
Noname manuscript No.
(will be inserted by the editor)

Maximin share Guarantee for Goods with Positive
Externalities

Masoud Seddighin* · Hamed Saleh ·
Mohammad Ghodsi

Received: date / Accepted: date

Abstract One of the important yet insufficiently studied subjects in fair allo-
cation is the externality effect among agents. For a resource allocation problem,
externalities imply that the share allocated to an agent may affect the utilities
of other agents.

In this paper, we conduct a study of fair allocation of indivisible goods
with positive externalities. Inspired by the models in the context of network
diffusion, we present a simple and natural model, namely network externalities,
to capture the externalities. To evaluate fairness in the network externalities
model, we generalize the idea behind the notion of maximin-share (MMS) to
achieve a new criterion, namely, extended-maximin-share (EMMS). Next, we
consider two problems concerning our model.

First, we discuss the computational aspects of finding the value of EMMS
for every agent. For this, we introduce a generalized form of partitioning prob-
lem that includes many famous partitioning problems such as maximin, mini-
max, and leximin. We further show that a 1/2-approximation algorithm exists
for this partitioning problem.

Next, we investigate approximate EMMS allocations, i.e., allocations that
guarantee each agent a utility of at least a fraction of his extended-maximin-
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share. We show that under a natural assumption that the agents are α-self-
reliant, an α/2-EMMS allocation always exists. This, combined with the former
result yields a polynomial-time α/4-EMMS allocation algorithm.1

Keywords Fairness · Maximin-share · Externalities

1 Introduction

Consider a scenario where there is a collection of m indivisible goods that are
to be divided amongst n agents. For a properly chosen notion of fairness, we
desire our division to be fair. Motivating examples are dividing the inherited
wealth among heirs, dividing assets of a bankrupt company among creditors,
divorce settlements, task assignments, etc.

Fair division has been a central problem in Economic Theory. This subject
was first introduced in 1948 by Steinhaus [28]. The primary model used the
metaphor of cake to represent a single divisible resource that must be divided
among a set of agents. Proportionality is one of the most well-studied notions
defined to evaluate the fairness of a cake division protocol. An allocation of a
cake to n agents is proportional if every agent feels that his allocated share is
worth at least 1/n of the entire cake. Despite many positive results for propor-
tionality in cake-cutting, moving beyond the metaphor of cake, the problem
becomes more subtle. For example, when the resource is a set of indivisible
goods, a proportional allocation is not guaranteed to exist for all instances. For
example, consider two agents and a single indivisible item. In any allocation
scenario for this case, one of the agents receives nothing.

For allocation of indivisible goods, Budish [10] introduced a new fairness
criterion, namely maximin-share, that attracted a lot of attention in recent
years [14,7,6,29,23,3,27]. This notion is a relaxation of proportionality for
the case of indivisible items. Assume that we ask agent i to distribute the
items into n bundles, and take the bundle with the minimum value. In such
a situation, agent i distributes the items in a way that maximizes the value
of the minimum bundle. The maximin-share value of agent i is equal to the
value of the minimum bundle in the best possible distribution. Formally, the
maximin-share of agent i, denoted by MMSi, for a setM of items and n agents
is defined as

max
P=〈P1,P2,...,Pn〉∈Π

min
j
Vi(Pj),

where Π is the set of all partitions of M into n bundles, and Vi(Pj) is the
value of bundle Pj to agent i. In a nice paper, Procaccia and Wang [27] show
that in some instances, no allocation can guarantee maximin-share to all the
agents, but an allocation guaranteeing each agent 2/3 of his maximin-share
always exists. This factor has been later improved to 3/4 by Ghodsi et al. [14].

Our goal in this paper is to generalize the notion of maximin-share to
the environment with externalities. Roughly speaking, externalities are the

1 A version of this work is accepted in TheWebConf (WWW) 2019.
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influences (costs or benefits) incurred by other parties. The consequences of
various economic activities on third parties are studied by both economists
and computer scientists. For resource allocation problems, externalities imply
that the bundle allocated to an agent may affect the utility of the other agents.
These externalities can be either positive or negative. In this work, we assume
that the externalities are non-negative, which is a common assumption in
the literature [17,9,25].

There are many reasons to consider externalities in an allocation prob-
lem. The goods to be divided might exhibit network effects. For example, the
value of an XBox to an agent increases as more of his friends also own an
XBox, since they can play online. Many merit goods generate positive con-
sumption externalities. In healthcare, individuals who are vaccinated entail
positive externalities to other agents around them, since they decrease the
risk of contraction. Furthermore, allocating a good to an agent might exert
externalities on his friends since they can borrow it.

We wish to take one step toward understanding the impact of externalities
in the fair allocation of indivisible items. The messages of our paper can be
summarized as follows. First, considering the externalities is important: the
value of EMMS (the generalization we define to adapt MMS to the environment
with externalities) and MMS might have a large gap. In fact, we show that
even a small amount of influence can result in an unbounded gap between
these two notions. Thus, when the externalities are not negligible, methods
that guarantee MMS to all the agents might no longer be useful. Second,
with respect to our model and fairness notion, we can approximately maintain
fairness in the environment with positive externalities. In Section 1.1, we give
a more detailed explanation of our results and techniques.

1.1 Our Contribution

We start by proposing a general model to capture the externalities in a fair
allocation problem under the additive assumption. Although we present some
of our results with respect to this general model, our focus is on a more re-
stricted model, namely network externalities, where the influences imposed by
the agents can be represented by a weighted directed graph. This model is
inspired by the well-studied models in the context of network diffusion.

We suggest the extended-maximin-share (EMMS) notion to adapt maximin-
share to the environment with externalities. Similar to maximin-share, our
extension is motivated by the maximin strategy in a cut-and-choose game. We
discuss two aspects of our notion.

First, we discuss the hardness of computing the value of EMMSi, where
EMMSi is the extended-maximin-share of agent i. We introduce a generalized
form of the partition problem that includes many famous partition problems
such as maximin, minimax, and leximin partitioning problems. This general-
ized problem is NP-hard due to a trivial reduction from the classic partition
problem. In Section 5, we propose a 1/2-approximation algorithm for comput-
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ing EMMSi (Theorem 1). In fact, we show that the LPT method, which is a
famous greedy algorithm in job scheduling, guarantees 1/2-approximation for
the general partition problem. We also reveal several structural properties of
such partitions.

Second, we consider the approximate α-EMMS allocations, that is, allo-
cations that guarantee every agent a utility of at least a fraction α of his
extended-maximin-share. We define the property of β-self-reliance and show
that when the agents are β-self-reliant, there exists an allocation that guar-
antees every agent i a utility of at least β/2-EMMSi (Theorem 2). This is
our most technically involved result. The basic idea behind our method is
as follows: every agent has an expectation value which estimates the utility
that he must gain through the algorithm. Initially, the expectation value of
agent i is at least EMMSi/2. In every step of the algorithm, we choose an
agent and allocate him a bundle with a value at least as his expectation value.
Based on this allocation, we decrease the expectation value of the remain-
ing agents. The process of updating the expectation values is a fairly complex
process which we describe in Section 6.2. The analysis of the algorithm is tech-
nically involved and heavily exploits the structural properties of the general
partitioning problem. Finally, a combination of our existential proof with the
1/2-approximation algorithm for computing EMMS yields a polynomial time
β/4-EMMS allocation algorithm.

2 Related Work

Maximin-share has received a lot of attention over the past few years [14,
19,15,23,13,5,1,29,2,3,27,8,4]. The counter-example suggested by Procaccia
and Wang [27] refutes the existence of any allocation with the maximin-share
guarantee. In addition, Procaccia and Wang propose the first approximation
algorithm that guarantees each agent 2/3 of his maximin-share. Recently, Gh-
odsi et al. [14] improve the approximation ratio to 3/4. For the special case
of 3 agents, Procaccia and Wang [27] prove that guaranteeing 3/4 of every
agent’s maximin-share is always possible. This factor is later improved to 7/8
by Amanatidis et al. [3] and to 8/9 by Gourvès and Monnot [15]. Kurokawa
et al. [23] show that when the valuations are drawn at random, an allocation
with maximin-share guarantee exists with a high probability, and it can be
found in polynomial time.

