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Abstract
Redundant number systems provide for carry-free arithmetic, where the result of arithmetic operations is 
achieved, in redundant format, without the need for latent carry propagation. However conversion of the 
result to a conventional nonredundant representation, always, requires carry propagation. Therefore, 
efficient use of redundant number systems is feasible when a series of arithmetic operations is to be 
performed before the need arises to obtain the result in a nonredundant representation. Redundant 
number systems have been used in several special purpose integrated designs (e.g., DSP applications) 
and also as intermediate number representation in complex arithmetic operations implemented for 
general purpose processors. But we have not encountered, in the literature, any general purpose 
application of redundant number systems in the sense that separate arithmetic operations, invoked by 
separate machine instructions of a general purpose executable program, accept redundantly represented 
operands and produce such results, in a carry-free manner or in constant time, independent of the length 
of the operands. 
In this research we have established the characteristics of a general purpose carry-free arithmetic 
environment including a suitable redundant number representation system, a general purpose processor 
with carry-free arithmetic instructions, and special code optimizers to convert conventional arithmetic 
instructions to their carry-free counterparts. But the main trust is on development of the most suitable 
redundant number representation, which should provide for the most efficient (in terms of speed, area, 
regularity, etc.) representationally closed carry-free arithmetic. We start with investigation of previous 
works on signed digit number systems, namely the conventional signed digit number system of, the 
pioneer in the field, professor Avezienis, the generalized signed digit number systems of professor 
Parhami, and the hybrid signed digit number systems of professors Phatak and Koren, and offer some 
algorithmic improvement for carry-free addition of representation paradigms of signed digit number 
systems. Then, we gradually build up the desired redundant encoding system by introducing the class of 
stored transfer representation of redundant number systems with the idea of mixing the stored carry 
mechanism and signed digit number systems. Next, we introduce the class of weighted bit-set (WBS) 
encoding of redundant number systems as a unification of the generalized signed digit, and the hybrid 
signed digit number systems. A WBS-encoded number, in each binary position, has a collection of zero 
or more posibits (positively weighted bits) and negabits (negatively weighted bits). This generalization 
led us to develop the extended hybrid redundant number systems including an interesting symmetric 
subclass not foreseen in the hybrid redundancy scheme of Phatak and Koren. With the novel concept of 
inverted encoding of negabits, we manage to develop efficient and regular designs for universal hybrid 
redundant adders, based solely on standard full/half adders, with the possibility of employing 
conventional carry accelerating techniques. Further generalization was fruitful, and resulted in 
development of the new concept of two-valued digits (twit) and the weighted twit-set (WTS) encodings. 
A twit may assume any two integer values, and a WTS encoding has the same structure as a WBS 
encoding except that it may contain any twit besides posibits and negabits. The latter is believed to be 
the most comprehensive encodings covering all the redundant and nonredundant positional number 
systems, we have encountered, including those with noncontiguous digit sets, possibly, not including 
zero. Then we present high level designs for representationally closed multiplication and division of 
some selected redundant number representations, with the encodings studied, and show advantages of 
our designs over some of the state of the art multiplication and division methods. Our multiplier design 
includes a special Booth recoder for redundant multipliers, which produces one multiple per every two 
binary positions of the multiplier in spite of extra redundancy bits. Floating point arithmetic is another 
vital topic in our investigation of the desired redundant encodings, where we show the suitability and 
advantages of our selected encodings. To complete our study of the desired redundant representations, 
we design arithmetic support functions, for the selected encodings, such as negation, binary and radix 
shifts, zero and sign detection, and over/underflow detection and correction.

Keywords: Positional number systems, Redundant number systems, Carry-free computer 
arithmetic, Periodic number systems, Symmetric number systems, Hybrid redundancy, Signed digits, 
Number encodings and representations, Design and implementation of redundant arithmetic operations.
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Chapter 1 |Introduction

Computer arithmetic operations serve as an essential part of any executable program, whether 
referenced directly in the source program or generated as part of the execution of other programming 
features such as address calculation for array references or string manipulation. Improving the 
execution speed of arithmetic operations, individually or collectively, leads to better overall program 
execution efficiency. Arithmetic operations, in general, are defined in terms of the four basic 
operations, namely division, multiplication, subtraction, and addition. Division is performed either 
by repeated subtractions or through a converging series of multiplications. Multiplication is either 
simulated by repeated additions or involves at least one full word-length addition after the process of 
partial product reduction, where the latter is effectively a multi-operand addition. Finally subtraction 
is usually performed through adding the negative of the subtrahend to the subtractor. Addition 
operation has thus been recognized as the prime operation for implementing other computer 
arithmetic operations. Therefore improving the performance (i.e., cost/speed) of addition operation 
enhances the performance of all other arithmetic operations, leading, in general, to improved 
execution efficiency of executable programs.

Carry propagate adders exhibit the simplest and least costly designs for addition operation. Their 
latency and cost is characterized as O(k), where k = log2Ψ, is the minimum number of bits required 
for representing Ψ different values, and Ψ is the cardinality of the numbers representable by the 
underlying number system. A variety of carry accelerating techniques have been devised in the 
design of addition logics to gain sub linear latency. Carry skip [Lehm61, Kant91] and carry select 
adders [Bedr62] show an O(k1/2) latency. A logarithmic latency (i.e., O(log2k)) is achieved by carry 
look-ahead [Bren82, Ngai86, Dora88] and conditional sum schemes [Skla60]. The reduced latency is 
gained, naturally, in price of more costly circuits. Hybrid adders as a combination of two different 
carry accelerating techniques, such as carry look-ahead and carry select schemes [Lync92], show 
certain optimizing cost/speed trade-offs. The operands and result of the above addition schemes are 
invariably represented in non-redundant format, and usually in conventional binary representations, 
such as unsigned binary, sign-magnitude, one’s or two’s complement number representation 
systems.

There are unconventional number representation systems, which lead to addition with sub 
logarithmic latency, namely the residue number system [Garn59], and the class of positional 
redundant number systems. In residue number systems Ψ, the maximum size for the range of values 
represented, is factorized as Ψ = Ψ1 Ψ2… Ψn, where the n (≥ 2) factors are relatively prime. Each of 
the representable Ψ values, say v, is uniquely represented by the list of numbers {v mod Ψi | 1 ≤ i ≤
n}. The addition latency is thus characterized as O (log2 maxi (Ψi)), showing considerable 
improvement over the above cases, but still depending on Ψ, and not yet a constant time addition.
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Redundant number systems have been widely used for representing one or both operands and the 
result of an addition operation, e.g., [Wall64, Vuil83, Taka85, Hara87, Kawa90, Kawa91, Kuni93,
Maki96]. The main example is partial product reduction as a major part of multiplication. In the 
Wallace tree technique [Wall64] of partial product reduction one of the operands of each addition 
operation is a binary number, while the other operand and the result are represented in the binary 
carry-save redundant representation, except for the first and the last addition with both operands in 
binary. In partial product reduction using signed digit encoding for intermediate results, both 
operands and the result of each addition, except for the final result, are represented as signed digit 
redundant numbers. It is a well-known fact that when the result of addition is represented in a 
redundant number system, constant time addition (i.e., O (1)) with no interdigit carry propagation 
(i.e., carry-free addition) is possible. But conversion of the redundantly represented result to its 
equivalent conventional non-redundant form imposes a non- constant delay, which is, at best, 
logarithmically proportional to width of the result. Therefore carry-free addition shows speed 
advantage, only when a series of additions is to be performed before the need arises to convert the 
result to a non-redundant representation. 

The literature is replete with examples of using carry-free addition as part of a more complex 
operation embedded in a special purpose arithmetic algorithm often realized in hardware (e.g., see 
the previous references and also [Kame80] for a DSP example). However, we have not encountered 
any use of carry-free addition in a general-purpose manner in the design of conventional processors. 
For example a simple arithmetic expression like a + b + c + d in a source program is normally 
translated to three separate two’s complement hardware addition instructions executed consecutively 
by conventional processors. It is desirable to benefit from the O(1) latency of carry-free addition in a 
general purpose manner. In other words when executing any program on a regular computer, the 
possibility of performing all arithmetic operations using only carry-free additions, increases the 
overall speed of arithmetic. The speed gain is actually possible if, after each two-operand operation, 
one can avoid the conversion of redundant results to a conventional non-redundant representation, 
such as two’s complement. Besides the need for special hardware, designed for carry-free addition, 
essentially with longer operand widths, avoiding the post operation conversion requires widening the 
data registers. The conversion, however, may be unavoidable in certain points of program execution, 
namely on storing a result due to an assignment statement or generating a numeric output in response 
to a write request. The reason for the latter is obvious, but storing a redundantly encoded result in the 
random access memory words (e.g., by an assignment), essentially requires extra bits per word 
compared to that of conventional non-redundant representations. Consuming the available bits of a 
memory word for providing such extra bits reduces the representational efficiency. But increasing 
the length of registers used for storing the intermediate results of arithmetic operations seems 
justifiable. When such longer registers are available, all the arithmetic operations, between two 
storing points of the execution flow, can be done in redundant mode. The slow redundant to non-
redundant conversion operations are then restricted to assignment and write statements in the course 
of execution of a program. The former could even be avoided by widening the memory words or by 
designing special wide-word arithmetic caches, where any data transfer from the arithmetic cache to 
main memory would require a carry propagating conversion operation. Wherever carry-free 
arithmetic instructions and their related hardware are available on a processor, a special code 
optimizer is needed to, besides other optimizations, replace the conventional non-redundant 
arithmetic instructions with their carry-free counterparts, and insert a conversion operation just 
before a store operation; hence no need for any modification in the existing programming language 
compilers.
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In this research we explore the characteristics of the most suitable (in terms of speed, cost, and 
suitability for VLSI design) redundant number system/encoding to be employed for general purpose 
carry-free arithmetic, design the relevant carry-free arithmetic algorithms and present high level 
hardware designs for the four basic arithmetic operations and some arithmetic support functions. In 
the following definitions we associate carry-free arithmetic with redundant number representation, 
and do not address residue number systems.

Definition 1.1 (Carry-free addition): Whenever addition is possible, in a small, constant time, 
independent of operand widths (i.e., with no carry propagation chain beyond a constant number of 
binary positions), the process is called carry-free addition. �

For example addition of two operands represented in a radix-r (r ≥ 3) signed digit number system, 
requires intradigit carry propagation, but no interdigit propagation (i.e., a carry generated in a bit 
position of a digit, propagates at most up to the next higher significant digit). The conventional 
carry-free addition algorithm for ordinary signed digit [Aviz61] and Generalized Signed Digit (GSD) 
operands as given in [Parh90] has three steps:

• Compute, in parallel, the sum of radix-r equally weighted digits xi and yi as 
pi = xi + yi.

• Derive the interim sum digit wi and transfer digit ti+1 satisfying 
wi = pi − rti+1.

• Form the final sum digit 
si = wi+ ti

This algorithm may be applied to any representation for redundant numbers, but there may be 
different, possibly more efficient, algorithms for special representations [Phat94, Jabe01, Jabe03]. 

Definition 1.2 (Carry-free arithmetic): If the implementations of basic arithmetic operations, namely 
division, multiplication, subtraction and addition accept redundant operands, and derive a redundant 
result through carry-free sub-operations, the calculations performed by a series of these operations is 
called carry-free arithmetic. �

For example the calculations embedded in computing sin(x), may be implemented by carry-free 
addition and carry-free-addition-based multiplications and divisions. The input x may be provided in 
a non-redundant representation (e.g., two’s complement), which is normally convertible to the 
desired redundant form in constant time, and in a carry-free manner. After deriving the result (i.e., 
sin(x)) by carry-free arithmetic in some redundant representation, it may be converted back to the 
desired non-redundant representation, which of course requires interdigit carry propagation. There 
may be special purpose processors specially designed to perform carry-free computation of 
trigonometric functions as there are special purpose DSP processors [Moto92]. But carry-free 
computation of sin(x) is not possible by programming the computation to be executed by a 
conventional general purpose processor.
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Definition 1.3 (Carry-free arithmetic instruction): A carry-free arithmetic instruction, when 
executed, invokes a special carry-free arithmetic hardware to perform a carry-free arithmetic 
operation. The operands and result are all represented in redundant format. �

Definition 1.4 (General purpose carry-free arithmetic environment): A general purpose carry-free 
arithmetic environment is composed of:

a) An efficient redundant number system for representing all the intermediate results of 
arithmetic expressions of the executable programs, whether originated by the source 
program or generated by the system.

b) A general purpose processor whose instruction set includes a subset of carry-free arithmetic 
instructions.

c) Supporting wide data registers to accommodate wider words of redundant results.
d) Optional arithmetic cache to temporarily store the wider words of redundant results, 

assigned to a variable. 
e) Special code optimizers to, besides other conventional optimizations, replace conventional 

arithmetic codes by their carry-free counterparts, and insert special conversion instructions 
when a result is to be stored in the main memory or copied to an output file. �

Among the five components of the general purpose carry-free arithmetic environment, we 
extensively investigate the options available for the first component, and search for better 
representations leading to the most suitable number system for component a) above. The desired 
characteristics of a suitable number representation for component a) are listed below:

Definition 1.5 (Encoding efficiency): Encoding efficiency of a digit set ∆ represented by h binary 
digits is e = |∆| / 2h, where |∆| is the cardinality of ∆.�

One of the goals in designing the desired number representation is, naturally, maximizing the 
encoding efficiency (i.e., e approaches 1, the maximum possible encoding efficiency for a non-
redundant representation).

