

Xi yi ci Xi + yi + ci ci+1 Si

0 0 0 −1 0 0

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 1 0

1 1 0 1 1 0

1 1 1 2 1 1

sum bit and a carry that becomes the second bit of
the now left-shifted redundant position. These adder
cells may be used for all five hybrid-redundant sys-
tems of Table 2, which coincide with those covered
in [6].

It is interesting to note that in the preceding dis-
cussion, the operands need not belong to the same
hybrid-redundant system. Moreover, it can be easily
verified that they work for addition of any two canon-
ical WBS-encoded numbers. This includes hybrid-
redundant numbers with negabits in their nonredundant
positions, which we call extended hybrid-redundant
numbers. However, the result pattern may be slightly
different from either operand (i.e., with redundant posi-
tions of the result shifted one position to the left of the
corresponding redundant positions of the operands).
This may not be a problem in intermediate computa-
tion steps, where the new format can be simply used
as input format for the next computation stage. If the
extended dot notation [2] of two 4-deep WBS numbers
(possibly resulting from the first step of addition of two
canonical WBS operands), irrespective of the polarity
of the bits, are identical, then the reduction circuitry is
exactly the same.

Figure 2. Adder cells for representations of Table 2, and a 3-multiplexer full-adder.



Universal Addition Scheme for Hybrid-Redundant 153

The total adder delay is equal to that of d + 2 full-
adders, where d is the longest spacing (in terms of
the number of nonredundant positions) between two
redundant positions. Our universal adder has a num-
ber of advantages over previous implementations. The
only building block required in our design is full-adder,
which leads to more regularity, possibility of using
highly optimized FA cells, and employing any stan-
dard carry acceleration technique to achieve an O(log
d) total delay.

The cost per nonredundant position is minimal (i.e.,
one FA, as in nonredundant addition), while for redun-
dant positions there is only one extra FA. Given that
each FA can be implemeted with three multiplexers
(Fig. 2c), our adder cell for redundant positions costs
six multiplexers, while the one propsed in [6] for SDB
and SBC hybrid cases is made up of seven multiplex-
ers plus a few other gates. This is a pleasant surprise,
because the use of standard cells often implies an in-
crease in component count (layout area) or a sacrifice
in performance.

3. Symmetric WBS Hybrid Redundancy

Hybrid signed-digit (HSD) representations, introduced
in [10] and extended in [6] to allow alternate digit sets
in redundant positions, are essentially asymmetric, ex-
cept for the limiting case that coincides with the fully
redundant BSD number system. The reason is that in
three of the variants where redundant digits include
negative values, there is one equally weighted posibit
for each negabit, while other positions hold only
posibits. For example, radix-2h digit sets associated
with the hybrid representations shown in Table 2 are
[−2h−1, 2h −1], [−2h, 2h − 1],[−2h−1, 3 × 2h−1 − 1],
[0, 3 × 2h−1 − 1], and [0, 2h+1 − 1], respectively. We
have proved elsewhere [15] that besides the BSD
number system, the ordinary hybrid redundancy
(i.e., allowing nonredundant positions to hold only
posibits) provides for only one other 2-deep symmetric
representation, which is the minimally redundant
radix-4 signed-digit number system. Figure 3 shows a
classification of redundant representations based on
weighted bits and, in particular, depicts the place of
various hybrid-redundant representations.

A canonical WBS-encoded digit set is redundant if
and only if there is at least one position holding a set
of more than one posibits and/or negabits [3]. In other
words, a position with only one posibit or negabit is
nonredundant while any other position is a redundant

Figure 3 The hierarchy of number representations using weighted
components (tree branches go from left to right and top to bottom).

one, given the fact that in a canonical WBS encoding
there are no empty positions. This flexibility further
extends the hybrid redundancy scheme to allow ne-
gabits both in redundant and arbitrary nonredundant
positions. We use this extension to design symmetric
hybrid-redundant representations with arbitrary differ-
ent spacing between consecutive redundant positions.
For example, consider the periodic radix-16 extended
hybrid-redundant number of Fig. 4, where the digit set
is [−8, 8]. The adder cells as in Figs. 2a and 2b work
for this number system as well, but the addition process
is not rerpresentationally closed; the pattern of dots in
the sum is shifted to the left by one radix-2 position
relative to the input operands.



154 Jaberipur et al.

Figure 4. A symmetric hybrid-redundant number system.