Other studies generalize maximin-share for different settings. For exam-
ple, Farhadi et al. [13] generalize maximin-share to the case of asymmetric
agents with different entitlements. They introduce the weighted-maximin-share
(WMMS) criterion and propose an allocation algorithm with a 1/2-WMMS
guarantee. Suksompong [29] considers the case that the items must be allo-
cated to groups of agents. Gourvès and Monnot [15] extend maximin-share to
the case that the goods collectively received by the agents satisfy a matroidal
constraint and propose an allocation with a 1/2 maximin-share guarantee.
Ghodsi et al. [14] and Barman et al. [7] consider maximin share guarantee
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for general valuation functions such as submodular, XOS, and subadditive set
functions. Li and Vetta consider maximin share for the case where the items
form a hereditary set system and propose an algorithm that allocates every
agent a share with value at least 11/30-MMS.

In recent years, considering externalities for different economic activities
has received an increasing attention in computer science [21,17,9,25,24,4,26,
20]. For example, Haghpanah et al. [17] study auction design in the presence
of externalities. In their setting, a bidder’s value for an outcome is a fixed
private value times a certain submodular function of the share of his friends.
Indeed, our model can be considered as a special case of their model, where
the externalities is a linear function of the allocation of ones friends. Velez
studies the fair allocation of indivisible goods and money with externalities
[30]. In their setting, there are n agents and n items, each agent must receive
one item and an amount of money. They consider two types of externalities.
In their first setting, an agent loses utility when his perception of the value
of the share of others deviates from the value of his own share. In another
setting, they consider the case that externalities are a linear function of the
money allocated to the other agents.

In a more related work, Brânzei et al. [9] consider positive externalities
in the cake cutting problem. They introduce a model for cake cutting with
externalities and generalize classic fairness criteria to the case with positive
externalities. In their model each agent i has n value density functions vi,j(x)
for 1 ≤ j ≤ n, where vi, j(x) determines the value that i receives when x is
allocated to agent j.

Following this work, Li et al. [25] study truthful and fair methods for
allocating a divisible resource with positive externalities. In their model, the
utility of an agent for the allocation is his valuation for his share plus certain
ratio of other agents’ valuations for their shares. In contrast to our model,
in their model the utility of an agent depends on the valuations reported by
other parties.

3 Model

Throughout the paper, we assume M is a set of m indivisible items that
must be fairly allocated to a set N = [n] of agents, where [n] denotes the set
{1, 2, . . . , n}. We introduce our model in Section 3.1 and our fairness criterion
in Section 3.2.

3.1 Modeling the Externalities

We start by proposing a general model to represent the externalities. In the
general externalities model, we suppose that for every item b, Vi,j(b) reflects
the utility that agent i receives by allocating b to agent j. In this model, there
is no restriction on the value of Vi,j(·), except that for every item b, Vi,j(b) ≥ 0.
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b1 b2 b3
1 1,5,2 4,6,1 7,1,0
2 3,8,5 1,8,7 4,6,9
3 1,5,3 6,5,7 5,4,1

Table 1 An instance in the general externalities model

Total utility of agent i for an allocation is defined to be the sum of utilities he
receives by every item, i.e.,

Ui =
∑
b∈M

Vi,jb(b)

where jb is the index of the agent whose item b is allocated. For example,
consider the instance with 3 items and 3 agents demonstrated in Table 1. In
this table, for each agent i and item bj , three values are given, where the k’th
value shows the utility gained by agent i, if we allocate bj to agent k. For this
instance, if we allocate each item bi to agent i, we have:

U1 = 1 + 6 + 0 = 7,

U2 = 3 + 8 + 9 = 20,

U3 = 1 + 5 + 1 = 7.

The main focus of the paper is on a more restricted model where the exter-
nalities are due to the relationships between agents. For example, friends may
share their items with a probability which is a function of their relationship. In
this model, each agent i has a valuation function Vi, where for each bundle S,
Vi(S) represents the happiness of agent i, if we allocate S to him. We assume
that Vi(·) is additive, i.e., for every bundle S,

Vi(S) =
∑
bj∈S

Vi(bj).

In addition, we consider a directed weighted graph G where for every pair

of vertices i and j, the weight of edge (
−→
i, j), denoted by wi,j , represents the

influence ratio of agent j on agent i. We refer such a graph as influence graph. If
we allocate item b to agent j, the utility gained by agent i from this allocation
would be Vi(b) ·wi,j . For convenience, we define wi,i = 1 for every agent i and
wj,i = 0, for every agent j which is not connected via a directed edge to i. It is
natural to assume wi,j ≤ 1 for every i 6= j, which means every agent i derives
less utility from some other agent receiving a good than he himself.

For instance, consider the example illustrated in Figure 1. For the allocation
that allocates every item bi to agent i (1 ≤ i ≤ 5), the total utility of the agents
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Fig. 1 An instance in the network externalities model

would be

U1 = 5 + 5 · 0.2 = 6,

U2 = 2,

U3 = 3 + 5 · 0.2 + 2 · 0.3 = 4.6,

U4 = 9 + 8 · 0.1 + 2 · 0.4 = 10.6,

U5 = 4 + 8 · 0.25 + 7 · 0.2 = 7.4.

We call such a model the network externalities model.

Definition 1 For the network externalities model, we say agent i is α-self-
reliant, if

1∑
1≤j≤n wi,j

≥ α (1)

It’s worth pointing out that the 1 in the numerator of Equation (1) refers
to wi,i. As an example, in Figure 1 agent 4 is 2/3-self-reliant and agent 2 is
1-self-reliant. In real-world situations, we expect α to be a value close to 1.
In other words, we expect an agent to be far more satisfied, when we allocate
an item to him rather than allocating it to the other parties. However, being
α-self-reliant for α very close to 1 (but not equal) doesn’t mean that we can
ignore the externalities. We discuss more on this in Section 6.

Definition 2 For every agent i, we define the influence vector of agent i,
denoted by xi↑ = [xi,1,xi,2, . . . ,xi,n] as the vector representing the influences
of the agents on agent i in the influence graph, in a non-decreasing order
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(we use symbol ↑ in the subscription to remind the non-decreasing order of
influence vectors).

As mentioned, we suppose that for every agent i, we have wi,i = 1. As an
example, for the graph in Figure 1, we have

x1↑ = [0, 0, 0, 0.2, 1],

x2↑ = [0, 0, 0, 0, 1],

x3↑ = [0, 0, 0.2, 0.3, 1],

x4↑ = [0, 0, 0.1, 0.4, 1],

x5↑ = [0, 0, 0.2, 0.25, 1].

3.2 Extended Maximin Share

In this paper, we introduce the extended maximin-share (EMMS) criterion.
As mentioned, the maximin-share (MMS) notion was introduced by Budish
[10] as a fairness criterion in the division of indivisible items. In Section 1,
we gave a formal definition of this notion. The intriguing fact about MMS
solution is that it can be motivated by the “cut and choose” game. In this
game, an agent divides the items into n bundles and lets other agents choose
their bundle first. In the worst-case scenario, the least valued bundle remains,
and hence the maximin strategy is to divide the items in a way that the
minimum bundle is as attractive as possible. In contrast to proportionality
and envy-freeness, guaranteeing a constant fraction of the maximin-share to
all the agents is always possible [27,14].

To extend maximin-share to the case of the agents with externalities, again
we consider the worst-case scenario in a “cut and choose” game which incor-
porates externalities. Suppose that an agent divides the items into n bundles,
and other agents somehow distribute these bundles (one bundle to each agent).
The maximin strategy of this agent is to divide the items in a way that max-
imizes his utility in the worst possible scenario (a scenario that minimizes his
utility). We define the extended-maximin-share of agent i as his maximin value
in a “cut and choose” game with externalities.

Every allocation of items to the agents is defined as a pair (P, σ), where σ
is a permutation of [n], and P = 〈P1, P2, . . . , Pn〉 is a partition of M into n
bundles with the following properties:

– For every i, j where i 6= j, we have Pi ∩ Pj = ∅.
– ∪iPi =M.

For an allocation pair (P, σ), we allocate bundle Pi to σi. Therefore, the utility
of agent i for allocation pair (P, σ) is

Ui(P, σ) =
∑

1≤j≤n

Vi,σ(j)(Pj).
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Fig. 2 Another instance in the network externalities model

For example, consider the instance shown in Figure 2 and let

P = 〈P1, P2, P3〉 = 〈{b1, b3}, {b2, b5}, {b4}〉

be a partition of the items into three bundles. For σ = 1, 2, 3, we have

U1(P, σ) = (5 + 2) + (6 + 4) · 0.8 = 15,

U2(P, σ) = (9 + 5) · 0.65 + (2 + 1) = 12.1,

U3(P, σ) = (2 + 3) · 0.6 + (0 + 6) · 0.2 + 5 = 9.2.