Definition 1.6 (Representational closure property): A combination of a number representation and 
an arithmetic algorithm implementing an arithmetic operation has the representational closure 
property, if the result can be represented in the same number representation of the operands, without 
any post- or pre-operation conversion. �

For example, conventional two’s complement arithmetic is representationally closed. Another 
example is the combination of Generalized Signed Digit (GSD) number representation and its 
related carry-free addition algorithm [Parh90]. The implementation given in [Phat94], for addition of 
Hybrid Signed Digit (HSD) numbers, and some of other cases of hybrid redundancy studied in 
[Phat01], also have the property of representational closure. While encoding-algorithm combinations 
that are not representationally closed can be useful and are in fact used in practice (e.g., partial 
product reduction), when comparing a representationally closed scheme against a scheme that is not 
closed, fairness dictates that the overhead of conversion from the intermediate representation to the 
ultimate encoding be taken into account in any cost/speed comparisons. Particularly, in a general 
purpose carry-free environment, where the same circuits implementing redundant arithmetic are to 
be used for further manipulations on the redundant results, representational closure property is the 
rule, irrespective of the possible extra cost or declined speed.
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Definition 1.7 (Digit-set preservation property): Whenever the arithmetic algorithms designed for a 
given number representation, are capable of producing results that cover the whole range of the 
digit-set used for the operands, the representation-algorithm combination has the digit-set 
preservation property. �

For example two’s complement arithmetic preserves the digit-set of the operands. Another example 
with the digit-set preservation property is two’s complement representation of maximally redundant 
radix-2h signed digit numbers with the compare with half radix addition algorithm, while the
digit-set is not preserved in the less redundant cases [Jabe03 ].

Definition 1.8 (Symmetric number representation): If the negation of each value represented by a 
number representation is also representable, the number representation is symmetric. �

For example one’s complement number representation is symmetric, while two’s complement is not. 
The HSD number system [Phat94] is highly asymmetric. The negative range of a radix-2h HSD digit 
set is half that of the non-negative range [Jabe01]. In general-purpose arithmetic applications, 
symmetry of the number system is important, such that when, for any reason, an asymmetric number 
system is used; only the symmetric range is actually beneficial, leading to lower practical encoding 
efficiency.  

Definition 1.9 (Symmetric-range encoding efficiency): The symmetric range of a digit set
∆ = [−α, β], where α ≥ 0 and β ≥ 0, is ∆s = [− min( α, β), min( α, β)]. Then the symmetric-range 
encoding efficiency is es = |∆s| ⁄ 2h, where h is the number of bits required for representing a digit in 
∆. When |∆| = |∆s| + 1, ∆ is a minimally asymmetric digit set. �

For example a two’s complement digit set is minimally asymmetric. As another example consider 
the stored BSD transfer [Jabe01 ] digit set with ∆ = [−2h–1 −1, 2h–1]. If a gain in cost/speed is desirable 
at the cost of less encoding efficiency, use of minimally asymmetric digit sets may be justified.

Definition 1.10 (Periodic number representation): Whenever the digit sets of all digit positions of a 
radix-r number system represent the same set of integer values, the number representation is said to 
be periodic. In a periodic representation with period h, each digit position occupies h binary 
positions leading to practical choice of the radix r = 2h.�

Periodicity of a representation is an important characteristic, for it leads to regularity in VLSI design.

In Chapter 2, we study the representation paradigms of symmetric signed digit number systems 
[Jabe03], where we investigate the suitability of conventional signed digit number systems for the 
general purpose carry-free environment. The Chapter is basically a reproduction of our paper 
[Jabe03] on the subject, where we consider three representation paradigms for radix-r signed digit 
number systems, and compare them on the speed of addition operation. We introduce a modified 
more efficient version of the conventional carry-free addition algorithm, called the Compare with 
Half Radix Algorithm (CHRA), and show speed improvements. This investigation leads to the 
conclusion that among the three representation paradigms of signed digits, namely sign magnitude, 
one’s complement, and two’s complement, the latter when implemented by CHRA, leads to fastest 
carry-free addition among the paradigms studied. 
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In search of more suitable representations for redundant number systems, in terms of addition speed, 
we present the stored transfer representation of redundant numbers in Chapter 3, mainly as a 
reproduction of our paper on the subject [Jabe01]. This representation of a redundant digit consist of 
a main digit, practically a two’s complement number and a transfer digit from a small digit set. 
When adding two stored transfer operands, the last step of Algorithm 1.1 (i.e., the conventional 
carry-free addition algorithm above), is not necessary, hence less addition delay. We prove that for 
the stored transfer version of the conventional carry-free addition algorithm to be applicable, the 
transfer digit set should be at least 3-valued. Unfortunately, this leads to at least two-bit 
representation of transfer digits (i.e., two redundancy bits per digit), thus degrading the encoding 
efficiency.

Generalization, often leads to new discoveries, as we generalize the stored transfer scheme to lead to 
Weighted Bit-Set (WBS) encoding of redundant number systems. In Chapter 4, we address the WBS 
encoding (mainly through a reproduction of our paper on the subject [Jabe02]) as a unifying 
framework for representing the GSD number systems of Parhami [Parh90], and all variants of the 
hybrid redundancy scheme of Phatak and Koren [Phat01]. 

To show the advantages of WBS interpretation of hybrid redundancy over previous implementations 
in [Phat01] we describe, in Chapter 5 (again based on our paper on the subject [Jabe05a]), the high 
level design details of a universal addition scheme for all hybrid redundant number systems. The 
only building block of this adder is standard full adder, accepting both carries and inversely encoded 
borrows, leading to extreme regularity in VLSI design. Further elaboration on WBS representation 
of hybrid redundancy, leads to a new class of hybrid redundant numbers not studied before, which in 
particular includes new variants of symmetric hybrid redundant number systems with arbitrary digit 
sets allowing use of the same circuitry for addition and subtraction with minimal penalty for the 
latter. We take up this extended hybrid redundancy scheme in Chapter 6. 

Further generalization of WBS encoding with our novel concept of Two-valued digit (Twit), leads to 
Weighted Twit-Set (WTS) encoding of redundant number systems. This is presented in Chapter 7, 
mainly by reproduction of our paper on this subject [Jabe05a]. We revisit, by refinement of our 
theories, the WBS encoding, and present the WTS encoding as a unifying representation of all 
possible positional redundant number systems including those with noncontiguous digit sets and
digit sets not including 0. In particular we present the stored twit-transfer scheme, as a WTS 
encoding, with improved encoding efficiency over the WBS stored transfer scheme. We use full 
adders with a novel functionality as of receiving three equally weighted twits, and generating sum 
and carry twits, simplifying the representationally closed carry-free addition of stored twit-transfer 
operands. 

In Chapter 8, we discuss the suitability of the redundant number representations considered in 
Chapters 2 to 7 for a general purpose carry-free arithmetic environment, and evaluate them against 
the criteria outlined above, namely the encoding efficiency, representational closure, digit set 
preservation, and symmetry as defined in Definitions 1.5 to 1.8, respectively. This evaluation leads 
us to pick three number representations; one from the class of stored twit transfer encodings, one 
from ordinary hybrid redundant number systems, and a symmetric one shared by the class of stored 
transfer encodings and the extended hybrid redundant number systems. 
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Having selected three candidates for the most suitable number system among the options studied, we 
next present high level designs for representationally closed carry-free multiplication and division in 
Chapter 9. Other arithmetic support functions, such as arithmetic shift, zero, sign, and overflow
detection, are discussed in Chapter 10. Finally we draw our conclusions in Chapter 11.
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Chapter 2 | High Radix Signed Digit Number

 Systems 

Redundant signed digit number systems are popular in computationally intensive environments 
particularly because of their carry-free property which allows for digit-parallel addition. The time 
required for addition is particularly important because other arithmetic operations heavily depend on it. 
Signed digit number systems with high radices are of particular interest because of less memory 
requirement to represent a given number. But, the time required to perform digit-parallel addition is, by 
a relatively large coefficient, logarithmically proportional to the radix. In this chapter, we investigate the 
possibilities aiming in reduction of this coefficient, where we emphasize on lowest cost 
implementations. We present a novel modification to the conventional carry-free addition algorithm for 
signed digit numbers, and study the impact of different representations of signed digits on reducing the
time required to perform digit-parallel addition. Three representation paradigms are considered, namely, 
signed-magnitude, two's complement and one's complement. Following the common practice, and in 
order to achieve better results, we focus on power-of-two radices. With the new algorithm, the time 
required to derive the transfer digit reduces to a small constant value which does not depend on the 
radix.

Addition is widely recognized as a basis of other arithmetic operations. Adequate redundancy in a 
number system provides for digit-parallel addition, i.e., digit-wise addition of two numbers with no 
inter-digit carry propagation. The Signed Digit (SD) number system was first introduced by Avizienis 
[Aviz61] where he proved the carry-free property for radix-r (r ≥ 3) SD numbers with a digit set [−α, α]. 
In a number system with the carry-free property, a carry generated in any digit position is absorbed in 
the next position. In any hardware realization of carry-free addition based on binary adders, a generated 
carry, in fact, propagates up to the most significant bit of the next digit, (i.e., the carry is absorbed by 
that digit), so we can say that there is no inter-digit carry propagation beyond a one-time transfer to the 
next higher position. Adequate redundancy for the carry-free property is assured by the following 
constraint on digit values [Hwan79]:

(r+1) / 2 ≤ α ≤ r−1. 
 

For example, in the Binary Signed Digit (BSD) number system (r = 2) [Parh00], there is not enough 
redundancy in the digit set {-1, 0, 1}, to provide for carry-free property. But BSD has the limited-carry
property [Parh90]. In a number system with limited-carry property, a carry generated in any digit 
position propagates through a limited number of consecutive digit positions. The BSD number system, 
nevertheless, has been extensively used for implementing all basic arithmetic operations [EL94, 
KNET87, SP92]. The reason is that addition of two BSD numbers is possible with carry propagation 
limited to two binary digits, hence the possibility of very fast digit-parallel addition. But each binary 
signed digit is represented by two bits (twice the 1 bit needed to represent an unsigned binary digit), thus 
in BSD, the extra memory required is maximum (100%) as compared to SD systems with higher radices. 
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The Hybrid Signed Digit (HSD) number system provides a framework for trade-off between speed and 
area (memory requirement) [Phat94]. An HSD number is basically a binary number, except that some 
positions may hold a “−1” value as well (a BSD position). A carry generated in any position (BSD or 
binary) may propagate up to the next more significant BSD position. In the periodic HSD number 
systems, the number of binary positions between consecutive BSD positions is constant. The major 
drawback of the HSD number system is the high asymmetry that exists between the range of positive 
and negative values. For this reason, the HSD representation is not considered as one of the paradigms 
in this chapter. 

High Radix Signed Digit (HRSD) number systems have the benefit of lower memory requirement, while 
providing full symmetry between representable positive and negative values. But, the time required to 
add two high radix signed digits is by a relatively large coefficient proportional (or logarithmically 
proportional when a carry accelerating technique [Parh00] is used) to the number of bits in the 
representation of one digit, where the latter is logarithmically proportional to the radix. We call this 
coefficient the high radix coefficient, and explore the possibilities for reducing it. The relative largeness 
of the high radix coefficient is due to the complexity of the carry-free addition algorithm [Kore93], 
which takes several steps to perform the addition. BSD, HRSD, and the periodic HSD are all special 
cases of the Generalized Signed Digit (GSD) number system that is introduced in [Parh90].

In this chapter, we look for the lowest-cost (i.e., minimal hardware) representation for signed digits with 
the least possible value for the high radix coefficient. To accurately define what we mean here by a 
minimal hardware implementation, we define an h-dependent cell as a hardware piece whose delay 
depends on h (linearly or logarithmically), where each signed digit is assumed to be represented by h+1 
bits. Relevant examples relate to addition, or addition-like operations such as comparison or zero 
detection, where all can be implemented by a (h+1)-bit (or h−bit in the case of sign-magnitude 
representation) adder cell. A minimal hardware implementation is one that uses the minimum number of 
h-dependent cells, where the same cell may be reused as needed. On the other extreme a maximal 
hardware implementation is one that uses any number of h-dependent cells in parallel, and reuses an
h-dependent cell only when it does not increase the total delay. We will show that the value of the high 
radix coefficient is actually equal to the number of h-dependent cells in the critical path of the 
implementation. Any implementation may have some condition control circuitry with constant delay 
(that does not depend on h). We study three different representations for signed digits and introduce a 
novel modification to the Conventional Carry-Free Addition Algorithm (CCFAA) for HRSD numbers 
[Parh90]. In Section 2.1, we note that the CCFAA has four steps, where each step includes a form of 
addition of two digits (i.e., addition, comparison, zero detection, increment, or decrement). The time 
required to perform each addition is dependent on the internal hardware representation of the signed 
digits. To have a basis for cost comparison of the cases studied in this chapter, we try to parallel the 
steps of the CCFAA to the extent possible in Section 2.2. In Section 2.3, we introduce our modification 
to the CCFAA and prove its validity. Our novel Compare with Half Radix Algorithm (CHRA), 
introduces some simplifications in the implementation of the carry-free addition algorithm, which leads 
to the reduction of the high radix coefficient especially in a minimal hardware approach. In Section 2.4, 
we examine the sign-magnitude representation of signed-digits, where we show that the value of the 
high radix coefficient, on a minimal hardware approach is as high as 5. In Sections 2.5 and 2.6 we show 
that with two's complement and one's complement representations of a signed digit, the high radix 
coefficient can be substantially reduced, without increasing the hardware cost.
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2.1. Conventional Carry-Free Addition Algorithm (CCFAA)

The HRSD number systems provide for carry-free addition. Table 2.I depicts the different stages in 
addition of two HRSD numbers, where r is the radix and α denotes the maximum absolute value for a 
digit from the digit set [−α, α]. The addition algorithm, has four steps (as listed below), where each step 
may contribute to the value of the high radix coefficient.