4. Representationally Closed Addition

Numbers with arbitrary digit sets can be added digit-
wise to produce a sum with a digit set whose range
is the sum of the ranges of the operand digits. This
wider digit set can be kept intact and the result used as
an operand in further arithmetic operations. It is also
possible to convert the wider digit set to another, more
convenient, one for further processing. Often, however,
it is required to obtain results with the same digit set as
inputs [16]. Such representationally closed arithmetic
is desirable for storage efficiency, reusability of the
arithmetic cell designs, and regularity in VLSI circuit
implementation.

While encoding-algorithm combinations that are not
representationally closed can be useful and are in fact
used in practice, when comparing a representationally
closed scheme against a scheme that is not closed, fair-
ness dictates that the overhead of conversion from the
intermediate representation to the ultimate encoding
be taken into account in any cost/speed comparisons.
We explore representationally closed constant-time ad-
dition schemes for practical cases where the double
primed component of the canonical WBS operands are
relatively sparse. We present a general addition algo-
rithm below and subsequently apply it to specific cases.

Algorithm 1 (extended hybrid-redundant addition):

Step 1: Add the equally weighted double-primed bits
of the second component for the two operands
to form a 1-deep sum, possibly left-extended
to the next redundant position to preserve sign
information.

Step 2: Using one binary full-adder cell per digit po-
sition, reduce the 3- or 4-deep WBS number,
composed of the two full components of the
original operands and the components pro-
duced by step 1, to a 2- or 3-deep WBS num-
ber. Depth of 4 may occur only in redundant
positions.

Step 3: Add the equally weighted digits (where the
leftmost position of each digit holds its only
redundant binary digit) of the two components
of the latter result, in parallel, with special
treatment of the redundant positions.

Figure 5. Symbolic representation of step 1 in adding two SDB
hybrid-redundant numbers.

We next demonstrate, in detail, the application of
Algorithm 1 to addition with SDB hybrid-redundant
representation. We also briefly examine the use of
this algorithm for other variants. We show that steps
1 and 2 take constant time, whereas step 3, which
needs intradigit carry propagation, can be performed
in O(log d) time at best, where d is the longest distance
between two redundant positions.

Without loss of generality we show the application
of Algorithm 1 for radix-2h periodic SDB hybrid-
redundant operands, where each digit includes a full
h-posibit primed component, extending from position
0 to h − 1, and one inverted-negabit double-primed
component in position h, overlapping with the
least-significant primed posibit component of the next
higher digit.

Figure 5 depicts step 1 of Algorithm 1 for 4-
digit radix-16 SDB hybrid-redundant operands, where
T(i+1)h,t(i+1)h−1...tih(i = 1, 2, 3, and h = 4), represent
the sign extended 2’s-complement sum of two inverted
negabits in position ih. For uniformity in treating posi-
tions whose indices are multiples of 4, we have placed
a 1 in position 4 as the code for an inverted negabit
of value 0. Table 6 and Fig. 6 depict the truth table
and logic implementation (actually a half-adder) for
deriving the 2’s-complement sum.

The results of applying step 2 on the 4-deep WBS
number of Fig. 5 is shown as the 3-deep WBS number

Table 6. Combining of the double-primed components for SDB
hybrid addition.

A′ ′
ih B′ ′

ih Sum T(i+1)h t(i+1)h−1 . . . tih+1 tih

0 0 −2 0 1...1 0

0 1 −1 0 1...1 1

1 0 −1 0 1...1 1

1 1 0 1 0...0 0



Universal Addition Scheme for Hybrid-Redundant 155

Figure 6. Circuit for reducing the second components of Fig. 5.

in Fig. 7. The first row of full-adders in Fig. 8 consti-
tutes the required hardware, whose operation can start
at the same time as that of the circuit of Fig. 6. Step 3
is performed by an (h − 1)-bit carry-propagate adder
in the second row of Fig. 8. The full-adder in position
ih receives two posibits and one inverted negabit and
generates an inverted negabit sum along with a posibit
carry. The posibit carry-out of the full-adder in posi-
tion ih − 1 (i.e., s′

ih in Fig. 8) is held in position ih
and will not propagate beyond there. This bit, together
with the inverted negabit sum S′′

ih of the full-adder in
position ih, form the SDB redundant digit of the result
in the same position as that of the operands; hence the
representational closure property.

The total delay of the adder above is equal to that
of h + 1 full-adders, which is the same as that of our
simpler implementation in Section 2, given that h =
d + 1. Note that any carry acceleration method can
be applied in a straightforward manner to reduce the
delay due to h cascaded FAs within the second row in
the design of Fig. 8.

Implementation of an adder for SDB hybrid-
redundant numbers is given in [6], where intradigit
borrow (as well as carry) propagation and the look-
back mechanism complicate the adder cells for nonre-
dundant and redundant positions, respectively. Further-
more, the use of specialized cells makes standard carry
acceleration logic inapplicable.