The worst permutation of P for agent i, denoted by ωi(P ), is the permu-
tation of [n] that minimizes the utility of agent i:

ωi(P ) = arg min
σ∈Σ

Ui(P, σ),

where Σ is the set of all n! different permutations of [n]. For example, in Figure
2, the worst permutation of P = 〈{b1, b3}, {b2, b5}, {b4}〉 for agent 1 is [2, 3, 1]
which allocates P3 to agent 1, P2 to agent 3, and P1 to agent 2. The utility of
agent 1 for this permutation is 3+7 ·0.8 = 8.6. Similarly, the best permutation
of P is defined as:

βi(P ) = arg max
σ∈Σ

Ui(P, σ).

Again, the best allocation of P for agent 1 is [2, 1, 3], which allocates P2 to
agent 1, P1 to agent 2, and P3 to agent 3 and results in the utility of 10+7·0.8 =
15.6 for agent 1. When the agent and the partition is clear from the context,
we refer the best and worst permutation by β and ω, respectively.For example,
we use Ui(P, ω) instead of Ui(P, ωi(P )).

Finally, the extended-maximin-share of agent i, denoted by EMMSi, is
defined as:

EMMSi = max
P∈Π

Ui(P, ω),
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where Π is the set of all partitions of M into n non-empty subsets. We also
define the Optimal EMMS partition of M for agent i, denoted by Oi↓, as the
partition that determines the value of EMMSi,

Oi↓ = arg max
P∈Π

Ui(P, ω).

We assume that the bundles in Oi↓ = 〈Oi,1, Oi,2, . . . , Oi,n〉 are sorted by their
non-increasing values for agent i, i.e., for all j, Vi(Oi,j) ≥ Vi(Oi,j+1) (we use ↓
in the subscription to remind the non-increasing order of the bundles). We also
suppose that vi↓ = [vi,1,vi,2, . . . ,vi,n] is a vector representing values of the
bundles in the optimal EMMS partition of agent i, i.e., vi,j = Vi(Oi,j). Again,
we note that the values in vi↓ are non-increasing. Following Rearrangement
inequality [18] 2 we have:

EMMSi =
∑

1≤j≤n

vi,j · xi,j .

It can be easily verified that for agent 1 in Figure 2, we have

O1↓ = 〈{b1, b3}, {b4, b5}, {b2}〉

which means v1↓ = [7, 7, 6]. Since xi↑ = [0, 0.8, 1], we have

EMMS1 = U1(Oi↓, ω)

= 7 · 0 + 7 · 0.8 + 1 · 6 = 11.6.

Finally, an α-EMMS fair allocation problem with the externalities is defined
as follows: is there an allocation such that every agent i receives a utility of at
least α · EMMSi?

3.3 Average allocations

We also introduce average-share which can be seen as an extension of pro-
portionality to the environments with externalities. Average-share plays an
important role in analyzing our algorithm for finding the (approximately) op-
timal EMMS partitions in Section 5.

Definition 3 (average-share) The average value of item b for agent i, de-
noted by V i(b), is defined as ∑

j

Vi,j(b)/n.

2 A simple form of this inequality states that for every choice of real numbers x1 ≤ x2 ≤
. . . ≤ xn and y1 ≥ y2 ≥ . . . ≥ yn and every permutation σ of [n], we have:

x1y1 + x2y2 + . . .+ xnyn ≤ xσ(1)y1 + xσ(2)y2 + . . .+ xσnyn.
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The average-share of agent i is

V i(M) =
∑
b∈M

V i(b).

Furthermore, an allocation is said to be average, if the total utility of every
agent from this allocation would be at least as his average-share.

For the case of network externalities we have

V i(M) = (Vi(M)/n) ·
∑
j

wi,j . (2)

As an example, for the agents in Figure 2 we have

V 1(M) = (1.8/3) · 20 = 12,

V 2(M) = (1.65/3) · 19 = 10.45,

V 3(M) = (1.8/3) · 16 = 9.6.

As we show in Section 4, this notion is stronger than extended maximin-
share. However, no approximation of this notion can be satisfied even for very
simple scenarios.

Remark 1 We emphasize our assumption that the externalities and the valu-
ations are all non-negative. Even though the definition of EMMS and average-
share and our method for approximating EMMS remain valid for negative
externalities, our α-EMMS allocation algorithm essentially relies on positive
externalities.

4 Basic Observations

In Section 3, we introduced two notions: average-share, and extended-maximin-
share. For a better understanding of these notions, here we briefly compare
them in the general externalities model. First, in Lemma 1, we prove that
average-share is stronger than extended-maximin-share.

Lemma 1 For every agent i we have EMMSi ≤ V i(M).

Proof. Let σ1, σ2, . . . , σn be n different permutations, where

σk(j) = ((j + k) mod n) + 1.

Since in the total of these n allocations, each item is allocated to each agent
once, we have ∑

1≤j≤n

Ui(Oi↓, σj) =
∑

1≤j≤n

Vi,j(M).
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Thus, the worst allocation among these n allocations has a utility of at most

∑
1≤j≤n

Vi,j(M)/n = V i(M)

for agent i. As a result, EMMSi = Ui(Oi↓, ω) ≤ V i(M).

By a similar argument as in the proof of Lemma 1 we can show that for
an arbitrary partition P ,

V i(M) ≤ Ui(P, β).

Therefore, for any partition P we have

EMMSi ≤ Ui(P, β).

In Lemma 2, we show that for n = 2, a cut and choose method guarantees
EMMSi to both the agents.

Lemma 2 For two agents, the following two step algorithm yields a 1-EMMS
allocation:

– Ask the first agent to partition the items into his optimal EMMS partition
O1↓.

– Ask the second agent to allocate O1↓ (one bundle to each agent).

Proof. We know U2(O1↓, β2(O1↓)) ≥ EMMS2. Furthermore, since permutation
ω1(O1↓) determines the value of EMMS1, we have:

U1(O1↓, β2(O1↓)) ≥ EMMS1.

Note that there are instances with two agents such that no approximation
of average-share can be guaranteed. For example, when there is only one item
with value 1 to both the agents, and no externalities. We later establish another
difference between these two notions by providing an allocation algorithm that
approximately guarantees extended maximin-share.

In Table 4, you can find a summary of the notations and definitions pro-
vided in this section.
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Notation Description

Pi↓ Bundles in partition P are ordered by

their non-increasing values for agent i

Ui(P, σ) Utility of agent i for allocation (P, σ)

βi(P ) Best allocation of partition P for agent i

ωi(P ) Worst allocation of partition P for agent i

Oi↓ = 〈Oi,1, Oi,2, . . . , Oi,n〉 Optimal partition of agent i

xi↑ = [xi,1,xi,2, . . . ,xi,n] Influence vector of agent i (non-dec)

vi↓ = [vi,1,vi,2, . . . ,vi,n] value vector of Oi (non-inc)

EMMSi = Ui(Oi↓, ω) = vi↓ · xi↑ Extended-maximin-share value of agent i

V i(M) = (Vi(M)/n) · wi,j Average-share of agent i

Table 2 List of the notations mentioned in Section 3

5 Computing EMMS

In this section, we study the problem of computing EMMSi and Oi↓. A closer
look at the model reveals that the challenges to calculate EMMS are twofold.
One is to find the worst allocation of a given partition, and the other is to
find a partition that maximizes the utility of the worst allocation. In Lemma 3
and Observation 1, we explore the hardness of these problems in the general
externalities model. We then focus on the network externalities model
and give a constant factor approximation algorithm for computing EMMSi.

Lemma 3 Given a partition P = 〈P1, P2, . . . , Pn〉 of the items in M, the
worst permutation of P for agent i can be found in polynomial time.

Proof. Consider a complete bipartite graph G(X,Y ) where X represents the
bundles of P , and Y represents the agents and there is an edge with weight
Vi,j(Pk) between every pair xk ∈ X and yj ∈ Y . Finding ωi(P ) is equivalent to
finding the min-weight perfect matching in G. Classic network flow algorithms
solve this problem in polynomial time [11].