1. Parallel addition of digits in the same position of two n-digit HRSD numbers A and B, which 
results in the position sum vector P.

2. Comparison of the magnitude of position sum digits with α in order to derive the transfer vector 
T, where each transfer belongs to {-1, 0, 1}, t0 is assumed to be zero, a nonzero tn denotes an 
overflow, and the expression |ti+1| = (|pi| ≥ α) means that if |pi | ≥ α then the absolute value of ti+1 
is 1, otherwise it is 0. 

3. Derivation of the interim sum vector W, by possibly adding r or −r to the position sums.
4. Parallel addition of the interim sum vector W and the transfer T which generates the sum vector 

S. The transfer selection mechanism in step 2, guarantees that no new transfer is generated in this 
step.

Table 2.I The CCFAA

an−1 … a1 a0 + A = Σi=0, n−1 ai ri

bn−1 … b1 b0 B = Σi=0, n−1 bi ri
________________________________________________

P: pn−1 … p1 p0 Pi = ai + bi (1)

T: tn−1 … t1 t0 |ti+1| = (|pi| ≥ α), sign (ti+1) = sign (pi) (2)
W: wn−1 … w1 w0 wi = pi − r ti+1 (3)

________________________________________________
S: sn−1 … s1 s0 si = wi + ti (4)

Figure 2.1 depicts the derivation of ti+1 and wi, where ti+1 is the transfer to the (i+1)th position, wi is the 
(i+1)th element of the vector W, the solid slopes serve as a graphical representation of Equation (3) in 
Table 2.I, and the interval tags I1, to I6 will be referred to later.

2.1.1 The choice of αααα and preservation of digit set [−−−−αααα, αααα]

For a given radix r, the choice of α in [(r+1) / 2, r−1], provides for several signed digit number 
systems from the minimally redundant system with the carry-free property (α = (r+1) / 2), to the 
maximally redundant (α = r–1) system. The following lemma shows that for the practical case of r = 2h

(h>1), and also two other impractical cases, the choice of α has no impact on the memory requirement 
(i.e., the number of bits needed) for representing a signed digit.
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Lemma 2.1: For 2h−2≤ r ≤ 2h, the memory requirement for the digit set [−α, α], doesn’t depend on α.

Proof: The number of digits in [−α, α], is 2α +1. Using the constraint on α (i.e., (r+1) / 2 ≤ α ≤ r−1), 
we can find the range of 2α+1, as 2(r+1) / 2 + 1 ≤ 2α+1≤ 2r-1. Combining the latter with the 
inequalities for r, in the Lemma’s statement, leads to: 

2h + 1 ≤ 2α +1≤ 2h+1−1. 
From the inequalities for 2α+1, it is obvious that regardless of the value of α, the number of bits needed 
to represent a signed digit is exactly h+1. �

Next, we study the sources of preservation of the digit set [−α, α] under the carry-free addition 
algorithm (i.e., the possibility that the range of si, is exactly equal to [−α, α]):

Lemma 2.2: Preserving the digit set [−α, α] under carry-free addition is exclusively due to position 
sums pi that satisfy −α < pi < α, except for maximally redundant case (α = r − 1), where |pi| = 2α, also 
leads to |si| = α.

Proof: For −α < pi < α, we have ti+1 = 0, and thus wi = pi and −α + 1 ≤ wi ≤ α − 1. Therefore, the range of 
si  = wi  + ti (where ti belongs to {−1, 0, 1}), is [−α, α]. For α≤ |pi| ≤ 2α, by symmetry, we consider only 
α ≤ pi ≤ 2α, where ti+1 = 1. We assume α = r − j for 1 ≤ j ≤ r − (r+1) / 2, and show that the only value 
for j, leading to the preservation of the digit set is 1. Substitution of pi by wi + r and α by r − j in 
α ≤ pi ≤ 2α leads to − j ≤ wi ≤ r − 2j. Now to let si reach α, we should let max (wi) = α − 1 or
r − 2j = r − j − 1, i.e., j = 1. �



12

2.1.2 Reduction of the high radix coefficient

Derivation of ti+1, in equation (2) of the CCFAA, involves a comparison operation which generally have 
the same time complexity as that of an unsigned addition operation. Therefore, four digit-parallel 
addition-like operations are recognized in Table 2.I. The time required for each addition is dependent on
h (h = log r, where the number of bits in one digit is either h or h + 1 depending on the value of α), 
and so is the total addition time of two signed digits. Therefore, we can define the total addition time as 
a function of h, such as ηδ(h) + c, where η stands for the high radix coefficient, and c is a constant, 
which does not depend on h. δ(h) may be a linear function of h, where each digit-addition is 
implemented by a carry ripple technique or may be sub linear on h, where a carry accelerating 
technique, such as carry look-ahead, is used [Parh00].

To reduce the high radix coefficient, an obvious approach is to parallel the steps of the CCFAA to the 
extent possible, which considerably increases the hardware cost of the implementation. The first and
second steps of the CCFAA (Table 2.I), cannot be paralleled, for obvious reason. But the rest of the 
computation can be done at the same time with step 2. The trick is to compute, in parallel, three groups 
of sum values depending on different values of ti. In each group three values are computed in parallel 
depending on the three possible values of ti+1. The groups for ti in {−1, 0, 1} are:

(pi − 1, pi − 1 + r, pi − 1 − r), (pi, pi + r, pi − r), (pi + 1, pi + 1 + r, pi + 1 − r).

In each group, depending on the value of ti+1 three different values of the interim sum, are added to ti. 
The position sum pi is computed in step 1, and the other 8 values may be computed in parallel with step 
2, by 8 extra adders. Next, one of the groups is selected by the value of ti, and then the final sum is 
selected by the value of ti+1. The selection process is done in constant time. Therefore in such a maximal 
hardware implementation, only steps 1 and 2 contribute to the value of the high radix coefficient. We 
will show in sections 2.4, 2.5, and 2.6, that contribution of steps 1 and 2 depend on the representation of 
the signed digits, specially, in sign-magnitude representation when implemented with minimal hardware, 
the contribution of step 1 is going to be more than 1. But by using considerable extra hardware, it is 
possible to limit the latter to 1. 
 
To achieve the same effect of reducing the high radix coefficient, but with keeping the hardware cost as 
low as possible, we follow an algorithm optimization approach. In the next section we introduce our 
novel algorithm through which the derivation of the transfer in step 2 of the CCFAA can be done in 
constant time without using extra hardware. When we consider the impact of different representations of 
signed digits on the value of the high radix coefficient, we will show that the contribution of derivation 
of the interim sum in step 3 may also be reduced to zero, again without using any extra hardware. In the 
following sections we make the following assumptions for convenience and/or efficiency:

• h = log r and r > 2, where we assume that each signed digit is represented by (h+1) bits (zero 
padding or sign extension may be applied if necessary).

• |pi| = 2hui + vixi, where ui is the most significant bit of |pi|, and vixi is the unsigned binary number 
composed of vi, the second most significant bit of |pi| and xi representing the (h-1) least 
significant bits of |pi| such that 0 ≤ xi < 2h-1.
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2.2 The Compare with Half Radix Algorithm (CHRA)

In the following theorem, we suggest that in step (2) of the CCFAA, |pi| may be compared with r/2, 
instead of α. Then, for r = 2h, the vector T may be derived with minimal delay after P is computed, such 
that the high radix coefficient is reduced by 1. 
 
Theorem 2.1: In the carry-free addition algorithm, the transfer may be derived by comparing |pi|, with 
r/2 (instead of α), as:

ti+1 = if ( r/2 ≤ pi ≤ 2α) then 1
else if (−2α ≤ pi ≤ − r/2 ) then −1
else if (− r/2 < pi < r/2 ) then 0

Proof: It is sufficient to show that |wi| < α for each of the above three intervals for pi. Replacing pi by wi 
+ r ti+1 leads to:

− r + r/2 ≤ wi ≤ 2α − r, for ti+1 = 1, 
− 2α + r ≤ wi ≤ − r/2 + r, for ti+1 = − 1, and

− r/2 < wi ≤ − r/2, for ti+1 = 0. 
Enforcing the inequality (r+1) / 2 ≤ α ≤ r−1, in each of the above inequalities, leads to |wi|≤ α − 1. �

Note that for pi = r/2 and for even values of r, ti+1 = 0 is also valid. We will show later that this 
imprecision is indeed useful in the two's complement paradigm of representation of signed digits. The 
CHRA is particularly efficient in practice, where r = 2h.

Corollary 2.1: For r = 2h, the transfer is derived, with minimal delay, by comparing pi with 2h-1, i.e., 
sign (ti+1) = sign (pi) and |ti+1| = ui ∨ vi, where ∨ stands for logical or. �

With the CHRA, contrary to Lemma 2.2, position sum values pi, satisfying − α ≤ pi ≤ α, do not 
contribute in preserving the digit set [− α, α], except for the minimally redundant case α = (r+1)/2
with odd values of r, which is unfortunately not the case in Corollary 2.1. But, in the maximally 
redundant case (α = r −1), preservation of the digit set [− α, α], always holds by Lemma 2.2 and the 
choice of α = r −1, where 2h-2 ≤ r ≤ 2h, does not introduce any inefficiency, as compared to less 
redundant cases (Lemma 2.1). The latter results are summarized in the following corollary.

Corollary 2.2: The compare with half radix algorithm preserves the digit set [− α, α] in the maximally 
redundant signed digit number systems (α = r −1). Furthermore, for 2h-2 ≤ r ≤ 2h and in particular for the 
practical case of r = 2h, the choice of α = r −1 does not increase the memory requirement. �

2.3 Sign-magnitude representation of HRSD numbers

Addition of two sign-magnitude digits, as described below, involves four steps by itself. All the four 
steps, in a maximal hardware approach may be paralleled such that the time required for a 
sign-magnitude addition is in the same order as the single step two's complement addition. In what 
follows, we consider the impact of the sign-magnitude representation of signed digits on different steps 
of the CCFAA, together with a time complexity analysis of a sign-magnitude addition.
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2.3.1 Derivation of position sum

This step of the CCFAA, involves one sign-magnitude addition, whose contribution to the value of the 
high radix coefficient, by the following analysis, is 2(1) with the parenthesized figure relating to the 
maximal hardware approach. This is reflected in the first column and first row of Table 2.II.

2.3.1.1 Sign-magnitude addition

Addition of two sign-magnitude digits involves the following four steps where we assume that each digit 
is represented by a sign (1 bit) and an h-bit magnitude:

1) Possible complementation of the second operand:

If the signs of the two operands are different, the magnitude of the second operand should be 
complemented before addition. Complementation involves an increment operation which may be 
deferred to be fused later in step 2 below, as an “always high” carry-in signal. As such, this step 
does not exclusively contribute in the total time needed for addition of two sign-magnitude 
digits, except for a sign-bit comparison and a conditional bit-wise inversion. That is, the 
contribution does not depend on h.

2) Addition of the magnitudes of the two operands. 

The contribution of this step to the total addition time depends on h.

3) Possible magnitude comparison of the two operands:

If the two operands have different signs, then the sign of the result is the same as that of the 
operand with larger magnitude. In a minimal hardware approach, we may take advantage of the 
fact that magnitude comparison is necessary only when the signs are not alike, where the actual 
operation in Step 2 above is subtraction of magnitudes. For a non-zero result, the operand with 
larger magnitude can be determined from the subtraction result. For a zero result, the derived 
sign as such may be positive or negative, but unique zero representation requires a positive sign 
for zero magnitudes. We therefore need to determine if the subtraction result was zero or not. 
The time required for zero detection of an h-bit operand depends on h. The latter could be done 
in parallel with Step 2 [Vass89], but staying with our minimal hardware approach, we can reuse 
the adder cell of Step 2 for zero detection. The trick is to add 2h-1 to the subtraction result and
check for the carry-out signal. A low signal indicates that the subtraction result was zero. We can 
conclude now that in a minimal hardware approach, the exclusive elapsed time of this step 
depends on h.

4) Possible complementation of the result:

If the sign of complemented operand in step 1 was originally positive, the result of the addition 
in Step 2 should be complemented. The contribution of this step in the total addition time 
normally depends on h. But the post two's complement operation has been reported to be 
avoidable in [Vass89], without employing any extra h-dependent cell. The trick is to bit-wise 
complement the result, when is necessary, and instead of increment operation, as part of 
complementation, add to it the carry out of the magnitude addition. 
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The latter addition as a sort of end-around-carry addition does not actually introduce another 
h-dependent operation besides the magnitude addition. Therefore taking advantage of the latter 
clever technique, the time required for this step is not h-dependent, even in a minimal hardware 
approach.

Summing up the partial contributions of the steps above in the total sign-magnitude addition time, we 
conclude that in a minimal hardware approach, two h-dependent addition operations (due to those of 
Steps 2 and 3 above), contribute in the total addition time, while the h-dependent delay in a maximal 
hardware approach equals to that of only 1 addition.

2.3.2 Derivation of transfer and interim sum

Recalling Equation (2) of Table 2.I, we note that derivation of the transfer involves a magnitude 
comparison operation. The comparison operation has the same time complexity as that of a simple 
unsigned addition, and thus its contribution in the value of the high radix coefficient as reflected in the 
first column and second row of Table 2.V is 1. 
 
To analyze the time complexity of the derivation of the interim sum by Equation (3) of Table 2.I, we 
recognize six cases depending on the six intervals of the values of pi, denoted by I1 to I6, in Figure 2.1. 
In each case, as is shown in Table 2.II, we can derive wi, by replacing 2hui + vixi for |pi| and 2h for r, in 
wi = pi − rti+1, followed by substitution of the related values (with regards to the respected intervals) for 
ui and ti+1. The choice of r = 2h, follows the common practice, and simplifies the derivation.