The implementation above works for BSD hybrid
numbers as well, for it is the same as SDB hybrid,
except that the second component is right shifted by
one position. As for the SDC hybrid case, we can use
the circuit in Fig. 6 to get a 2-bit sum of the double
primed posibits (no extension is needed here). The re-

Figure 7. Step 3 of addition for SDB hybrid-redundant numbers.

Figure 8. Representationally closed adder for SDB hybrid-
redundant numbers.

maining steps can be followed in Fig. 9. Due to the
limited extension in step 1, some positions remain 2-
deep. Therefore the corresponding FAs of the first row
of Fig. 8 may be replaced by HAs. The SC hybrid
representation can be handeled similarly due to its re-
semblance to SDC hybrid.

For SBC hybrid (with double-position redundant
digit) and symmetric hybrid numbers, due to exis-
tence of negabits in nonredundant positions, step 1
of Algorithm 1 needs to be applied somewhat dif-
ferently. Figure 10 depicts the situation for symmet-
ric hybrid-redundant numbers, where 0 (1) indicates
a posibit (negabit) with constant value 0. In step 1,
we make a 1-deep sum of the negabits as well as
that of double-primed posibits in redundant positions.
Moreover, the reduction to a 2-deep WBS number
takes two steps. The generated bits in the leftmost col-
umn have been discarded in the final result. A collec-
tive nonzero value of those bits indicates an overflow
condition.

Figure 9. Representationally closed addition for SDC hybrid-
redundant operands.



156 Jaberipur et al.

Figure 10. Representationally closed addition of symmetric
hybrid-redundant operands.

The same scheme works for SBC hybrid-redundant
case, because the encoding is the same, except that
the double-primed components have been left-shifted
to the next redundant position. The latency is equal
to that of h + 1 FAs and 1 HA. Given that the cir-
cuit of Fig. 6 is actually a half-adder, the complexity
of the symmetric hybrid-redundant adder amounts to
three FAs per posibit nonredundant position, two FAs
plus two HAs per redundant position, and two FAs plus
one HA per negabit nonredundant position. Recall that
our uniform representationally nonclosed adder of Sec-
tion 2 had one FA per nonredundant position and two
FAs per redundant position. The added complexity is
the price paid for symmetry and representational clo-
sure. The delay penalty, however, is mimimal, given
that the total adder latency is increased only by that of
a half-adder.

5. Multiplication of Hybrid-Redundant Numbers

The first step of multiplying two extended hybrid-
redundant numbers (or canonical WBS numbers) is
to derive the partial product bit-matrix composed of
posibits and negabits. Figure 11 depicts the required

gates in this step for three possible combinations of
posibits and negabits, where upper (lower) case vari-
ables indicate negabits (posibits).

We have shown elsewhere [15] that any (ν ; µ)-
compressor receiving v equally weighted posibits and
negabits in position i produces µ posibits and negabits
in positions i through i + µ − 1 such that inputs and
outputs have the same collective values. Here we show
a similar result for the widely used (4; 2) compressor
which recieves 5 equally weighted bits in position i
(one of them normally being a carry from position i −
1), producing two equally weighted bits in position i
+ 1 and one bit in the same position i (Fig. 12a). The
compression process is goverened by the following
equation [17]:

x ′
1 + x ′

2 + x ′
3 + x ′

4 + x ′
5 = 2(c′ + c′′) + s ′

The arithmatic value α(X) of an inversely encoded
negabit X can be expressed in terms of its logical value
as α(X) = X− 1. Replacing any of the posibits in the
equation above by a negabit will add −1 to the left
hand side of the equation, which should be compen-
sated for by adding −1 to the right-hand side. The
appearance of one, three, or five negabits on the left-
hand side, as depicted in Fig. 12, causes the same
number of −1s to be added to the right-hand side.
These −1s could be absorbed by the sum bit s′, and
zero, one, or two carry bits, respectively, thus turn-
ing to negabits with the same logical values. Two or
four negabits on the left-hand side would similarly turn
one or two of the carry bits to negabits, respectively.
Note that usability of a conventional (4; 2) compres-
sor to reduce any collection of 5 negabits and posibits
is independent of the hardware implementation of the
compressor.

Any partial product bit-matrix can be reduced to a
2-deep WBS number, by using (4; 2) compressors, and
also (3; 2) counters if needed. The resulting 2-deep
WBS number can be reduced to a nonredundant
2’s-complement number through carry accelaration
circuits. It can also be converted to a desired WBS

Figure 11. Basic gates for derivation of the partial-product bits.