Observation 1. Since finding the maximin partition 3 of a set of items (with-
out externalities) is NP -hard [31], finding the optimal EMMS partition of m
items and n agents with externalities is also NP -hard.

Woeginger [31] also shows that finding the maximin partition of a set of
items without externalities admits a PTAS. However, their method does not
directly extend to the case with externalities. To the best of our knowledge,
finding an approximately optimal EMMS partition for an agent with external-
ities has not been studied before.

3 A partition of items into n bundles that maximizes the value of the minimum bundle.
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In the case of network externalities, our model is easier to deal with. Con-
sider a partition Pi↓ = 〈Pi,1, Pi,2, . . . , Pi,n〉 whose bundles are sorted in a non-
increasing order of their values for agent i. Based on Rearrangement inequality,
finding the worst allocation ωi(Pi↓) is trivial: consider an n-step allocation al-
gorithm whose every step allocates the most valuable remaining bundle to a
remaining agent with the least effect on agent i. Hence,

Ui(Pi↓, ω) =
∑

1≤j≤n

xi,j · Vi(Pi,j). (3)

This property of the network externalities model allows us to approximate the
value of EMMSi with a constant ratio, using a simple greedy approach.

Apart from allocating bundles, partitioning the items is another challenge
to overcome. By definition, an optimal partition is a partition that maximizes
Equation (3). Finding an optimal EMMS partition for a given influence vector
xi↑ is in fact, a generalized form of partitioning problems that includes both
maximin and minimax partitions. What happens if we partition the items
by one of the famous partitioning schemes such as minimax or maximin? A
maximin partition is a partition that maximizes the value of the minimum
bundle. It is easy to see that a maximin partition is optimal when xi↑ =
[0, . . . , 0, 1]. Likewise, minimax partition is a partition that minimizes the value
of the maximum bundle, and it is the optimal EMMS partition when xi↑ =
[0, 1, . . . , 1, 1] (see Figure 3 for an illustrative example). Another example is the
leximin partition. A leximin partition first maximizes the minimum bundle,
and subject to this constraint, maximizes the second least valued bundle, and
so on. Real-world applications of leximin allocations are recently studied by
Kurokawa, Procaccia and Shah [22]. In Lemma 4 we show that for a small
enough ε, the optimal EMMS partition for vector xi↑ = [εn−1, ..., ε2, ε, 1] is the
leximin partition.

Lemma 4 Let

δ = min
S,T⊆M,Vi(S) 6=Vi(T )

|Vi(S)− Vi(T )|

be the smallest positive difference between the values of any two bundles for
agent i and let

ε ≤ δ/Vi(M)

be a positive constant. The optimal EMMS partition for xi↑ = [εn−1, ..., ε2, ε, 1]
is Leximin.

Proof. Let LEXi↓ = 〈LEXi,1, LEXi,2, . . . , LEXi,n〉 be the leximin partition of
agent i, and let Pi↓ = 〈Pi,1, Pi,2, . . . , Pi,n〉 be any other partition. We show∑

1≤j≤n

xi,j · Vi(LEXi,j) ≥
∑

1≤j≤n

xi,j · Vi(Pi,j). (4)
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Pi↓ P ′i↓

1 2 3 1 2 3

xi↓ = [1, 1, 0]

xi↓ = [1, 0, 0]

Ui = 1 · 14 + 1 · 14 + 0 · 11 = 28

Ui = 1 · 14 + 0 · 14 + 0 · 11 = 14

Ui = 1 · 15 + 1 · 12 + 0 · 12 = 27

Ui = 1 · 15 + 0 · 12 + 0 · 12 = 15

Fig. 3 Two partitions Pi↓ and P ′
i↓ and their utilities for two influence vectors xi↑ = [1, 1, 0]

and xi↑ = [1, 0, 0]. For xi↑ = [1, 1, 0], minimax (Pi↓) is optimal, and for xi↑ = [1, 0, 0],
maximin (P ′

i↓) is optimal.

Let k be the largest index, such that Vi(LEXi,k) 6= Vi(Pi,k). By definition,
Vi(LEXi,k) ≥ Vi(Pi,k) holds. We have∑
1≤j≤n

xi,j · Vi(LEXi,j) ≥
∑

k≤j≤n

xi,j · Vi(LEXi,j)

= xi,k · (Vi(LEXi,k)− Vi(Pi,k)) +
∑

k≤j≤n

xi,j · Vi(Pi,j)

≥ xi,k · δ +
∑

k≤j≤n

xi,j · Vi(Pi,j)

Thus, in order for Inequality (4) to hold, it only suffices to choose ε such that

xi,k · δ ≥
∑

1≤j≤k−1

xi,j · Vi(Pi,j). (5)

A trivial upper-bound on the right-hand side of Inequality (5) is εn−k+1 ·
Vi(M). Since xi,k = εn−k, if we choose ε, such that 1/ε ≥ Vi(M)/δ, Inequality
(4) holds. Thus, it only suffices to choose ε < δ/Vi(M).

In the rest of this section, we prove that LPT, 4 which is a well-known
greedy method in job scheduling, provides a partition

LPTi↓ = 〈LPTi,1, LPTi,2, . . . , LPTi,n〉

for agent i, such that Ui(LPTi↓, ω) is a constant approximation of EMMSi.
This algorithm starts with n empty bundles and iteratively puts the most

4 Longest processing time
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Notation Description

µ Vi(M)/n

HP set of bundles containing huge items

(items with value at least µ) in P for agent i

LPTi↓ Partition returned by LPT algorithm

Table 3 List of the notations mentioned in Section 3.

8 7
5

3
2 2 1 1

1 2 3 4 5 6 7 8

Fig. 4 For the example in this figure, we have µ = Vi(M)/n = 29/8 = 3.625. Therefore,
the first three items are huge.

valuable remaining item into the bundle with the minimum total value. It has
been previously established that the partition provided by LPT is a constant
approximation for both maximin and minimax partitions [16,12].

Theorem 1 For the network externalities model, we have

Ui(LPTi↓, ω) ≥ EMMSi/2. (6)

In the rest of this section, we prove Theorem 1. To prove Theorem 1, we
label some of the items as huge. Let µ = Vi(M)/n, and define huge items as
those items whose values for agent i are at least µ. For example, the first three
items in Figure 4 are huge. In Table 3 you can find a list of the notations that
are frequently used in this section.

First, in Lemma 5 and Observation 6, we show how to handle the instances
with no huge item.

Lemma 5 For an instance with no huge item, we have

Vi(LPTi,n) ≥ Vi(LPTi,1)/2 ≥ µ/2.

Proof. Consider LPTi,1 (the most valuable bundle of LPTi↓ for agent i). Triv-
ially, we have Vi(LPTi,1) ≥ µ, and since there is no huge item, LPTi,1 contains
at least two items. On the other hand, according to the method of LPT, items
within a bundle arrive in non-increasing order. Therefore, the last item added
to LPTi,1 has a value of at most Vi(LPTi,1)/2 and the total value of LPTi,1
just before the last item arrives must have been at least Vi(LPTi,1)/2. Further-
more, whenever an item is added to a bundle, that bundle has the minimum
value among all the bundles. Therefore,

Vi(LPTi,n) ≥ Vi(LPTi,1)/2 ≥ µ/2. (7)
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Now, in Lemma 6 we show that when Vi(LPTi,n) ≥ µ/2, LPTi↓ is a 2-
approximation of Oi↓.

Lemma 6 If Vi(LPTi,n) ≥ µ/2, we have

Ui(LPTi↓, ω) ≥ EMMSi/2.

Proof. We have

Ui(LPTi↓, ω) =
∑

1≤j≤n

xi,j · Vi(LPTi,j)

≥
∑

1≤j≤n

xi,j · Vi(LPTi,n)

≥
∑

1≤j≤n

xi,j · µ/2

≥ (Vi(M)/2) ·
∑

1≤j≤n

xi,j/n (µ = Vi(M)/n)

≥ V i(M)/2 Equation (2)

≥ EMMSi/2. Lemma (1)

An immediate corollary of Lemmas 5 and 6 is Corollary 1, which states
that when there is no huge item, LPTi↓ is a 2-approximation of Oi↓.

Corollary 1 When there is no huge item, we have

Ui(LPTi↓, ω) ≥ EMMSi/2.