Table 2.II Derivation summary of wi in addition of two sign-magnitude signed digits

Interval for pi pi Sign (pi) ui |ti+1| ti+1 wi Sign (wi) |wi|
I1 = [−2α, −2h] −2h ui − vi xi 1 1 1 −1 − vi xi 1 vi xi
I2 = [−2h+1, −α] −2h ui − vi xi 1 0 1 −1 − vi xi + 2h 0 !(vi xi) + 1
I3 = [−α+1, −1] −2h ui − vi xi 1 0 0 0 − vi xi 1 vi xi
I4 = [0, α −1] 2h ui + vi xi 0 0 0 0 vi xi 0 vi xi
I5 = [α, 2h −1] 2h ui + vi xi 0 0 1 1 vi xi −2h 1 !(vi xi) + 1
I6 = [2h, 2α] 2h ui + vi xi 0 1 1 1 vi xi 0 vi xi

In Table 2.II, we note that wi is negative only when the number of “1”s in the three columns for sign(pi), 
ui, and |ti+1| is odd, i.e., sign (wi) =  sign (pi) ⊕ ui ⊕ |ti+1|. To find an easy implementation for |wi|, we note 
in Table 2.II that |wi| = vixi, except when !ui and |ti+1| are both “1” in which case |wi| = !(vixi) + 1, 
where !(vixi) is the bit-wise complement of vixi. This observation can be summarized in the equation |wi| 
= multiplex (vixi, !ui|ti+1|, !(vixi) + 1), where multiplex (x, c, y) resolves to x when the bit-variable c is 
“0”, and to y otherwise. The increment operation involved in the derivation of |wi| may be fused in step 
(4) of the CCFAA. Therefore, this step may be considered as not contributing in the value of the high 
radix coefficient, even in a minimal hardware approach. 
Finally step (4) of the CCFAA as a sign-magnitude addition contributes another “2” (1 in the maximal 
hardware approach) to the value of the high radix coefficient, making η, as reflected in Table 2.V, equal 
to 5(2). Applying the CHRA reduces η, to 4(1).
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2.4 Two's complement representation of high radix signed digits

Here, we consider representing each signed digit, as a two's complement number. The range [− 2h, 2h-1], 
of a (h+1)-bit two's complement digit, covers the digit set [− α, α], for (r+1)/2 ≤ α ≤ r−1 and r = 2h.

2.4.1 Derivation of two's complement position sum

To derive the position sum, we sign-extend (one bit to the left) the two (h+1)-bit signed digits 
represented in two's complement format, and then perform two's complement addition. The result will 
be an (h+2)-bit position sum. The contribution of this operation in the value of the high radix coefficient, 
as is reflected in the third and fourth column and first row of Table 2.V is 1. 
 
2.4.2 Derivation of transfer and two's complement interim sum

The outcome of applying the CHRA on two's complement signed digits (with r = 2h) is shown in Figure 
2.2 and also in Table 2.III.

The Figure is drawn for the maximally redundant case α = r − 1, in which the 3 bit numbers on the 
intervals for pi (i.e., sign(pi), ui, and vi), stand for the three most significant bits of pi. In the Table, the 
columns 2-4 and 7-8 represent the three most significant bits of pi and the two most significant bits of wi 
respectively, xi stands for the (h − 1) least significant bits of pi and the two's complement representation 
of ti+1 is shown in the rightmost two columns, where the superscripts denote the bit positions. Note that, 
by Theorem 2.1, the choice of ti+1 = 0 in the last row of Table 2.II includes the point with coordinates 
(−r/2, −r/2) of Figure 2.2. As shown below, the latter choice is vital for simplification of the derivation 
of ti+1. From Table 2.II, it can be easily verified that the transfer ti+1, can be computed by a simple
3-input/2-output logic, as in the following logical equations:

t1i+1 = sign(pi) !(uivi), t0i+1 = (!sign(pi) + !ui + !vi) (sign(pi) + ui + vi).



17

Table 2.III Derivation of wi and ti+1 in the addition of two's complement signed digits.

pi Sign (pi) ui vi ti+1 wi wi
h wi

h-1 t1i+1 t0i+1
xi 0 0 0 0 xi 0 0 0 0

2h-1 + xi 0 0 1 1 −2h + 2h-1 + xi 1 1 0 1
2h + xi 0 1 0 1 xi 0 0 0 1

2h + 2h-1 + xi 0 1 1 1 2h-1 + xi 0 1 0 1
− 2h+1 + xi 1 0 0 −1 −2h + xi 1 0 1 1

− 2h+1 + 2h-1 + xi 1 0 1 −1 −2h + 2h-1 + xi 1 1 1 1
− 2h+1 + 2h + xi 1 1 0 −1 xi 0 0 1 1

− 2h+1 + 2h + 2h-1 + xi 1 1 1 0 −2h + 2h-1 + xi 1 1 0 0

The (h−1) least significant bits of wi, exactly, represent xi (i.e., (h−1) least significant bits of pi), and also 
wih-1 = pih-1, as can be easily seen in Table 2.II. What remains is wih, which is computable by a simple 
3-input logic, implementing the following equation:

wih  = sign(pi) !ui + sign(pi) vi + !uivi.
From the above equations, we can see that derivation of the transfer and the interim sum do not 
contribute to the value of the high radix coefficient, as reflected in the fourth column and second and 
third row of Table 2.V. Finally, si can be derived by a simple two's complement increment/decrement 
logic, whose share in the value of the high radix coefficient is 1. The high radix coefficient for two's 
complement paradigm with the CCFAA and the CHRA is thus η = 3(2) and η = 2(1) respectively, where 
the figures in parenthesis refer to the maximal hardware approach.

2.5 One's complement representation of signed digits

A signed digit can be represented in one's complement format, pretty much the same as that shown in 
the previous section for two's complement signed digits. Following the same analysis as in the previous 
section, derivation of the position sum contributes a “1” to the value of the high radix coefficient. Then, 
Table 2.IV resembling the derivation of wi and ti+1, has been built up similar to Table 2.III, where there 
are two main differences between the two tables. First, one's complement encoding is used for ti+1 in the 
last two columns, and thus derivation of t0i+1 is simpler as t0i+1 = !sign(pi) (ui + vi). Second, the derivation 
of wi, as seen in the second row and the row before last of Table 2.IV, requires an increment/decrement 
operation. But since ti is available before it is possible to do the increment/decrement operation on wi, 
the increment/decrement may be fused in the computation of si = wi + ti. Therefore, the high radix 
coefficient in this case is also η = 3(2) and η = 2(1) respectively. The value of the high radix coefficient 
in one's complement and two's complement paradigms is the same, but the two's complement 
representation of signed digits is naturally preferable. The reason is the popularity of the two's 
complement representation in general, availability of optimized standard adder cells for two's 
complement binary representation, and the ease of converting widely used two's complement numbers to 
their signed digit equivalent and vice versa.
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Table 2.IV Derivation of wi and ti+1 in addition of one's complement signed digits.

pi Sign (pi) ui vi ti+1 wi wi
h wi

h-1 t1i+1 t0i+1
xi 0 0 0 0 xi 0 0 0 0

2h-1 + xi 0 0 1 1 −2h + 1 + 2h-1 + xi 1 1 0 1
2h + xi 0 1 0 1 xi 0 0 0 1

2h + 2h-1 + xi 0 1 1 1 2h-1 + xi 0 1 0 1
− 2h+1 + 1 + xi 1 0 0 −1 −2h + 1 + xi 1 0 1 0

− 2h+1 + 1 + 2h-1 + xi 1 0 1 −1 −2h + 1 + 2h-1 + xi 1 1 1 0
− 2h+1 + 1 + 2h + xi 1 1 0 −1 1 + xi 0 0 1 0

− 2h+1 + 1 + 2h + 2h-1 + xi 1 1 1 0 −2h + 1 + 2h-1 + xi 1 1 0 0

Table 2.V Contribution of each step of carry-free addition in the value of the high radix coefficient 
ηηηη, where the parenthesized figures relate to the maximal hardware approach

Sign-Magnitude Two’s Complement One’s Complement
CCFAA CHRA CCFAA CHRA CCFAA CHRA

Position sum P 2 (1) 2 (1) 1 (1) 1 (1) 1 (1) 1 (1) 
Transfer T 1 (1) 0 (0) 1 (1) 0 (0) 1 (1) 0 (0) 

Interim sum W 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
Final sum S 2 (0) 2 (0) 1 (0) 1 (0) 1 (0) 1 (0) 

High radix coefficient ηηηη 5 (2) 4 (2) 3 (2) 2 (1) 3 (2) 2 (1) 

2.6 Summary

High radix signed digit number systems exhibit the carry-free property while economizing the memory 
requirement as compared to lower radix signed digit number systems. In this chapter, we introduced the 
high radix coefficient as a measure for comparing the time required to perform carry-free addition of 
HRSD numbers with different representations, where we emphasize on lowest-cost implementations, 
which is characterized by limiting the number of h-dependent cells to 1. An h-dependent (h =log r, and 
r is the radix of the number system) cell is a (h+1)-bit (or h-bit) adder, comparator, or zero detector. We 
present a modification to the conventional carry-free addition algorithm for HRSD numbers, in order to 
reduce the high radix coefficient. One of the steps in carry-free addition involves comparing the
magnitude of the position sum with the maximum absolute value α of the digit set. We present a 
theorem to prove that the comparison of the magnitude of the position sum with the half-radix r/2, 
instead of α, will produce a valid transfer digit. We show that our modified algorithm, when applied for 
power-of-two radices (r = 2h, h > 1), simplifies the comparison operation to a constant time derivation of 
a simple logical equation. We apply the modified algorithm to sign-magnitude, two's complement and
one's complement representations of signed digits, and designate the proposed method the Compare with 
Half-Radix Algorithm (CHRA). We show that use of the CHRA, with two's complement or one's 
complement representation of signed digits in a minimal hardware (lowest-cost) approach has the same 
effect on reducing the high radix coefficient, as does the maximal hardware (most costly) 
implementation of the CCFAA or CHRA with sign-magnitude representation.
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We present a comparison table (Table 2.V) of the application of the CHRA with that of the CCFAA on 
the three signed digit's representation paradigms studied in this chapter, for both minimal hardware and
maximal hardware approaches. The Table shows that the two's complement and one's complement 
representations with the CHRA and the minimal hardware approach lead to a 60% lower value for the 
high radix coefficient (reducing from 5 to 2) over the sign-magnitude paradigm with the conventional 
carry-free addition algorithm. This is achieved for power-of-two radices (r = 2h, h > 1) and the 
maximally redundant (α = r−1) signed digit numbers (with the same memory requirement as any less 
redundant case), while the digit set [−α, α] is fully preserved. The two's complement paradigm is 
preferred over one's complement because of the popularity of the two's complement representation in 
general. Some other even more efficient representation paradigms of signed digits are studied in the next 
chapters.
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Chapter 3 |Stored Transfer Representation 

Redundancy in number representation aims to improve the speed or efficiency of arithmetic units 
[Metz59], [Aviz60] and is commonly used in modern digital systems. One reason for speed 
improvement with redundancy is the possibility of carry-free addition; i.e., addition in a small, constant 
time, independent of operand widths [Parh90]. Another reason is that redundancy allows some 
imprecision in the decision processes (such as quotient or root digit selection [Parh00], [Parh01]); this 
tolerance for imprecision removes enough complexity from the computation’s critical path to yield 
significant performance improvement. Here, we focus on mechanisms that facilitate carry-free addition 
and allow its implementation with even greater speed.

In carry-free addition, as illustrated in Figure 3.1.a, one performs the following steps on all k digit 
positions of the two radix-r operands in parallel, where xi and yi belong to the possibly redundant digit 
set ∆ = [α , β]:

1. Compute the position sum digit pi = xi + yi
2. Derive the interim sum digit wi and transfer digit ti+1 satisfying wi = pi − rti+1 
3. Form the final sum digit si = wi+ ti

For step 3 to yield a valid digit in ∆ without producing further transfers, wi must be restricted in
D = [a , b], with the following holding for all possible values of ti:

α − ti ≤ a < a + r – 1 ≤ b ≤ β − ti
Note that the digit-size additions of steps 1 and 3, though quite fast compared to word-size additions 
required with nonredundant representations, are merely used for algorithm description and need not be 
explicitly performed in hardware. The addition in step 1 can be avoided, e.g., by noting that wi and ti+1 
are directly computable in hardware as functions of xi and yi. That is:

wi = ω(xi, yi) ti+1 = τ(xi, yi)

This, in effect, as also depicted in Figure 3.1.b, fuses steps 1 and 2 and allows the designer to choose the 
best possible merged implementation. It may be the case, with certain digit sets and/or encodings, that 
some form of addition is still part of the best hardware implementation scheme for ω and τ, but this is 
not required. We are thus motivated to investigate methods for eliminating, or else simplifying, the 
addition in step 3. 
 
3.1 The Notion of Stored-Transfer
In a manner similar to the stored-carry or carry-save representation of binary numbers [Metz59], 
[Jabe99], we study the implications of stored-transfer or transfer-save representations of redundant digits 
where the pair (wi, ti) is viewed as an encoding of the sum digit si, thus obviating the need for the final 
addition as depicted in Figure 3.1.c. We call wi the main part and ti the transfer part of a digit’s
stored-transfer encoding. 
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Example 3.1: A main part that is a 4-bit 2’s-complement number and a 4-valued stored transfer in [−1, 2] 
constitute a 6-bit encoding of the digit set [−9, 9]. Direct encoding of the digit set requires 5 bits.�

(b)  Carry-free add 
with lookahead

in lieu of transfers

t i

x i y i

wi

Position i 1Position i 

(a)  Carry-free add
with a final stage for
transfer integration

x′i x″i y′i y″i

wi t i

s′i s″i

Position i 1Position i 

(c)  Carry-free add
with stored-transfer
encoding of digits 

Position i 1Position i 

s i s i

x i y i

 Fig. 3.1 Carry-free addition paradigms

The latter scheme leads to a two-step formulation of carry-free addition. In the following, we assume 
that any digit z ∈ ∆ has a transfer-save encoding (z′, z″), with z′ ∈ D and z″ ∈ G = {c0, c1,… , cd−1}; that 
is, primed and double-primed variables are used to designate the main and transfer parts of a digit.