Universal Addition Scheme for Hybrid-Redundant 157

Figure 12. Reduction of alternate collections of 5 negabits and
posibits.

encoding (e.g., that of the input operands) through
conversion process given in [3].

6. Conclusion

In this paper, we have revisited the previously stud-
ied classes of hybrid-redundant numbers by viewing
them as subclasses of weighted bit-set (WBS) encod-
ings of redundant representations. We showed that
the class of canonical WBS-encoded numbers cov-
ers all the variants of the hybrid-redundant numbers
previously considered. Moreover, the class of canon-
ical WBS-encoded numbers with a single negabit in
some positions represents a new variant of hybrid-
redundant numbers where arbitrary nonredundant po-
sitions may hold negabits; this is in contrast to stan-
dard hybrid redundancy which is restricted to contain-
ing only posibits in all nonredundant positions. We
noted that this possibility allows for designing new
symmetric variants of hybrid-redundant numbers with
arbitrary spacing between redundant positions, some-
thing not previously accomplished. The new variants,
and the flexibility in choosing the encodings for ex-
isting systems, allow for optimizations not otherwise
possible.

We showed that inverted encoding of negabits leads
to the use of a conventional full-adders for the re-
duction of any set of three equally weighted posibits
and negabits to two bits, one with the same weight
and the other with double the weight. Using this
fact, we provided the high-level design for a univer-
sal hybrid-redundant adder capable of adding two ex-
tended hybrid-redundant numbers (or canonical WBS
numbers) with advantages over previous implementa-
tions of hybrid redundancy in terms of circuit regu-
larity, possibility of using standard carry acceleration
techniques, shorter critical-path delay, and lower com-
plexity. With regard to the latter, 1 (2) full-adder(s)

per nonredundant (redundant) position is required.
We further explored representationally closed addi-
tion schemes, with the additional advantage of greater
reusability, for all variants of hybrid-redundant num-
bers, including the new symmetric variants introduced
in this paper. Finally we showed a new functionality
of the popular (4; 2) compressors in reducing any col-
lection of five equally weighted posibits and negabits,
and used it in the high-level design of a multiplier for
extended hybrid-redundant numbers.

Research on the representational power of WBS
encodings, and their various applications in the de-
sign of fast arithmetic circuits in signal processing
and general-purpose ALUs, is continuing. Problems
currently being addressed include refinement of theo-
ries for (extended) WBS-encoded representations and
deriving design details for the associated multipliers,
dividers, and other useful arithmetic operators. Ad-
ditionally, generalization of concepts and implemen-
tation methods to arbitrary two-valued digits (twits),
such as those belonging the set {−1, 1}, have been and
are being considered [18].

References

1. A. Avizienis, “Signed-Digit Number Representations for Fast
Parallel Arithmetic,” IRE Trans. Electronic Computers, vol. 10,
1961, pp. 389–400.

2. B. Parhami, “Generalized Signed-Digit Number Systems:
A Unifying Framework for Redundant Number Representa-
tions,” IEEE Trans. Computers, vol. 39, no. 1, 1990, pp. 89–
98.

3. G. Jaberipur, B. Parhami, and M. Ghodsi, “Weighted Bit-Set
Encodings for Redundant Digit Sets: Theory and Applications,”
in Proc. 36th Asilomar Conf. Signals Systems and Computers,
Nov. 2002, pp. 1629–1633.

4. C.R. Baugh and B.A. Wooley, “A Two’s Complement Parallel
Array Multiplication Algorithm,” IEEE Trans. Computers, vol.
22, 1973, pp. 1045–1047.

5. H. Kobayashi, “A Mutioperand Two’s Complement Addition
Algorithm,” in Proc. 7th IEEE Symp. Computer Arithmetic,
June 1985, pp. 16–19.

6. D.S. Phatak and I. Koren, “Constant-Time Addition and Simul-
taneous Format Conversion Based on Redundant Binary Repre-
sentations,” IEEE Trans. Computers, vol. 50, no. 11, 2001, pp.
1267–1278.

7. M.D. Ercegovac, “Effective Coding for Fast Redundant Adders
Using the Radix-2 Digit Set {0, 1, 2, 3},” in Proc. 31st Asilomar
Conf. Signals Systems and Computers, Nov. 1997, pp. 1163–
1167.

8. B. Parhami, “Comments on ‘High-Speed Area-Efficient Multi-
plier Design Using Multiple-Valued Current-Mode Circuits’,”
IEEE Trans. Computers, vol. 45, no. 5, 1996, pp. 637–
638.