Thus, to prove Theorem 1, it only suffices to consider the instances with
huge items. Note that, when there are huge items inM, Vi(LPTi,n) ≥ µ/2 does
not necessarily hold. To deal with such situations, we consider some properties
for Oi↓. In Definition 4, we introduce regular partitions. Roughly speaking, a
partition Pi↓ is regular, if every bundle with more than one item admits no
valuable item (i.e., item with value more than the value of the least attractive
bundle of Pi↓). In other words, each valuable item belongs to a single-item
bundle. This property greatly helps up deal with huge items.

Definition 4 A partition Pi↓ is regular for agent i, if no item b in some bundle
Pi,j exists, such that

Vi(Pi,j) > Vi(b) > Vi(Pi,n).

For example, in Figure 5, partition Pi↓ is not regular since the total value
of the items in the third bundle is less than the item with value 5 in the first
bundle. In contrast to Pi↓, it is easy to verify that partition P ′i↓ is regular.
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Pi↓ P ′
i↓

Fig. 5 Partition P1 is not regular, since the bundle containing item with value 5, which is
more than the total value of the third bundle, is not in a single-item bundle.

Lemma 7 For any partition Pi↓, there exists a regular partition P ′i↓, such that
Ui(Pi↓, ω) ≤ Ui(P ′i↓, ω).

Proof. If Pi↓ is not regular, there exists an item b in some bundle Pi,j , such
that

Vi(Pi,j) > Vi(b) > Vi(Pi,n).

We modify Pi↓ as follows: we remove Pi,j and Pi,n from Pi↓ and add two new
bundles A = {b} and B = Pi,j ∪Pi,n \{b} to Pi↓. Let P ′i↓ be the partition after
the modification and let l and l′ be the indices of the bundles correspond to
A and B (note that the bundles are rearranged by their non-increasing values
for agent i), such that j ≤ l ≤ l′ ≤ n. We have:

Vi(Pi,j) > Vi(P
′
i,l) ≥ Vi(P ′i,l′) > Vi(Pi,n).

For example, consider the instance in Figure 6. In this figure, partition Pi↓
is not regular since Pi,2 admits an item with value more than the value of the
entire bundle Pi,10. After performing the above operation on Pi↓ we obtain
partition P ′i↓. In this partition, all the partitions except P ′i,4 and P ′i,8 are the
same as in Pi↓; only their position might have changed.

Define ∆j to be the difference between the value of P ′i,j and Pi,j , i.e.,

∆j = Vi(P
′
i,j)− Vi(Pi,j).

Since the set of items in Pi↓ and P ′i↓ are the same, we have∑
1≤k≤n

∆k = 0. (8)

In addition, for k < j and l < k < l′ we have ∆k = 0, for j ≤ k ≤ l we have
∆k ≤ 0 and for l′ < k ≤ n we have ∆k ≥ 0. For example, in Figure 6, we have

∆1 = ∆5 = ∆6 = ∆7 = 0

∆2, ∆3, ∆4 ≤ 0

∆8, ∆9, ∆10 ≥ 0
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j = 2 3 4 5 6 7 8 9

l = 421 5 6 l′ = 8 9 10

{∆10

{∆9

{∆3

{∆2

∆2,∆3,∆4 < 0 ∆8,∆9,∆10 > 0∆5 = ∆6 = ∆7 = 0

9

n = 101

3 7

∆1 = 0

{∆4

{∆8

Fig. 6 Switching the subsets

Now, we have∑
1≤k≤n

Vi(P
′
i,k) · xi,k −

∑
1≤k≤n

Vi(Pi,k) · xi,k =
∑

1≤k≤n

∆k · xi,k

=
∑
j≤k≤l

∆k · xi,k +
∑

l′≤k≤n

∆k · xi,k

≥ (
∑
j≤k≤l

∆k) · xi,l + (
∑

l′≤k≤n

∆k) · xi,l′

= (
∑

l′≤k≤n

∆k) · xi,l′ − (
∑

l′≤k≤n

∆k) · xi,l Inequality(8)

≥ 0,

Finally, let

L(Pi↓) = {Pi,j | Vi(Pi,j) = Vi(Pi,n)}.

After each modification, either Vi(Pi,n) increases, or |L(Pi↓)| decreases. There-
fore, sequence (Vi(Pn), Vi(Pn−1), . . . , Vi(P1)) increases lexicographically by each
move, and hence we eventually end up with a regular partition P ′i↓ after a finite
number of modifications.

Based on Lemma 7, in the rest of this paper we can assume that the optimal
EMMS partitions are regular. In Lemma 8 we show that LPTi↓ is also regular.



20 Masoud Seddighin* et al.

Lemma 8 LPTi↓ is regular.

Proof. For the sake of contradiction, let b be an item in bundle LPTi,j such
that Vi(LPTi,j) > Vi(b) > Vi(LPTi,n). Since Vi(LPTi,j) > Vi(b), LPTi,j con-
tains at least one other item, say b′. Furthermore, since Vi(b) > Vi(LPTi,n),
after adding b to LPTi,j no other item can be added to LPTi,j (recall that
in each step of LPT, we add an item to the least valued bundle). This means
that b′ is added to LPTi,j before b, which implies Vi(b

′) ≥ Vi(b). But this
is a contradiction, because in the step that we add b to LPTi,j , we have
Vi(LPTi,j) ≥ Vi(b

′) > Vi(LPTi,n), which means LPTi,j is not the minimum
bundle in that step.

In a regular partition Pi↓, any bundle Pi,j containing a huge item b has no
other item. Otherwise, since Vi(Pi,j) > Vi(b) ≥ µ and µ > Vi(Pi,n), partition
P is not regular. This fact about regular partitions (including LPTi↓ and Oi↓)
allows us to deal with huge items. We are now ready to complete the proof
Theorem 1.

Proof of Theorem 1. We use induction on the number of agents. For
n = 1, the statement is trivial. For n > 1, we consider two cases. First, if
Vi(LPTi,n) ≥ µ/2, by Lemma 6 we have

Ui(LPTi↓, ω) ≥ EMMSi/2.

Therefore, we only need to consider the case that Vi(LPTi,n) < µ/2. By Lemma
5, in such cases M includes at least one huge item.

Let HO and HLPT be the set of the bundles containing huge items in Oi↓
and LPTi↓, respectively. Since both Oi↓ and LPTi↓ are regular, the bundles in
HO and HLPT do not contain anything but huge items, and each huge item
is the only item within its bundle. Therefore, we have HO = HLPT = H. In
addition, H are the |H| most valuable bundles in LPTi↓ and therefore are
allocated to the agents with the least influence on agent i. Otherwise, a very
similar argument as in the proof of Lemma 5 yields Vi(LPTi,n) ≥ µ/2 which
contradicts our assumption.

Let ω′(Oi↓) be the worst possible permutation of Oi↓ with the constraint
that allocates |H| huge items to |H| agents with the least influence on agent
i. By definition, Ui(Oi↓, ω

′) ≥ Ui(Oi↓, ω). Moreover, in both ω′(Oi↓) and
ω(LPTi↓), huge items are allocated to the same set of agents, say NH. Now,
consider the sub-instance with items M \ H and agents N \ NH. Note that
since Vi(LPTi,n) < µ/2, the set M\H (and hence, N \NH) is non-empty.

By the induction hypothesis, for this sub-instance, Inequality (1) holds.
Now, adding huge items and their corresponding agents back, increases the
utility of agent i by the same amount for both of the allocations. Thus,

Ui(LPTi↓, ω) ≥ 1/2 · Ui(Oi↓, ω′) ≥ 1/2 · Ui(Oi↓, ω).

This, completes the proof of Theorem 1.
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Notation Description

S set of satisfied agents

`i expectation level of agent i

Mi A mapping from S to Oi↓
Ni,j Agents mapped to Oi,j in Mi

Table 4 List of the notations mentioned in Section 6

12 ε
Fig. 7 The gap between MMSi and EMMSi may be large, even with very small externalities

Theorem 1 For the network externalities model, we have

Ui(LPTi↓, ω) ≥ EMMSi/2. (6)

6 Approximate EMMS Allocation Problem

In this section, we focus on allocations that guarantee every agent i an ap-
proximation of EMMSi. We start this section by comparing EMMSi to MMSi.

Let Pi↓ be a maximin partition of M for agent i. The maximin-share of
agent i is by definition equal to the value of the least valued bundle in Pi↓.
Moreover, we have:

EMMSi = Ui(Oi↓, ω) ≥ Ui(Pi↓, ω).