1. Compute the position sum digit pi = xi′+ xi″+ yi′+ yi″
2. Derive si = (si′, si″), satisfying si′ = pi − rsi+1″

Note that the generated transfer set G = {c0, c1, … , cd−1}, satisfying c0 < c1 < … < cd−1, is d-valued but 
does not necessarily contain a set of d consecutive integers. We take this more general view in 
anticipation that it may provide added flexibility for optimizations. We will see later that even though 
such generalized transfer sets do not provide additional benefits directly, they can be used with minor 
modifications to the carry-free addition algorithm. On the other hand, the main part of a digit belongs to 
an interval D = [a, b] of values. Whereas gaps in this set are also admissible, provided that the values in 
the set contain one member from each of the r residue equivalence classes j mod r (0 ≤ j ≤ r – 1), we 
have not found this generality to lead to any speed or cost benefit. Of course, steps 1 and 2 in this new 
two- step process can again be fused, in the manner previously outlined, leading to a merged, or 
single-step, implementation: si′ = σ′(xi′, xi″, yi′, yi″), si+1″ = σ″(xi′, xi″, yi′, yi″).  
An objection may be raised that our scheme simply shifts the complexity of the original step 3 to the 
new step 1. That this is not the case will become clear as we describe our methods. Here, we just argue 
that the new scheme can, in principle, be faster than the original algorithm. For a 4-operand addition, 
where two of the operands (transfer parts) are fairly small, can indeed be faster and less complex than 
two separate additions [Koba85]. In such a case, the function pairs (ω, τ) and (σ′, σ″) have comparable 
bit-level complexities.
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3.2 Some General Requirements

Equating the boundaries of the original digit set ∆ = [α, β] and its stored-transfer representation, i.e.,
[α, β] = [a, b] + {c0, c1,… , cd−1}, leads to the requirements: 

α = a + c0 β = b + cd−1
For convenience, we define redundancy indices associated with the two digit sets [α, β] and [a, b] as 
ρ = β – α + 1 – r and ρ′ = b – a + 1 – r, respectively. We also designate δ = cd−1 – c0 as the span of the 
transfer set. It is easy to show that ρ = ρ′ + δ. If, for the sake of representational efficiency, we set 
ρ′ = 0, it is the case that ρ = δ. Furthermore, we define ∆i = [a + rci, b + rci] ∩ [pmin, pmax] as the range 
of p, where ci is a valid (or useful, per Definition 3.1 below) transfer value and λi = b + rci – a –  rci+1 + 1
= ρ′ + r – rδi (i < d – 1) as the overlap between ∆i and ∆i+1, where δi = ci+1 – ci.
Example 3.2: Stored-transfer representations of some redundant number systems are characterized in 
Table 3.I. In all cases, D is irredundant (ρ′ = 0, ρ = δ) and is taken to be the unsigned set [0, r – 1], 
except for the last entry where D is [–r/2, r/2 – 1] with r even. For the two hybrid signed-digit entries, 
r = 2h. �

We next explore constraints on the digit set and transfer values dictated by the requirements for 
carry-free addition, where we make use of the following definitions: 

Table 3.I Stored transfer representation of familiar redundant number systems

Name of number system ∆ G         D           ρ = δ
Stored-carry [0, r] {0, 1} [0, r − 1] 1

Stored-borrow [−1, r − 1] {−1, 0} [0, r − 1] 1

[−1, r]  {−1,0, 1} [0, r − 1] 2
Stored-carry-or-borrow

[−1, r] {−1, 1} [0, r − 1] 2

Stored-double-carry [0, r + 1] {0, 1, 2} [0, r − 1] 2

Hybrid S-D (h–1 B, 1 BSD, r = 2h) [−1, 2h–1] {−1, 0} [0, r − 1] 1

Hybrid S-D (1 BSD, h–1 B, r = 2h) [−2h–1, 2h–1] {−2h–1, 0} [0, r − 1] 2h–1 

[−r/2−1, r/2] {−1, 0, 1} [−r/2, r/2−1] 2
Minimally redundant Asymmetric

[−r/2−1, r/2] {−1, 1} [−r/2, r/2−1] 2

Definition 3.1: A transfer value ci ∈ G is useful if the set ∆i is nonempty; i.e., there exists some position 
sum value p that may be decomposed as p = w + rci, where w ∈ [a, b]. �
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Definition 3.2: A transfer value ci ∈ G is necessary if the set ∆i – (∆i ∩ ∆i+1) – (∆i−1 ∩ ∆i), where ci
constitutes the only valid choice of transfer digit value, is nonempty. �
Definition 3.3: The necessity range of p for ci, 0 < i < d – 1, is the possibly empty interval [b + rci−1 + 1, 
a + rci+1 – 1] where ci is necessary, and neither ci−1 nor ci+1 is useful. �

For a representation system with the representational closure property under carry-free addition (see 
Figure 3.3 for an illustration), the range [2a + 2c0, 2b + 2cd−1] of the position sum p should be totally 
contained within [a, b] + {rc0, rc1, . . . , rcd−1}. For digit set preservation property to hold, This leads to 
the following results.

Lemma 3.1: If m = maxi δi is the maximum spacing of values in G, we must have ρ′  ≥ (m – 1)r for 
carry-free addition to be possible with stored transfer representation.

Proof: Consider consecutive transfer values j and j + m in G. The ranges of p for which these transfer 
values can be chosen are ∆j = [a + jr, b + jr] and ∆j+m = [a + (j + m)r, b + (j + m)r], respectively. To 
avoid gaps in the p values, ∆j and ∆j+m must overlap:

b + jr + 1 ≥ a + (j + m)r

This is easily converted to ρ′ = b – a + 1 – r ≥ (m – 1)r. �

Corollary 3.1: Given a value for ρ′, the maximum allowed spacing of values in G is ρ′/r + 1 (i.e.,
δi ≤ ρ′/r + 1). �

Corollary 3.2: Given a value for ρ′, the overlap between ∆i and ∆i+1 (cardinality of ∆i ∩ ∆i+1) is
λi = ρ′ + r – rδi, i.e., the overlap λi is minimized, for δi = ρ′/r + 1. �
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Corollary 3.3: For ρ′ ≤ r – 1, the transfer set G must contain an interval of integer values (i.e., δi = 1 for 
all i). �

Theorem 3.1: The transfer set G must be at least three-valued. Furthermore, a transfer set with four 
values is generally adequate, except for a few special cases.

Proof: The minimum and maximum transfer values, i.e., c0 and cd−1, should satisfy the following 
inequalities:

a + rc0≤ 2a + 2c0 ⇒ c0 ≤ a/(r – 2) 
 2b + 2cd−1 ≤ b + rcd−1 ⇒ b/(r – 2) ≤ cd−1
To minimize d, we aim to maximize the necessity range for each ci ∈ G. We thus choose c0 = a/(r – 2)
and minimize λi by choosing δi = ρ′/r + 1, for all i, as prescribed by Corollary 3.2. The value of cd−1
can then be derived as: 

cd−1 = c0 + ∑δi = a/(r – 2) + (d – 1)(ρ′/r + 1)  
This equation, along with the lower bound for cd−1, yields:

a/(r–2) + (d–1)(ρ′/r + 1) ≥ (a+ρ′+r–1)/(r–2)  
Letting a = (r – 2)u + v and ρ′  = rq + y, with 0 ≤ v ≤ r – 3 and 0 ≤ y ≤ r – 1, the condition above 
becomes: 

u + (d–1)(q+1) ≥  u + q + 1 + (v+y+2q+1)/(r–2)  
Solving this inequality for d, we get:

d ≥ 2 + θ ⇒ dmin = 2 + θ

where θ = (v + y + 2q + 1) / [(r – 2)(q + 1)]. Considering that r ≥ 3, we next show that θ > 3 (dmin > 5) is 
impossible, and θ = 3 (dmin = 5) is needed only for a few special cases. To show that dmin > 5 never holds, 
we note that

θ = (v + y + 2q + 1) / ((r – 2)(q + 1)) > 3

implies (3r – 8)q < v + y – 3r + 7 ≤ 3 – r ≤ 0, which is impossible given that (3r – 8)q < 0 holds only if
q < 0, whereas q = ρ′/r ≥ 0. Similarly, setting θ > 2 leads to:

(2r – 6)q < v + y – 2r + 5
Given that the right-hand side of the inequality above is no greater than 1, we must have q = 0 for r > 3. 
This leads to the following special cases for which dmin = 5:  

r > 3, q = 0, v = r – 3, and y = r – 1 or
r = 3, v = 0, and y = 2

For all other cases (i.e., 0 < θ ≤ 2), we have 3 ≤ dmin ≤ 4.�

The undesirable cases in Theorem 3.1, where θ = 3, are unlikely to be of practical interest. The radix-3 
case (besides not being a power of 2) implies at least five values each for D and G, leading to 6 or more 
bits per digit. For radix 2h, h ≥ 2, the high redundancy implied by ρ′ ≥ r – 1, coupled with 3 bits for the 
5-valued stored transfer, can be easily avoided by suitable choice of a that ensures v < r – 3 (e.g., 0 ≤ a ≤
r – 4 or –r + 2 ≤ a ≤ –2).
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Corollary 3.4: For ρ′ = 0, we have dmin = 3. In this case, Gmin = {c0, c0 + 1, c0 + 2} is adequate, where
c0 = a/(r – 2). �

Corollary 3.5: For 0 < ρ′ ≤ r–1, we have θ ≤ 2 and dmin ≤ 4, except when v = r–3 and y = r–1, in which 
case dmin = 5. �

Corollary 3.6: For carry-free addition to be possible with digit set ∆, the condition ρ ≥ δ ≥ 2 is 
necessary.�

This last result is consistent with the fact that all the cases with ρ = δ = 1 (e.g., some of those in Example 
3.2) do not support carry-free addition [Parh90].

Lemma 3.2: The necessity range of p for ci ∈ G – {c0, cd−1} is nonempty iff δi + δi+1 > ρ′/r + 1.  
Proof: The requirement b+1+rci−1 ≤ a–1+rci+1, with ci+1–ci−1 = δi+δi+1 and b – a + 1 = ρ′ + r lead to the 
desired result. �

Corollary 3.7: For ρ′≤ r –1 (δi+δi+1=2 > ρ′/r +1), all ci∈ G – {c0, cd−1}, are necessary transfer values.�

Corollary 3.8: When D is a signed digit set (i.e., a<0<b) and ρ′≤ r –1, we have c0 ≤ a/(r –2)<0<b/(r – 2) 
≤ cd−1, implying that 0 is a necessary transfer value. Furthermore, G = {–1, 0, 1} is adequate. �
Because a four-valued G is always sufficient (except in a few practically insignificant special cases), 
compared to the binary encoding of the nonredundant digit set [0, r – 1], our stored-transfer 
representations need two bits of redundancy per digit. Virtually all practical redundant representations 
use power-of-two radices and thus imply at least one bit of redundancy. Therefore, the incremental cost 
of our scheme, in its initial form, and without the enhancement to be covered in Section 3.4, is one bit of 
redundancy per digit.

3.3 Speed and Cost Implications
The added cost of one bit per digit position buys us significant latency improvement in the basic 
operation of carry-free addition and all other arithmetic operations that use addition as a building block. 
In multioperand addition, and thus in multiplication, as well as in subtractive and multiplicative division, 
the per-add savings are compounded over many addition levels.

Because the main digit part can be in 2’s-complement format with ρ′ = 0, much of digit-level addition 
circuits can be based on readily available, and well optimized, binary adder cells. For example, a digit 
adder can be built from an h-bit binary adder, computing the (h + 1)-bit sum xi′ + yi′, followed by a 
special (h + 5)-input, (h + 2)-output circuit; the inputs are the aforementioned (h + 1)-bit sum and two  
2-bit stored transfers xi″ and yi″, while the outputs are the h-bit sum digit si′ and a 2-bit generated 
transfer si+1″. Except for an O(h)-time digit addition, the rest of the computation may be performed in a 
small constant time, independent of the radix (see Section 3.4). 

One way to compare the speed of addition in the stored-transfer scheme with other representations is to 
use the notion of high-radix coefficient introduced in [Jabe03 ], where signed-magnitude/1’s-/2’s-
complement encodings of redundant digits are studied. This coefficient corresponds to the number of 
simple digit-level addition and increment operations needed for adding two redundant numbers.
As discussed above, stored-transfer representation has a high-radix coefficient of 1, where those of the 
other three representations are 2 for 2’s-complement and 1’s-complement, and 4 for signed-magnitude. 
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A comparison between our stored-transfer scheme and hybrid signed-digit representation [Phat94] will 
be provided in Section 3.5.