158 Jaberipur et al.

9. G. Jaberipur, B. Parhami, and M. Ghodsi, “A Class of Stored-
Transfer Representations for Redundant Number Systems,” in
Proc. 35th Asilomar Conf. Signals Systems and Computers, Nov.
2001, pp. 1304–1308.

10. D.S. Phatak and I. Koren, “Hybrid Signed-Digit Number Sys-
tems: A Unified Framework for Redundant Number Represen-
tations with Bounded Carry Propagation Chains,” IEEE Trans.
Computers, vol. 43, no. 8, 1994, pp. 880–891.

11. M.I. Ferguson and M.D. Ercegovac, “A Multiplier with Redun-
dant Operands,” in Proc. 33rd Asilomar Conf. Signals Systems
and Computers, Oct. 1999, pp. 1322–1326.

12. B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, Oxford, 2000.

13. A. Mignotte, J.M. Muller, and O. Peyran, “Synthesis for Mixed
Arithmetic,” Design Automation for Embedded Systems, vol. 5,
no. 1, 2000, pp. 29–60.

14. M. Daumas and D.W. Matula, “Further Reducing the Redun-
dancy of a Notation Over a Minimally Redundant Digit Set,” J.
VLSI Signal Processing, vol. 33, 2003, pp. 7–18.

15. G. Jaberipur, “Frameworks for the Exploration and Implemen-
tation of Generalized Carry-Free Redundant Number Systems,”
PhD Dissertation, Sharif Univ. Tech., Tehran, Iran, Dec. 2004.

16. P. Kornerup, “Necessary and Sufficient Conditions for Parallel,
Constant Time Conversion and Addition,” in Proc. 14th IEEE
Symp. Computer Arithmetic, April 1999, pp. 152–155.

17. I. Koren, Computer Arithmetic Algorithms, 2nd edition, A.K.
Peters, 2002.

18. G. Jaberipur, B. Parhami, and M. Ghodsi, “Weighted Two-
Valued Digit-Set Encodings: Unifying Efficient Hardware Rep-
resentation Schemes for Redundant Number Systems,” IEEE
Trans. Circuits and Systems—I: Regular Papers, vol. 52, no. 7,
July 2005, pp. 1348–1357.

Ghassem Jaberipur received BS in electrical engineering and PhD
in computer engineering from Sharif University of Technology in
1974 and 2004, respectively, MS in engineering (majoring in com-
puter hardware) from University of California, Los Angeles, in 1976,
and MS in computer science from University of Wisconsin, Madison,
in 1979. Since 1979, he has been with the Department of Electrical
and Computer Engineering, Shahid Beheshti University, in Tehran,
Iran, teaching courses in compiler construction, automata theory, de-
sign and implementation of programming languages, and computer
arithmetic.
jaberipur@sbu.ac.ir

Behrooz Parhami (PhD, University of California, Los Angeles,
1973) is Professor of Electrical and Computer Engineering at Uni-
versity of California, Santa Barbara. He has research interests in
computer arithmetic, parallel processing, and dependable comput-
ing. In his previous position with Sharif University of Technology
in Tehran, Iran (1974–88), he was also involved in educational plan-
ning, curriculum development, standardization efforts, technology
transfer, and various editorial responsibilities, including a five-year
term as Editor of Computer Report, a Persian-language comput-
ing periodical. His technical publications include over 200 papers
in peer-reviewed journals and international conferences, a Persian-
language textbook, and an English/Persian glossary of computing
terms. Among his publications are three textbooks on parallel pro-
cessing (Plenum, 1999), computer arithmetic (Oxford, 2000), and
computer architecture (Oxford, 2005). Dr. Parhami is a Fellow of
both the IEEE and the British Computer Society, a member of the
Association for Computing Machinery, and a Distinguished Member
of the Informatics Society of Iran for which he served as a founding
member and President during 1979-84. He also served as Chairman
of IEEE Iran Section (1977-86) and received the IEEE Centennial
Medal in 1984.
parhami@ece.ucsb.edu
www.ece.ucsb.edu/Faculty/Parhami

Mohammad Ghodsi Mohammad Ghodsi received BS in electrical
engineering from Sharif University of Technology (SUT, Tehran,
Iran) in 1975, MS in electrical engineering and computer science
from University of California at Berkeley in 1978, and PhD in com-
puter science from the Pennsylvania State University in 1989. He has
been affiliated with SUT as a faculty member since 1979. Presently,
he is a Professor in SUT’s Computer Engineering Department. His
research interests include design of efficient algorithms, parallel and
systolic algorithms, and computational geometry.
ghodsi@sharif.edu