This, together with the fact that Ui(Pi↓, ω) ≥ MMSi (recall that we have
wi,i = 1) implies that EMMSi ≥ MMSi always holds. Now, in Lemma 9 we
show that the gap between EMMSi and MMSi could be unbounded even for
the instances with 2 agents.

Lemma 9 For any c ≥ 1, there is an instance with 2 agents, where EMMS1 >
c ·MMS1.

Proof. Simply consider the influence graph depicted in Figure 7 and two items
b1 and b2 such that V1(b1) = 1 and V1(b2) = c/ε, where ε is a small constant.
For this instance, when ε < 1 and c ≥ 1 we have

EMMS1 = min(c/ε+ ε, 1 + c) = 1 + c

and MMS1 = 1. This means

EMMS1

MMS1
≥ 1 + c > c.
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Fig. 8 For an instance with 2n−1 items with value 1 to agnet i, Pi↓ is a maximin partition.
However, for influence vector xi↑ = [1, 1, . . . , 1, 0], utility gained by this partition is n − 1
whereas the utility gained by the optimal EMMS partition (P ′

i↓) is 2n− 3.

The proof of Lemma 9 highlights that even for very few externalities, the
gap between EMMS and MMS might be large. Thus, the external effects are
not negligible even if the impacts of the parties on each other are small. Note
that in this example, the optimal partition for MMS value also happens to be
optimal for EMMS value. But this is not always the case, see Figure 8 for an
example.

Our main result is stated in Theorem 2. We show that for the network
externalities model when all the agents are α-self-reliant, an α/2-EMMS allo-
cation always exists. This completely separates extended maximin-share from
average-share, since no approximation of the average-share can be guaranteed
even for 1-self reliant agents.

Theorem 2 Let I be an instance such that all the agents are α-self-reliant.
Then, I admits an α/2-EMMS allocation.

In the rest of this section, we prove Theorem 2 by proposing an α/2-
EMMS allocation algorithm for the network externalities model with α-self-
reliant agents. For brevity, we name our algorithm Bundle Claiming (BC)
algorithm. It is worth to mention that despite some similarities, this method is
fundamentally different from the previous allocation methods for guaranteeing
MMS. The main difference is that, here, for each agent, we must keep track of
the items allocated to the other parties and based on that, update the utility
that each agent must receive to be satisfied. This makes the analysis much
more complex.

6.1 Bundle Claiming Algorithm (BC)

In this section, we present the ideas and a general description of the Bundle
Claiming algorithm. We start by a simple observation. In Observation 2 we
provide a simple bound which helps us prove our approximation guarantee.
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Observation 2. For every k ≤ n, we have∑
k≤j≤n

xi,j · vi,j ≤ vi,k ·
∑

1≤j≤n

xi,j .

For example, in an instance with n = 6, for k = 4 Observation 2 states:

vi,4 · xi,4 + v ·i,5 xi,5 + vi,6 · xi,6 ≤ vi,4 ·
∑

1≤j≤n

xi,j .

Observation 2 is a direct result of the following two facts: first, for all j > k,
we have vi,k ≥ vi,j and second,∑

j>k

xi,j ≤
∑

1≤j≤n

xi,j .

In our algorithm, we introduce a quantity `i for each agent i, which we
refer to as the expectation level of agent i. We also refer to the quantity
vi,`i/2 as the expectation value of agent i. In the beginning of the algorithm,
expectation level of each agent is set to 1 and therefore, the expectation value
of each agent i is vi,1.

A simple flowchart of the algorithm is depicted in Figure 9. BC is consisted
of n steps. In each step, we find a bundle B with the minimum number of
items that meets the expectation of at least one agent. Bundle B meets the
expectation of agent i, if Vi(B) ≥ vi,`i/2. We allocate B to one of the agents
whose expectation is met (we say this agent is satisfied). Next, we update the
expectation level of each remaining agent. The updating process is a fairly
complex process which we precisely describe in Section 6.2. Roughly speaking,
we increase the expectation levels in a way that the following property holds
during the algorithm:

External-satisfaction property: Let S be the set of cur-
rently satisfied agents. For each remaining agent i, it is pos-
sible to partition the agents in S into `i subsets, namely
Ni,1, Ni,2, . . . , Ni,`i−1, Ni,`i , such that for all 1 ≤ j < `i, the
total set of items allocated to the agents in Ni,j is worth at
least vi,j/2 and at most vi,j to agent i, and the total set of
items allocated to the agents in Ni,`i is worth less than vi,`i/2
to agent i.

Note that in the updating process, `i may increase by more than one unit.
However, for every remaining agent i, `i ≤ n must hold. As we show in Section
6.2, we perform the algorithm in a way that `i ≤ n always holds for every agent
i. We later show in Lemma 11 that if the external-satisfaction property holds
for a remaining agent i with expectation level `i, total amount of externalities
incurred by the satisfied agents on agent i is at least∑

k<`i

vi,k · xi,k/2.
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For every agent i we set `i = 1.
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Fig. 9 A flowchart of BC Algorithm

The fact that EMMSi is calculated with respect to the worst allocation of Oi↓
is the key to prove this inequality.

Consider one step of the algorithm that a set Bi of items is allocated to
agent i. Since Bi has met the expectation of agent i, Vi(Bi) ≥ vi,`i/2. Further-
more, as mentioned, the utility that agent i gained through the externalities
of the satisfied agents is at least

∑
k<`i

vi,k · xi,k/2. Assuming that agent i is
α-self-reliant, his utility is at least
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C = the smallest
subset of Ni,`i such
that

∑
k∈C Vi(Bk) ≥
vi,`i/2

∑
k∈C

?
≥ vj,`j
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Map the agents in
Ni,`i \ C to Ni,`i+1

`i ← `i + 1

Let k be the only
agent in C, b be the
only item in Bk, and
k be the index such

that Oi,k = b.

Done!
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We prove that if∑
k∈C ≥vj,`j
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one agent, say k
and |Bk| = 1

Yes

Fig. 10 A flowchart of the updating process

∑
k<`i

vi,k · xi,k/2 + vi,`i/2 (wi,i = 1)

≥
∑
k<`i

vi,k · xi,k/2 + (
∑
k≥`i

vi,k · xi,k/
∑

1≤j≤n

xi,j)/2 (Observation 2)

≥(1/2
∑

1≤j≤n

xi,j) ·
∑
k

vi,k · xi,k (
∑

1≤j≤n

xi,j ≥ 1)

≥(α/2)
∑
k

vi,k · xi,k

=(α/2)EMMSi. (9)

Inequality (9) ensures that the total utility of agent i after allocating Bi is
at least (α/2)EMMSi. Therefore, our algorithm guarantees α/2EMMS for the
satisfied agents. Thus, it only remains to show that no agent remains unallo-
cated at the end of the algorithm. We use the external-satisfaction property
to prove this fact. We prove that in each step of the algorithm enough of items
are remained to meet the expectation of each remaining agent. Consider agent
i which has not satisfied yet. By external satisfaction property, value of the
items allocated to the satisfied agents not in Ni,`i is

∑
k∈S\Ni,`i

Vi(Bk) =
∑

1≤j<`i

∑
k∈Ni,j

Vi(Bk)

≤
∑

1≤j<`i

vi,j (External satisfaction property)
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ALGORITHM 1: Bundle Claiming algorithm

forall aj ∈ N do
`j ← 1 . Initializing the expectation levels

end
while S 6= N do

forall aj ∈ N \ S do
Bj ← Minimum sized subset of M, s.t. Vj(Bj) ≥ vj,`j /2;

end
i← arg mini |Bi|;
Allocate Bi to agent i ;
Add i to S ;
M←M\Bi ;
forall j ∈ N \ S do

Nj,`j ← Nj,`j ∪ {i}. ;

while Vj(Nj,`j ) ≥ 1/2 · vj,`j do
Update(j) . (see Section 6.2)

end

end

end

Hence, the total value of the remaining items plus the items allocated to the
agents in Ni,`i is at least∑

1≤j≤n

vi,j −
∑

1≤j<`i

vi,j =
∑

`i≤j≤n

vi,j .

Moreover, by the external satisfaction property, value of the items allocated to
the agents in Ni,`i is less than vi,`i/2. Thus, the value of the remaining items
is at least ∑

`i≤j≤n

vi,j − vi,`i/2 ≥ vi,`i/2

which is enough to meet the expectation of agent i. Therefore, if we main-
tain the external satisfaction property for each remaining agent during the
algorithm, all the agents will be satisfied by the end of the algorithm.