3.4 Two-Valued Stored Transfers
The representational efficiency of our stored-transfer scheme can be improved by using the following 
“trick”. Consider a 3-valued transfer x″ ∈ {–1, 0, 1} attached to a main digit x′ = 2u′ + v′, where v′ = x′
mod 2 and u′ = x′/2. We assume that x′ is encoded in two parts: a single bit denoting v′ and an arbitrary 
encoding of u′. A given stored-transfer digit 〈2u′ + 0, 0〉, as depicted in Figure 3.4, can be recoded as 
〈2u′ + 1, –1〉, and 〈2u′ + 1, 0〉 as 〈2u′ + 0, 1〉, thus making it unnecessary to store the transfer value 0. 
The resulting 2-valued stored transfer renders the representational efficiency of our scheme competitive 
with the most efficient redundant representations. The cost of this recoding is small, given that it affects 
only a single bit v′ in the encoding of x′. The case of a 3-valued transfer x″ ∈ {0, 1, 2} is similar: recode 
〈2u′ + 0, 1〉 as 〈2u′ + 1, 0〉, and 〈2u′ + 1, 1〉 as 〈2u′ + 0, 2〉.

This scheme, which may be viewed as reintroducing step 3 of the carry-free addition process, but in 
much simpler form involving single-bit logical operations, can be applied after each carry-free addition 
operation to keep representations efficient in the arithmetic circuits and their associated registers or it 
can be applied only at the interface between the arithmetic unit and storage system.

Ad-hoc simplifications and efficient implementations for special cases of ρ′ and G, may be derived. For 
example we give the following algorithm for addition of two stored-transfer digits xi and yi, where ρ′ = 0
and G = {–1, 1}: 

1.Form the h-bit 2’s-complement value zi = xi″ + yi″
2.Derive the carry-save sum (ui, vi) = z i + xi′ + yi′
3.Add ui and vi to form the binary position sum pi
4.Derive si′ and si+1″ satisfying si′ = pi − rsi+1″
5.Adjust si″ and the least significant bit of si′

If we encode G as {0, 1}, the rightmost bit of zi is always 0, the next bit is derived by an XNOR 
operation, and the identical leftmost h – 2 bits by a NOR operation. Standard full-adders may be used in 
step 2. Step 3 requires an h-bit (h – 1 if an extra half-adder is used in step 2) adder which can be of any 
suitable design. In step 4, si′ and si+1″ are directly derived in constant time from pi and its two most 
significant bits, respectively. Step 5 involves 1 gate delay, as previously discussed. Only step 3 has a 
latency that depends on h. Moreover, steps 1 & 2 and 3 & 4 may be partially overlapped to further 
reduce the constant-time component of the addition latency.
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3.5 Very High Radix Representations
One context in which our scheme is particularly cost-effective is when the radix r is rather large. In this 
case, we have both lower relative redundancy and greater latency improvement over other radix-r
redundant representations. In particular, our scheme can be viewed as a competitor for the hybrid 
redundancy scheme that provides a mechanism for high-radix redundant representation via incorporating 
binary signed-digit positions after each group of h –1 ordinary binary positions [Phat94], [Phat99]. Our 
scheme shares many advantages of hybrid redundancy, while being capable of providing full symmetry 
in the number system (if desired), offering lower latency, and providing greater flexibility in circuit 
implementation. 

We first compare the representation of k-digit radix-2h numbers in the hybrid scheme, having 1 BSD and 
h – 1 ordinary bits per digit, with the two-valued stored transfer representation containing an h-bit main 
part, with ρ′ = 0 and G = {–1, 1}. Both schemes require a total of k(h + 1) bits. The range of a k-digit 
number in the hybrid scheme and in our scheme are [–r/2, r – 1]υ and [–r/2 – 1,  r/2]υ, respectively, 
where υ = (rk – 1)/(r – 1). The maximal symmetric subrange is [–r/2, r/2]υ in both cases; that is, where 
symmetry is required, the two schemes exhibit the same representational efficiency.

Details regarding speed and circuit-cost comparisons will be dealt with in Chapter 8. Preliminary results 
indicate that, compared to hybrid redundancy, a few gates are saved in each digit position corresponding 
to a binary position in hybrid redundancy while a comparable number of extra gates are needed for each 
position corresponding to a BSD position. It thus seems that circuit-cost advantage exists for even 
moderate radices (h > 2) and the advantage becomes significant as we go to higher radices. These 
observations, along with the fact that any h-bit adder design can be used with stored-transfer 
representation, while hybrid redundancy implies a rather rigid realization, allows for experimentation 
with various design options and flexibility in optimizing implementation parameters. We will provide 
actual high level hardware designs in Chapters 5, 6, and 7. 
 
3.6 Conversion to/from 2’s Complement 

To convert a 2’s-complement number to a stored-transfer representation in radix 2h, where 0, 1 ∈ G, we 
deal with the h-bit groups of the 2’s-complement number in parallel. We sign-extend (if necessary) the 
input number to an equivalent 2’s-complement number whose width is a multiple of h. Then we use the 
ith group as the ith digit’s main part and, except for the most significant group and t0 = 0, set ti+1 equal to 
the most significant bit of the ith group, as depicted in Figure 3.5. If ti+1 = 0, the transfer clearly has no 
effect and the numerical value is preserved. When ti+1 = 1, its worth within the h-bit group is 2h–1 which 
is the same as 2h (transfer) plus –2h–1 (negatively weighted bit in the 2’s-complement main part). A 
constant-time postconversion adjustment, such as the one discussed in Section 3.4, is needed if G does 
not include {0, 1}. 

For the reverse conversion, we add the main parts with their corresponding transfers, all in parallel. This 
yields a redundant number with 2’s-complement digits. The rest of the process follows conventional 
redundant-to-binary conversion techniques [Parh00]. We note that converting a 2’s-complement number 
to its stored-transfer equivalent requires little or no circuitry, since it is done by inserting a copy of some 
bits in place of the transfers. But the reverse conversion, as for any other redundant representation, 
involves word-width carry propagation.
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3.7 Summary
We have shown that the stored-transfer representation of certain redundant numbers offers speed and 
cost benefits in the carry-free addition process. We proved the necessity of at least three transfer digit 
values and sufficiency of four values (in all practical situations), for carry-free addition. We further 
showed that by a simple adjustment in final stage of the carry-free addition algorithm, one can reduce 
the number of stored transfers to two values, thus requiring one bit for storage. Our stored transfer 
scheme is thus competitive with other practical redundant representations with regard to storage cost. In 
particular it has cost, speed, and symmetry advantages over hybrid redundancy. 
We also demonstrated that converting a 2’s-complement number to stored-transfer form implies 
virtually no cost or latency, while the reverse conversion needs the obligatory carry propagation. This 
affinity with 2’s-complement numbers, in representation and circuit implementation, is a key strength of 
the stored-transfer scheme.

Derivation of algorithms for stored-transfer multiplication and division is quite feasible. Very-high-radix 
SRT division with signed-digit partial remainders and signed-digit quotient [Flyn01] can be modified to 
accept stored-transfer operands. A series of arithmetic operations can thus be performed without carry 
propagation by representing the inputs, intermediate results, and outputs in stored-transfer format.
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Chapter 4 | Weighted Bit-Set Encodings 

Contributions to redundant number representation are of two main types. In abstract studies, arithmetic 
algorithms are presented in terms of digit-level operations, specifying how each result digit is derived 
from operand digits and auxiliary quantities such as interdigit transfers [Parh00]. Implementation
oriented studies, on the other hand, are often based on specific encodings for digit sets encountered in 
solving particular design problems; e.g., design of a high-speed 2’s-complement full-tree multiplier 
[Taka85]. Some contributions of this latter type have dealt with limited classes of digit-set encodings 
without directly associating them with a specific design problem. Falling into the latter category are 
hybrid-redundant representation schemes [Phat94], [Phat01] and representation paradigms of high-radix 
signed digit numbers [Jabe03 ]. 

In this Chapter we aim to fill the gap (see Fig. 4.1) between the aforementioned contributions by 
studying some efficient implementations for redundant arithmetic that are not tied to specific encodings, 
yet are not too removed from common hardware methods/structures used for arithmetic circuit 
implementations. When in carry-free addition, the transfer digit ti+1, going from digit position i to digit 
position i + 1, is specified in terms of xi + yi (e.g., by supplying comparison constants and their 
associated selection intervals [Parh90]), no specific encoding of the digit set is implied; it is also not 
implied that one must actually add the digits xi and yi in the conventional sense and then compare the 
resulting sum to the boundary constants. Specifying ti+1 in terms of the relationship between xi + yi and 
comparison constants is simply an intuitive way of defining ti+1 = τ(xi, yi), where τ is the transfer 
function. This is akin to defining a logic function via a logic expression; even though the expression 
directly corresponds to a logic circuit, one is free to choose any other implementation of the same logic 
function. Typically, choices for the comparison constants to determine ti+1 are flexible, thus leaving 
room for imprecise comparisons and a variety of implementations based only on a subset of input bits.

Fig. 4.1 Spectrum of prior work on redundant number representation

We recognize that radices of practical interest are invariably powers of 2; thus, in practice, a redundant 
number can be viewed as a collection of digits, each weighted by a corresponding power of 2. Within 
each digit position, a digit value is also practically encoded as a collection of weighted bits. For 
example, the possibly asymmetric digit set [–α, β], with α ≤ 2η–1 and β < 2η–1, might be encoded as an 
η-bit 2’s-complement number, giving its bits the weights –2η–1, 2η–2, . . . , 2, 1.

Gap

Abstract studies; digit 
level, e.g., GSD

Implementation-type 
work; circuit level, e.g., 

hybrid
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As another example, BSD numbers [Aviz61] are commonly encoded by representing the position-i digit 
as two bits weighted –2i and 2i; this is known as the (n, p) encoding [Parh90]. Under these conditions 
(i.e., power-of-2 radix and weighted-bit-set representation of each digit), the number as a whole is 
encoded by a collection of bits, each weighted by a positive or negative power of two.

4.1 The Notion of Weighted Bit-Sets

Definition 4.1 (WBS-encoded numbers): A weighted bit-set (WBS) encoding of width k is characterized 
by k integer pairs (pk–1, nk–1), . . . , (p1, n1), (p0, n0), where the representation has k radix-2 positions, 
indexed 0 to k –1, and digit position i (0 ≤ i < k) of weight 2i is comprised of ni negatively weighted and 
pi positively weighted bits. We require that pk–1 + nk–1 > 0. The most negative (positive) value 
represented by a WBS encoding is –N (P), where     N = (nk–1 . . . n1n0)two and P = (pk–1 . . . p1p0)two. A 
given integer represented as (vk–1 . . . v1v0)two, with –ni ≤ vi ≤ pi, may have other WBS representations as 
well. �

Definition 4.2 (Characterization of WBS encodings): The encoding multiplicity of position i in a WBS 
encoding is the total number mi = ni + pi of bits in that position. The ordered collection mk–1 . . . m1m0 of 
the positional multiplicities is the multiplicity pattern and M = N + P is the total multiplicity number, 
which may be represented as the possibly redundant radix-2 number (mk–1 . . . m1m0)two. Similarly, the ith 
partial multiplicity number Mi is Mi = (mi–1 . . . m1m0)two = Ni + Pi where –Ni (Pi) is the most negative 
(positive) representable value by the rightmost i positions in the encoding. The total encoding cost is 
E = ∑0≤i<k mi, leading to the encoding efficiency e = log2(M + 1) / E. �

Example 4.1 (A WBS-encoded number): An 8-position WBS-encoded number is shown in Fig. 4.2, 
where mi, ni, and pi values for each position are indicated, and other parameters are computed below:

N = (nk–1 . . . n1n0)two = (2 2 1 0 3 1 2 0)two = 448, P = (pk–1 . . . p1p0)two = (2 0 1 0 1 2 1 2)two = 308

v = (vk–1 . . . v1v0)two = (1–1 1 0–3 2 1 1)two = 83, M = N  + P = (mk–1 . . .m1m0)two = 758

E = ∑0≤i<k mi = 4 + 2 + 2 + 0 + 4 + 3 + 3  + 2 = 20 , e = log2(M + 1) / E = log2 (759) / 20 =0.5�

i 7 6 5 4 3 2 1 0
1 –1 –0  –1 1 1 0 
–1 –0 1  0 –0 –0 1 
–0    –1 1 –0  
1 –1    

(pi,ni) (2,2) (0,2) (1,1) (0,0) (1,3) (2,1) (1,2) (2,0)
mi 4 2 2 0 4 3 3 2

Fig. 4.2 Characteristics of a 7-position WBS-encoded number

Definition 4.3 (Negabits and posibits): We use negabit to denote a negatively weighted bit in [ –1, 0] and 
posibit for a normal bit in [0, 1]. Graphically, • (o) stands for posibit (negabit) in a natural extension of 
standard dot notation. �
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Example 4.2 (Extended dot notation): Fig. 4.3 shows the extended dot notation of a WBS encoding with 
partial multiplicity numbers compared with that of the related nonredundant representation. The WBS-
encoded number of Example 4.1 is an instance of the WBS encoding of Fig. 4.3. �

i 7 6 5 4 3 2 1 0
• o o o • • •
O o • • o o •
O o • o
• o

Mi+1 756 244 116 52 52 20 8 2
2i+1–1 255 127 63 31 15 7 3 1

Fig. 4.3 Extended dot notation for an 8-position WBS encoding

Example 4.3 (Familiar WBS-encoded numbers): The number representation systems whose descriptions 
follow are depicted in extended dot notation in Fig. 4.4. For unsigned carry-save representation, we have 
mi = pi = 2, ni = 0, ∀i. Binary signed-digit (BSD) numbers with (n, p)-encoded digits have ni = pi = 1, mi
= 2. This represents, in effect, the 1’s-complement encoding of the digit set [–1, 1]. Nonredundant 2’s-
complement number representation has mi = 1, ∀i, nk–1 = 1, pi = 1 for i < k – 1. For 2’s-complement 
carry-save representation, we have mi = 2, ∀i, with nk–1 = 2 and pi = 2 for i < k – 1. In hybrid 
redundancy, with every fourth position being an (n, p)-encoded BSD digit, we have mi = pi = 1 and 
ni = 0, except in positions whose index is 3 mod 4, for which mi = 2, ni = 1.�

Fig. 4.4 Dot-notation representations for several familiar 8-position WBS-encoded number systems.
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4.2 General WBS Encodings

In this section, we prove some general properties of WBS encodings. These general results are useful, 
because they cover, and tie together, numerous practical instances. 