The detail of the bundle claiming algorithm is demonstrated in Algorithm
1. In the next section, we show how to maintain the external-satisfaction prop-
erty.

Corollary 2 Let I be an instance such that all the agents are α-self-reliant.
Then, an α/4-EMMS allocation for I can be found in polynomial time.

Proof. Except the part related to finding the optimal EMMS partition, all
other parts of BC algorithm can be trivially implemented in polynomial time.
However, as mentioned earlier, finding the optimal EMMS partition in poly-
nomial time is not possible unless P = NP .

To resolve this, we use LPTi↓ instead of Oi↓ in the updating process, while
losing a factor 2 in the approximation guarantee. Note that the only property
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S : set of satisfied agents

Oi,1 Oi,2 Oi,3 Oi,n

Mi

Ni,1 Ni,2 Ni,3 Ni,4

Oi,4

3 6 8 7 5 9 1 4 10 2

Oi,5

Fig. 11 Mapping Mi maps each satisfied agent to a bundle in Oi↓.

of Oi↓ that we use in the updating process is regularity. Recall that in Lemma
8 we proved LPTi↓ is also regular. Therefore, using LPTi↓ instead of Oi↓ does
not hurt the soundness of the algorithm.

6.2 The External-satisfaction Property

In this section, we show how to maintain the external-satisfaction property.
We start by giving a detailed explanation of the updating process. For each
agent i in S, we denote the bundle allocated to him by Bi. As mentioned in
the previous section, the external-satisfaction condition must hold during the
entire algorithm. To maintain this property in the updating process, for every
agent i, we define a mapping Mi that represents a partitioning of S into `i
bundles for agent i.

Definition 5 For every agent i, we define

Mi : S → {Oi,1, Oi,2, . . . , Oi,n}

as a mapping that corresponds each satisfied agent to a bundle of Oi↓. Fur-
thermore, we define Ni,j as the set of agents that are mapped to Oi,j in Mi.
During the algorithm, we say mapping Mi is valid, if the following conditions
hold:

(i) ∀j < `i
∑
k∈Ni,j

Vi(Bk) ≥ vi,j/2

(ii) ∀j < `i
∑
k∈Ni,j

Vi(Bk) ≤ vi,j
(iii)

∑
k∈Ni,`i

Vi(Bk) < vi,`i/2

(iv) ∀j > `i No agent is mapped to Oi,j .



28 Masoud Seddighin* et al.

Figure 11 shows an example of Mi with `i = 4. The validity conditions for
this mapping is as follows:

vi,1/2 ≤ Vi(B3) + Vi(B6) + Vi(B8) ≤ vi,1

vi,2/2 ≤ Vi(B2) ≤ vi,2

vi,3/2 ≤ Vi(B5) + Vi(B9) + Vi(B1) + Vi(B4) ≤ vi,3

Vi(B10) + Vi(B2) < vi,4/2

Ni,j = ∅ for all j > 4

Note that each satisfied agent j is mapped to some bundle of Oi↓ for every
remaining agent i. Therefore, each satisfied agent is mapped to some bundle
in |N \ S| different mappings.

During the entire algorithm, mapping Mi must remain valid for every un-
satisfied agent i. In the beginning, S = ∅ and for every agent i, `i = 1 and
hence, Mi is valid. In each step of the algorithm, we satisfy an agent i by a
bundle Bi. Next, for every unsatisfied agent j, we map agent i to Oj,`j in Mj ,
i.e., we set Mj(i) = Oj,`j . Throughout the algorithm, whenever the total value
of the items allocated to agents in Nj,`j reaches vj,`j/2 for some remaining
agent j, Mj becomes invalid (condition (iii) is violated) and hence, we need to
update `j and Mj to reinstate the validity of Mj . To do so, we pick a subset
C of the agents in Nj,`j with the minimum size that satisfies conditions (i)
and (ii) for Nj,`j and map the rest of the agents (i.e., agents in Nj,`j \ C) to
Oj,`j+1. Next, we increase `i by one.

Regarding the validity conditions of Mj , total value of the items allocated
to the agents in C must be at least vj,`j/2 and at most vj,`j (we call such
subset a compatible set). If a compatible set C exists, we map the agents in
Nj,`j \ C to Oj,`j+1 in Mj and increase `j by one. However, there may be
some cases that no subset of Nj,`j is compatible. For such cases, we use the
argument in Lemma 10.

Lemma 10 Suppose that total value of the items allocated to the agents in
Nj,`j is at least vj,`j/2, but Nj,`j admits no compatible subset. Then, it is
possible to modify Mj such that conditions (i) and (ii) remain valid for Mj

and Nj,`j contains at least one compatible subset.

We defer the proof of Lemma 10 to Section 6.3. Using Lemma 10 we can
modify Mj and then update the mapping. Note that, after increasing `j , condi-
tion (iii) may still be violated. In that case, as long as condition (iii) is violated,
we continue updating. Each time we update Mj , value of `j is increased by
one. Since at least one agent is mapped to Oj,` for each ` < `j , `j never exceeds
n. Algorithm 2 shows a pseudo-code for this process. In addition, in Figure 10
you can find a flowchart of the updating process.

In the last part of this section, we prove Lemma 11 which shows that the
value of the externalities imposed to agent i by the satisfied agents is lower-
bounded by ∑

j<`i

xi,j · vi,j/2.
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As said before, the fact that EMMSi is defined with regard to the worst allo-
cation of Oi↓ plays a key role in proving Lemma 11.

Lemma 11 Consider one step of the algorithm, and let agent i be an arbitrary
remaining agent with `i > 1. Then, we have∑

j∈S
wi,j · Vi(Bj) ≥

∑
1≤j<`i

xi,j · vi,j/2. (10)

Proof. We show that in every step of the algorithm, for each remaining agent
i, Inequality (10) holds. To prove this, we apply a sequence of exchanges be-
tween the bundles allocated to agents in

⋃
j<`i

Ni,j and show that in every
exchange, value of the expression on the left-hand side of Inequality (10) does
not increase. 5 Next, we show that after these exchanges, Inequality (10) still
holds, which means that the inequality was held for the original allocation.

Let agent j be the agent in Ni,1 with the least influence on agent i (i.e.,
minimizes wi,j). First, we allocate the items that belong to the other agents in
Ni,1 to agent j and remove all the agents but agent j from Ni,1. Since agent j
has the minimum weight (influence) among the agent in Ni,1, this operation
does not increase the left-hand side of Inequality (10).

In addition, let agent j′ be the agent with wi,j′ = xi,1. Since agent j′ has
the minimum influence on i among all the agents, we have wi,j′ ≤ wi,j . Now,
let Bj and Bj′ be the current bundles of agents j and j′ (Bj′ might be empty).
If Vi(Bj′) < Vi(Bj), we swap the bundles of j and j′. This operation also does
not increase the left-hand side of Inequality (10) since we have wi,j′ ≤ wi,j .
Finally, we exchange the set that agents j and j′ belong to: we remove agent j
from Ni,1, and add agent j′ to Ni,1. In addition, if agent j′ previously belonged
to Ni,r for some r, we add agent j to Ni,r. This exchange has no effect on the
value of ∑

j∈S
wi,j · Vi(Bj).

Furthermore, one can easily verify that despite a possible decrement in the
total value of the items allocated to the agents in Ni,r, since before this ex-
change we had Vi(Bj) ≥ vi,1/2 ≥ vi,r/2, after these exchanges condition (i)
still holds for Ni,r. In Figure 12 you can find an example of this process.

We repeat the same procedure for Ni,2, Ni,3, . . . , Ni,`i−1. After this se-
quence of exchanges, each Ni,j contains one agent j′, where wi,j′ = xi,j . Fur-
thermore, after these exchanges, the first condition for the validity of Mi holds
and hence, the value of the items in the bundle of agent j′ for agent i is at
least vi,j/2. Therefore, total amount of the externalities of the satisfied agents
is at least ∑

1≤j<`i

xi,j · vi,j/2.