Definition 4.4 (Equivalent WBS encodings): WBS encodings representing precisely the same set of 
integer values are equivalent. Strongly equivalent WBS encodings are equivalent and have the same 
width k. �

Example 4.4 (Equivalent WBS encodings): The 8-position WBS encoding shown at the top of Fig. 4.5
is equivalent to the 7-position WBS encoding shown below it, and strongly equivalent to the 8-position 
encoding appearing at the bottom of Fig. 4.5. �

Fig. 4.5 Equivalent WBS encodings.

Theorem 4.1: An interval [–Nk, Pk] of integer values containing Mk + 1 consecutive integers is 
representable by a WBS encoding with multiplicity pattern mk–1 . . . m1m0 iff for all i in the range
0 < i < k, we have Mi ≥ 2i – 1. 
 
Proof: The necessity part is easy to prove. If Mi < 2i – 1 for some i, then positions 0 to i – 1 collectively 
represent fewer than 2i distinct values. At least one of the 2i mod-2i equivalence classes must be 
unrepresented among these values. Given that bits in positions i and higher can only represent multiples 
of 2i, there must be gaps in the representation. We prove the sufficiency part by induction on k. Recall 
that the multiplicity m is nonzero for the most-significant position of our postulated WBS representation. 
This leads to m0 > 0, because either position 0 is the only position or else the condition of the theorem 
statement guarantees M1 = m0 ≥ 21 – 1. The base case is k = 1; a one-position WBS representation with 
m0 > 0, and clearly covers all integers from –N1 = –n0 to P1 = p0. Now suppose that the theorem holds 
for any WBS representation with k – 1 or fewer positions. Let a k-position WBS representation be 
obtained by extending a (k – g)-position representation, where g ≥ 1, with mk–1 > 0 and mj = 0 for
k – g ≤ j < k – 1; i.e., the leftmost g components of multiplicity pattern are mk–10 0 . . . 0. Then, by our 
assumptions, Mk–1 = Mk–2 = . . . = Mk–g ≥ 2k–1 – 1. This implies that positions 0 to k – 2 can collectively 
represent a continuous interval of integers with at least 2k–1 consecutive values. These values combined 
with multiples of 2k representable by the bit(s) in position k – 1 yield a continuous interval of integers 
overall.�
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Theorem 4.1 suggests that even though it is possible to avoid having any posibit or negabit in a 
particular position j of a WBS encoding, doing so would require additional bits in lesser significant 
positions (two in position j–1, or four in position j–2, etc.). Thus, for encoding efficiency, it is 
advantageous to enforce mi > 0 for all i. On the other hand, replacement of a pair of bits of the same 
polarity in position j by one bit in position j + 1, through the substitutions outlined in Fig. 4.6, keeps mi ≤
2, and further improves encoding efficiency. These observations lead us to define the class of canonical 
WBS encodings.

Fig. 4.6 Substitutions used in the proof of Theorem 4.2.

Definition 4.5 (Canonical WBS encodings): A k-position WBS encoding is canonical iff 1 ≤ mi ≤ 2 for 
0 ≤ i ≤ k – 2. �

Theorem 4.2: Any WBS encoding with the multiplicity pattern mk–1 . . . m1m0 satisfying Mi ≥ 2i – 1 for 0
< i < k, and thus representing a continuous interval of integers in view of Theorem 4.1, is strongly 
equivalent to some k-position canonical WBS encoding.

Proof: We describe the process for deriving the desired canonical encoding from a given WBS 
encoding. Scan the multiplicities mi from the right until you find mj ≥ 3 for some j < k – 1. If no such 
position exists, the encoding is already in the desired canonical form. If you find mj ≥ 3, take three of the 
bits in position j and make the substitution shown in Fig. 4.6. This does not change the set of values 
representable, and it reduces mj by 2. Repeating this process eventually leads to mj ≤ 2 for 0 ≤ j < k – 1. 
To show that the resulting multiplicities satisfy mj ≥ 1, 0 ≤ j < k – 1, we note that Mj = (0mj–2 . . . m0)two
has a value of 2j –2 when all the multiplicities assume the maximal value of 2. 

Corollary 4.1: A given WBS encoding is redundant iff in its equivalent canonical forms, mj > 1 for 
some j < k. �

Example 4.5 (Deriving the canonical encoding): Fig. 4.7 depicts the derivation of a canonical encoding,
strongly, equivalent to the WBS encoding of Fig. 4.3. �
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Fig. 4.7 Derivation of a canonical WBS encoding, strongly, equivalent to the encoding of Fig. 4.3

4.3 Periodic WBS Encodings

Whereas arbitrary WBS encodings can be envisaged and used, circuit implementation in VLSI favors 
regularity in the number of bits associated with the various positions. Thus, we define the class of 
periodic WBS encodings.

Definition 4.6 (Periodic WBS encodings): A k-position WBS encoding is periodic iff there exist h < k
with ni+jh = ni and pi+jh = pi for all j; the smallest such h is the period. �

Assuming k to be a multiple of h, a periodic WBS encoding represents a generalized signed-digit (GSD) 
number system in radix 2h utilizing the digit set [α, β], with α = –(nh–1 . . . n1n0)two and 
β = (ph–1 . . . p 1p0)two.

Given that full and half-adder cells, which are widely available and efficient, can be used to combine a 
set of bits with power-of-2 weights into another set of similarly weighted bits, periodic WBS encodings 
may be viewed as practically desirable GSD representations. In fact, all GSD representations that we 
have encountered in the literature are based on WBS encodings. Some examples are shown in Table 4.I. 
For those digit sets in Table 4.I that are symmetric, signed-magnitude encoding could conceivably be 
used, leading to a non-weighted-bit representation. However, we have been unable to find an actual 
implementation that is based on such a representation.

Theorem 4.3: For an interval [–N, P] of integers, that includes 0, and integer k satisfying 1 ≤ k ≤ log2 (N
+ P + 1), there exists a unique k-position canonical WBS encoding representing exactly [–N, P]. 
 
Proof: A trivial one-position WBS encoding with the given range has n0 = N, p0 = P, and 
M = m0 = N + P. The unique k-position canonical encoding equivalent to the above can be easily derived 
by the construction of Theorem 4.2. �

Corollary 4.2: For a radix-2h GSD number system with digit set [–α, β], there is a unique periodic 
canonical WBS encoding with period h, where 1 ≤ h ≤ log2(α + β + 1). �
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Table 4.I Some commonly used periodic WBS redundant number system encodings.

Digit set Encoding name # bits Bit weights
[–1, 1] (n, p)-encoded binary signed-digit 2 1, –1 
[–1, 1] 2’s-complement-encoded binary signed-digit 2 –2, 1
[–2, 2] 2’s-complement-encoded minimally redundant radix-4 3 –4, 2, 1
[0, 2h] Radix-2h stored-carry h + 1 2h–1, . . . , 2, 1, 1
[–1, 2h–1] Radix-2h stored-borrow h + 1 2h–1, . . . , 2, 1, –1 
[–1, 2h] Radix-2h stored-carry-or-borrow h + 2 2h–1, . . . , 2, 1, 1, –1 
[–2h–1, 2h–1] Radix-2h hybrid, with (n, p)-encoded BSD position h + 1 –2h–1, 2h–1, . . . , 2, 1
[–2h, 2h–1] Radix-2h hybrid, with redundant position in [–2, 1] h + 1 –2h, 2h–1, . . . , 2, 1
[–2h–1–1, 2h–1] Radix-2h stored-transfer, with transfers in [–1, 1] h + 2 –2h–1, 2h–2, . . . , 2, 1, 1, –1 

The next to last entry in Table 4.I exemplifies a case where the bits in the encoding of adjacent digits 
overlap in terms of their weights. Such overlaps are avoidable by simply regrouping the bits. Figure 4.4
shows an example where the bits in a periodic WBS encoding with h = 6 are grouped in three different 
ways, each leading to a distinct digit set in radix-64 interpretation. Such variations are indeed useful for 
optimizing circuit implementations. Note that in the second and third groupings in Fig. 4.8, the boundary 
groups in the least- and most-significant end need special treatment, but this is generally not 
problematic. Note also that if two digits in [–5, 65] are added, the obtained sum in [–10, 130] is 
representable by the third digit set in Fig. 4.8. Hence, these two options in Fig. 4.8 collectively represent 
a stored-transfer scheme for carry-free addition [Jabe01]. This observation leads to the following 
general result.

h-bit group i Digit set

[–5, 65]

[–68, 65]

[–68, 191]

h-bit group i – 1h-bit group i + 1

Fig. 4.8 Three different interpretations of the same periodic WBS encoding.
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Theorem 4.4: Any stored-transfer scheme for radix-2h GSD addition, where transfers are encoded as a 
set of posibits and negabits, can be explained in terms of bit grouping in a suitably chosen WBS 
encoding.

Proof: A stored-transfer scheme [Jabe01] is characterized by a main digit set [a, b] and a transfer set 
{c0,  . . ., cd–1}, together constituting the radix-2h digit set [α, β]. If the transfer values are encoded as a 
set of posibits and negabits, as assumed, and the main digit set is encoded likewise, the overall
representation is a periodic WBS encoding whose parameters mj, nj, and pj within one period or radix-2h

digit, 0 ≤ j < h, are obtained by adding the respective parameters of the main digit set and the transfer 
set. �

4.4 Framework for WBS Arithmetic

Numbers with arbitrary digit sets can be added digitwise to produce a sum with a digit set whose range 
is the sum of the ranges of the operands. This wider digit set can be kept intact and the result used as an 
operand in further arithmetic operations. It is also possible to convert the wider digit set to another, more 
convenient, one for further processing. Often, however, it is required to obtain results with the same 
digit set as inputs. Such representationally closed arithmetic is desirable for reusability of the arithmetic 
cells and regularity in VLSI circuit implementation. We note that when comparing a representationally 
closed scheme against a scheme that is not closed, fairness dictates that the overhead of conversion from 
the intermediate representation to the ultimate encoding be taken into account in any cost/speed 
comparison.

In circuit implementations, posibits are more easily dealt with than a mix of posibits and negabits, 
because they can be combined and regrouped using standard full adder, half-adder, and parallel counter 
cells. This motivates us to define 2’s-complement-like WBS encodings in which negabits appear only in 
the most significant position k – 1, with all other positions holding only posibits. 

Definition 4.7 (Two’s-complement-like WBS encodings):   A k-position WBS encoding is 2’s-
complement-like (2CL) if mi = pi, 0 ≤ i ≤ k – 2. In a canonical 2CL-WBS encoding, we have 
1 ≤ mi = pi ≤ 2, 0 ≤ i ≤ k – 2. �

Theorem 4.5: For any k-position WBS encoding, there exists a unique (k + 1)-position canonical 2CL-
WBS encoding. Furthermore, the latter can be constructed efficiently.

Proof: We describe the process for deriving the canonical 2CL-WBS encoding from a WBS encoding 
Ω. Consider a WBS encoding Ω′ with the same multiplicity pattern as Ω, but with pi = mi, ∀i. Clearly, 
the range of Ω′ is [0, N + P]. Now form (k + 1)-bit 2CL representation of the constant –N with a single 
posibit in each of the positions 0 through k – 1 and one or more negabits in position k. Obtain the WBS
encoding Ω″ by adding to each position of Ω′ a posibit (one or more negabits in the case of position k) 
where the 2CL representation of –N contains 1s. Clearly, the range of Ω″ includes [–N, P]. The desired 
canonical 2CL-WBS encoding is obtained by applying the first substitution of Fig. 4.6 to positions 0 to k
– 1 that have more than 2 posibits until each of them holds 1 or 2 posibits. The process of converting a 
WBS number to a 2CL-WBS encoding can be implemented in parallel using time that is logarithmic in 
the depth d of the starting representation. �
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Example 4.6 (Conversion to 2-CL WBS): Fig. 4.9 shows the 8-position WBS-encoding of – 448, with 
position 4 being empty, and its equivalent 9-position 2-CL WBS encoding. �

0 –1 –1 –1 0 0 0
–1 –1 0 0 –1 –1 0
–1 –1 0 –1
0 –1

- - - - - - - - -
–1 0 1 0 0 0 0 0 0
–1

Fig 4.9 4-deep WBS-encoded representation of – 448, and its 2-CL WBS equivalent

4.5 WBS Addition and Multiplication

In this section, we briefly describe algorithms for addition, subtraction, and multiplication of canonical 
2CL-WBS numbers. Arithmetic algorithms for other operations, perhaps with a different encoding for 
each operand, can be developed by using either pre- or post-operation conversion. With preconversion, 
operands are changed to 2CL-WBS format before an operation. Postconversion allows an intermediate 
result (e.g., juxtaposition of bits for addition or matrix of bitwise products for multiplication) to be 
formed based on the original operand bits.