5 Note that these exchanges are only to prove the lemma, and not in the algorithm.
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V2(B2,4,5) ≥ V2(B6) V2(B2,4,5) < V2(B6)

Fig. 12 An example of the process introduced in Lemma 11. Suppose that the influences
on agent 2 is as illustrated in the graph. To perform the process described in Lemma 11 on
agent 2, we proceed as follows: first we allocate bundles B4 and B5 to agent 1, which has
the least influence among agents {1, 4, 5} on agent 2 (we denote the new bundle by B1,4,5).
Next, we find the agent whose influence on agent 2 equals x2,1 = 0.1, which is agent 6. We
exchange the set that agent 1 and 6 belong to, so that agent 6 is moved to N2,1 and agent
1 is moved to N2,5. Next, we compare values of B1,4,5 and B6. Between these two bundles,
the one with the less value for agent 2 is allocated to agent 6 and the other one is allocated
to agent 1.

6.3 Proof of Lemma 10.

In this section, we prove Lemma 10, which is the most challenging technical
part of the paper. Before going through the proof, we recall the statement of
this lemma.
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Lemma 10 Suppose that total value of the items allocated to the agents in
Nj,`j is at least vj,`j/2, but Nj,`j admits no compatible subset. Then, it is
possible to modify Mj such that conditions (i) and (ii) remain valid for Mj

and Nj,`j contains at least one compatible subset.

In the rest of this section, we prove Lemma 10. Let C be a subset of Nj,`j
with the minimum size that satisfies condition (i). Such a set trivially exists.
However, since no subset of Nj,`j is compatible, we have∑

k∈C

Vj(Bk) > vj,`j .

Since C is minimal, no proper subset of C satisfies condition (i). It is easy
to observe that this can only happen when C contains only one agent, say k,
with Vj(Bk) > vj,`j . We later show in Lemma 12 that |Bk| = 1; but for now
suppose that |Bk| = 1 holds and b is the only item in Bk.

Since Oj↓ is regular and Vj(b) > vj,`j , there is an index ` < `j , such that
bundle Oj,` = {b}. We modify Mj as follows: we map agent k to Oj,` and map
the former agents of Nj,` to Nj,`j . After this exchange, for Nj,` we have∑

i∈Nj,`

Vj(Bi) = Vj(Oj,`) = vj,`

and therefore, conditions (i), (ii) preserve for Nj,` after this process.
Again, if no subset of Nj,`j is compatible, we repeat this modification. Each

time we modify Mj , the number of indices ` for which Nj,` contains an agent
k with Oj,` = Bk increases by one. Therefore, the process terminates after a
finite number of modifications.

Algorithm 2 illustrates an overview of the updating procedure, which com-
pletes the BC algorithm. It only remains to show the fact that |Bk| = 1, which
we prove in Lemma 12.

ALGORITHM 2: Update Mj

Resolve = 0
while Resolve == 0 do

C ← Minimum sized subset of Nj,`j , s.t.
∑
k∈C Vj(Bk) ≥ 1/2 · vj,`j

if
∑
k∈δ Vj(Bk) ≤ vj,`j then

foreach k ∈ Nj,` \ C do
Mj(k) = Oj,`+1

end
`j ← `j + 1
Resolve+ = 1 . Resolved

else
Let ` be an index s.t. Oj,` = Bk, where C = {k}.
Swap C (which is a subset of Nj,`j ) with Nj,`. . One step closer to resolve

end

end
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Oi,` Oi,`j

S

S

Oi,`j

Fig. 13 If |Oj,`| > 1 and vj,`j < vj,`/2 simultaneously hold, we can improve the partition
by adding a subset S ∈ Oj,` to Oj,`j .

Lemma 12 Suppose that the total value of the items allocated to the agents
in Nj,`j is at least vj,`j/2, but Nj,`j admits no compatible subset, and let C
be the subset of Nj,`j with minimum size that satisfies condition (i). Then, C
contains only one agent, say agent k where |Bk| = 1.

Proof. As mentioned in Lemma 10, it is easy to observe that |C| = 1. Here, we
argue that if agent k is the only agent in C, then |Bk| = 1. As a contradiction,
let z be the first step of the algorithm that the condition of Lemma 12 is
violated, i.e.,

– Total value of the items allocated to the agents in Nj,`j is at least vj,`j/2.
– Nj,`j admits no compatible subset.
– C (the smallest subset of Nj,`j satisfying condition (i)) contains only one

agent say k.
– |Bk| > 1.

In addition, let z′ be the step that Bk is allocated to agent k and let `′j be the
expectation level of agent j in step z′. Trivially, we have z′ ≤ z and `′j ≤ `j .

Notation Description Expectation level

z First step that C = {k}, but |Bk| > 1 `j
z′ ≤ z The step that Bk is allocated to k `′j ≤ `j

Table 5 Two steps z and z′.

Lemma 13 We can suppose w.l.o.g that either vj,`j ≥ vj,`′j/2 or we have

|Oj,`| = 1 for all ` ≤ `′j.



Maximin share Guarantee for Goods with Positive Externalities 33

Proof. If for some ` ≤ `′j , Oj,` contains more than one item, Oj,` has a proper
subset S such that Vj(S) ≤ vj,`/2. Now, if

vj,`j < vj,`′j/2 < vj,`/2

holds, by a very same reasoning as in Lemma 7, adding S to bundle Oj,`j
yields a new partition which is at least as good as Oj↓ (see Figure 13).

Regarding Lemma 13, we consider two cases.

First, assume that |Oj,`| = 1 for all ` ≤ `′j . For this case, since the expec-
tation level of agent j in step z′ is `′j , regarding conditions (ii) and (iii) we
have ∑

i∈S
V (Bi) <

∑
1≤`<`′i

vj,` + vj,`′j/2 <
∑

1≤`≤`′i

vj,`

Therefore, at least one of the items in
⋃
`≤`′j

Oj,` is not allocated to any satisfied

agent before step z′, and this item alone meets the expectation of agent j. This
contradicts the fact that at step z′, Bk was the set with the minimum size that
meets the expectation of a remaining agent (note that we supposed |Bk| > 1).

Second, assume that vj,`j ≥ vj,`′j/2. In step z′, the expectation value of

agent j equals vj,`′j/2. Furthermore, Vj(Bk) > vj,`j which means Vj(Bk) >

vj,`′j/2 and hence, the second condition holds for Bk in step z′. On the other

hand, Vj(Bk) < vj,`′j , otherwise since |Bk| > 1 a proper subset of Bk would

meet the expectation of agent j in step z′. Therefore, in step z′, C = {k} is the
only compatible set for updating Mj and hence, agent k is mapped to Oj,`′j in

step z′. This also implies that z′ 6= z, since we supposed that no compatible
subset exists in step z.

Furthermore, notice that since |Bk| > 1, no item could alone meet the
expectation of any agent, including agent j in step z′ (recall that in each step,
we select a bundle with the minimum size that meets the expectation of a
remaining agent). This means that every remaining item in step z′ has the
value less than vj,`′j/2. Therefore, value of every remaining item after step z′

for agent j is less than vj,`/2 for every ` ≤ `′j .
On the other hand, in all the modifications (based on Lemma 10) after

step z′ and before step z, the bundle of the agent in the selected compatible
set C is consisted of only one item (z is te first step that the size of the bundle
allocated to the agent in C is more than 1). According to the way we modify
Mj (based on Lemma 10), after step z′, no modification affects the agents that
are mapped to bundles Oj,` for ` ≤ `′j . Because each single item bundle after
step z′ has a value less than vj,`/2 for every ` ≤ `′j . But this contradicts the
fact that agent k is mapped to Nj,`j in step z, because agent k was mapped
to Oj,`′j in step z′ and no modification changes Mj(k).
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7 Discussion and Future Directions

An exciting open direction is to find approximation allocation algorithms for
the general externalities model, with no restriction on the value of Vi,j(bk).
Many issues complicate the study of the general model. For example, the
approximation algorithm presented for computing the value of EMMSi is no
longer applicable to this model. A good starting point is to study the general
model for the cases with a few agents, e.g., 3 or 4 agents.

For the network externalities model, one can think of improving the ap-
proximation ratio of the allocation. In particular, it would be interesting to
propose an allocation algorithm with approximation factor independent of the
self-reliance of the agents.

Another interesting open direction that might be of independent interest
is to find a maximum value α, such that there exists a partition P of the
items in which ωi(P ) is a α-approximation of ωi(Oi↓) for every agent i. Note
that if such a partition exists, any allocation of it to the agents is a α-EMMS
allocation.

Another open question is to present a PTAS for finding the optimal EMMS
partition for an agent in the network externalities model.
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