Addition of two 2CL-WBS operands is performed by conceptually copying the bits of the 2-deep 
operands in the bit placeholders of a 4-deep WBS representation. This is then followed by conversion to 
canonical 2CL-WBS representation. Subtraction is similar, except that the posibits (negabits) of the 
second operand become negabits (posibits) in the intermediate 4-deep result.

x′ • • • • • • • • • • • • • • • •
x″ º º
y′ • • • • • • • • • • • • • • • •
y″ º º

N = 216 + 28 −N = 28 × (−2 1 1 1 1 1 1 1 1)two

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

º1 • •1 •1 •1 •1 •1 •1 •1 •
º1 • •

•1

• • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
º
º

Fig. 4.10 Conversion to 2CL-WBS 
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Example 4.7 (WBS addition): Fig. 4.10 depicts the addition procedure of two 2CL-WBS numbers, 
where •1 means a 1-valued posibit, and º1 means a (–1)-valued negabit. �

To multiply two 2CL-WBS encoded numbers, we might first derive a partial product bit matrix, and 
then reduce it through compression. The number of bitwise products to be dealt with can be 4 times 
greater than in standard binary multiplication, given the depth of two for each operand. One way to 
reduce the complexity of our multiplier is to reduce the number of positions holding 2 posibits through 
partial carry assimilation. For example, if 4-bit segments of each 2-deep operand are combined to yield 
5-bit binary numbers, with the MSB of one number aligned under the LSB of the next higher number, a 
radix-16 carry-save representation results for which efficient multiplication circuits have been studied 
[Ferg99].

4.6 WBS Conversions

Conversions of interest are: (1) 2’s complement to WBS, (2) WBS to 2’s complement, and (3) One 
WBS form to another. Because the last category is quite varied, with conversion strategies differing 
depending on the source/target formats, we do not discuss it here in any detail except to note that any 
WBS-to-WBS conversion between formats of the same period can be viewed as digit-set conversion 
which can be performed in parallel and carry-free manner. A possible conversion strategy is to use the 
2CL-WBS format as an intermediate format, thus needing to supply only a method for converting from 
2CL-WBS to an arbitrary WBS.

Conversion from 2’s-complement to 2CL-WBS is trivial, while conversion to a periodic WBS format 
can be done either directly as digit-set conversion or by first going to 2CL-WBS as an intermediate 
format. In either case, circuit implementation will be parallel and regular (consisting of identical cells), 
except in the most-significant end where the number sign must be processed differently. Conversion 
from WBS to 2’s complement can similarly go through 2CL-WBS as an intermediate representation. 
The first phase (arbitrary WBS to 2CL-WBS) is carry-free, but the second phase, like all redundant to 
nonredundant conversions, requires full carry propagation and is thus a logarithmic-time process at best.

4.7 Summary

In this chapter, we introduced the class of weighted bit-set (WBS) redundant number representations 
that can lead to a fairly general strategy for obtaining efficient circuit implementations for redundant 
arithmetic using readily available, and highly optimized, building blocks developed for conventional 
binary arithmetic. For a given generalized signed-digit or hybrid-redundant representation, one can 
derive a suitable WBS encoding. The resulting encoding has the advantage that its intradigit propagation 
can be limited to posibit transfers, while in other instances, including hybrid redundancy, positive and 
negative carries coexist, leading to slower circuit implementations.

Extended WBS encodings that allow general two-valued digits, dubbed twits (e.g., having values in {–1, 
1}, {0, 2}, or {0, –2}), will be investigated in Chapter 7 as a natural extension of WBS encoding. This 
generalization not only enhances the encoding efficiency but also leads to speed gains in many 
instances. We will show that twits can be processed by essentially the same circuits that are applied to 
bits or negabits in this chapter and will develop more complex twit-based arithmetic algorithms in the 
next chapters.
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Chapter 5 | Universal Addition Scheme for
Hybrid redundancy

Redundant number representations are used extensively to speed up arithmetic operations within both 
general-purpose and special-purpose digital systems [Aviz61], [Parh90]. The speed advantage resulting 
from carry-free arithmetic with redundant representations is often large enough to offset the format 
conversion overheads, even in signal processing and other applications with moderate frequency of 
arithmetic operations. When the conversion and reconversion circuitry can be shared among multiple 
function units, redundant representations also lead to savings in VLSI area and power dissipation, thus 
making them even more attractive. Like conventional digit sets, redundant digit sets can be encoded in 
any desired way. However, in practice, encodings comprised of weighted positive and negative bits have 
been found to offer advantages in implementation simplicity and modularity, including the applicability 
of standard cells used in binary arithmetic [Jabe02].

Uniform treatment of negatively weighted and normal bits is responsible for the simplicity and 
widespread application of 2’s-complement arithmetic [Baug73], [Koba85]. We use negabits in {–1, 0} 
for the former and posibits in {0, 1} for the latter [Jabe02]. Negabits have been widely used in redundant 
number representations. For example, binary signed-digit (BSD) numbers [Aviz61] are commonly 
encoded by using two bits weighted –2i and 2i for the position-i digit; viz. the (n, p) encoding [Parh90]. 
Similarly, in some variants of radix-2 hybrid-redundant numbers [Phat01], redundant digits such as 
stored-double-borrow (SDB), in [–2, 1], or stored-borrow-or-carry (SBC), in [–1, 2], may be represented 
by a collection of posibits and negabits, leading to weighted bit-set (WBS) encodings [Jabe02]. For 
example, the WBS encoding of a redundant SDB digit consists of two negabits and one posibit in the 
same position, or equivalently, of a negabit in position i + 1 and a posibit in position i. Other possibly 
useful variants of digits in redundant positions of a hybrid-redundant number, as enumerated in 
[Phat01], are stored-carry (SC), in [0, 2], and stored-double-carry (SDC), in [0, 3]. The latter digit set 
has also been used in the design of redundant adders [Erce97]. 

Table 5.I depicts symbolic representations for BSD, SDB, SBC, SC, and SDC digits, where a posibit 
(negabit) appears as � (�). The double-position representations of these redundant digits have been used 
in Table 5.II, which depicts five variants of radix-2h hybrid representations for h = 4. The WBS 
encodings of Table 5.II are all 2-deep encodings (i.e., contain no more than 2 dots in any position) with 
no empty position; these are known as canonical WBS encodings [Jabe02]. The third entry of Table 5.II 
is an example of allowing a negabit in a nonredundant position. By allowing negabits to appear in 
arbitrary nonredundant positions, canonical WBS encodings, which include all the variants of hybrid 
redundancy studied by Phatak et al [Phat01], offer new hybrid-redundant systems not explored before. 
This nonredundant use of negabits can be seen in 2’s-complement numbers and, more recently, in 
certain stored-transfer representations of redundant numbers [Jabe01 ]. In Section 5.2, we show that this 
possibility leads to interesting new symmetric variants of hybrid-redundant digit sets.
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Table 5.I     Single/double-position WBS representations

Digit Single-position encoding Double-position encoding

BSD �

�
N/A

SDB �

�
� �

SBC �

� � �

SC �

�
N/A

SDC �

�

�

� �

Addition of two canonical WBS operands is performed by conceptually copying the bits of the 2-deep 
operands in the bit placeholders of a 4-deep WBS representation. However, since the operands are 2
deep, it is desirable to convert the sum to a 2-deep encoding as well. In Section 5.1, we explore an 
efficient and uniform implementation for constant-time addition of two hybrid redundant numbers with 
2-deep result, where the operands need not belong to the same hybrid-redundant number system (i.e., 
redundant positions of the result are shifted one position to the left of the redundant position of the 
operands). We offer representationally closed addition schemes for all the previously studied variants of 
hybrid-redundant number systems and the new symmetric variants in Section 5.3. In these 
implementations the results belong to the same number system as the operands.

Table 5.II Five hybrid-redundant number systems

Composition (digit pattern) WBS encoding with 3 digits

1 BSD, h – 1 binary

1 SDB, h – 1 binary

1 SBC, h – 1 binary

1 SC, h – 1 binary

1 SDC, h – 1 Binary

To multiply two canonical WBS encoded numbers, we might first derive a partial product bit matrix, 
composed of posibits and negabits, and then reduce it through compression. In Section 5.4, we show that 
by inverted encoding of negabits we can use the standard compressors, such as (3; 2) and (4; 2) counters, 
for partial product reduction. The number of bitwise products to be dealt with can be 4 times greater 
than in standard binary multiplication, given the depth of two for each operand. But the second 
component of each hybrid redundant operand is relatively sparse compared to the first component. 
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Therefore, one way to reduce the complexity of our multiplier is to reduce the number of positions 
holding 2 posibits through partial carry assimilation. For example, if 4-bit segments of each 2-deep 
operand are combined to yield 5-bit binary numbers, with the MSB of one number aligned under the 
LSB of the next higher number, a radix-16 carry-save representation results for which efficient 
multiplication circuits have been studied [Ferg99].

5.1 Adding Hybrid Redundant Numbers

The first step in our addition scheme for WBS encoding of hybrid-redundant numbers is to construct a 
4-deep WBS number by aligning the two operands one under the other as in Table 5.III. The equal 
weight grouping offered in [Phat01] may be considered as a special case. Next we need to reduce the
4-deep result to an equivalent 2-deep result. In the case of SC and SDC hybrid numbers (Table 5.I), any 
conventional reduction scheme may be used for this purpose [Parh00]. 

Table 5.III    Addition of 2-deep operands with 4-deep results

Composition (digit pattern) 4-deep addition result

1 BSD, h – 1 binary

1 SDB, h – 1 binary

1 SBC, h – 1 binary

1 SC, h – 1 binary

1 SDC, h – 1 binary

For example, one full-adder (FA) per nonredundant position and two FAs in redundant positions are all 
we need to reduce the 4-deep interim sum of two SC hybrid operands to a 2-deep result (Fig. 5.1). Note 
that the sum in Fig. 5.1 is encoded slightly differently from the operands in that its least-significant 
group is one position longer (i.e., has h + 1 positions). It is easily seen that a reduction scheme similar to 
that of Fig 5.1 is applicable to the addition of SDC hybrid numbers.

Fig. 5.1 Reduction of the addition result to a 2-deep result.



42

The second, third, and fifth rows of Table 5.I depict two equivalent encodings for SDB, SBC, and SDC 
digits. The equivalent 3-deep and 1-deep representations for an SDC digit bring to mind the 
functionality of a binary full-adder and suggests that similar devices for 3-deep to 1-deep conversions 
for SDB and SBC digits might also be feasible. For example, consider the PPM cell used in the design 
of a borrow-save adder [Mign00], a dual-purpose (rather complex) logic for addition of two SDB digits
or two SBC digits offered in [Phat01], and four variants of half adders, reducing alternate combinations 
of equally weighted posibits and negabits to equivalent carry and sum posibits and negabits, proposed in 
[Daum00]. It turns out, however, that a full-adder is all that we need, provided that we use an inverted 
encoding for a negabit; that is, encoding –1 as 0 and 0 as 1, which is exactly the opposite of the 
conventional encoding for negabits.

Table 5.IV (5.V), shows the functionality of a conventional FA as reducing a collection of two negabits 
(posibits) and one posibit (negabit), all in position i, to a negabit (posibit) in position i + 1, and a posibit 
(negabit) in position i. We have used the convention of [Jabe02 ] for variable names: uppercase letters 
for negabits, lowercase for posibits. The contents of the first three and the last two columns of each table 
are identical to the truth table for a full-adder, hence the functionality of full-adders for reducing any set 
of three posibits and inversely encoded negabits; the case of three negabits is obvious. 

Table 5.IV   Reduction of two negabits and one posibit

Xi Yi ci Xi+ Yi+ ci Ci+1 si
0 0 0 –2 0 0 
0 0 1 –1 0 1 
0 1 0 –1 0 1 
0 1 1 0 1 0
1 0 0 –1 0 1 
1 0 1 0 1 0
1 1 0 0 1 0
1 1 1 1 1 1

Table 5.V   Reduction of two posibits and one negabit

Xi yi ci Xi  + yi  + ci ci+1 Si
0 0 0 –1 0 0 
0 0 1 0 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 2 1 1

To reduce a 4-deep sum of two hybrid redundant operands to a 2-deep one, we use one full-adder per 
nonredundant position, and two full-adders for each redundant position. Figures 5.2a and 5.2b depict 
adder cells for redundant and nonredundant positions, respectively, where following the convention in 
[Jabe02], primed variables belong to the first components of the operands and the result, double-primed 
variables represent bits in the second components, and unprimed variables indicate intermediate carries. 
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A full-adder in a nonredundant position receives two inputs from the same nonredundant position of the 
operands, and a carry from the previous full-adder, producing a nonredundant sum bit and a carry to the 
next position (Fig. 5.2b). In a redundant position, the top full-adder, as in Fig. 5.2a, reduces three of the 
bits to a sum bit feeding the lower full-adder, and a carry to the next higher positioned full-adder. The 
lower full-adder absorbs the carry from the last position, receives the sum bit from the top full-adder, 
and the fourth bit of the redundant position, and produces a nonredundant sum bit and a carry to rest as 
the second bit of the now left-shifted redundant position. These adder cells may be used for all five 
hybrid-redundant representations of Table 5.II, which coincide with those covered in [Phat01]. 

FA

FA

FA

is′

(a) Redundant position (b) Nonredundant position
js′

jc ic

j+1 c″

i+1 c

j+1 c

x ′i iy ′

jy ′jx ″ jy ″jx ′

(c) FA built of 3 muxes

0 1 0 1

0 1

outc

in c

x y 

s 

Fig. 5.2 Adder cells for hybrid representations of Table 5.II, and a 3-multiplexer full-adder.

It is interesting to note that in the preceding discussion, the operands need not belong to the same 
hybrid-redundant number representation. Moreover, it can be easily verified that they work for addition 
of any two canonical WBS numbers. This includes hybrid-redundant numbers with negabits in their 
nonredundant positions, which we call extended hybrid-redundant numbers. However, the result pattern 
may be slightly different from either operand (i.e., with redundant positions of the result shifted one 
position to the left of the corresponding redundant positions of the operands). If the extended dot 
notation [Jabe02] of two 4-deep WBS numbers (possibly resulting from the first step of addition of two 
canonical WBS operands), irrespective of the bit polarities, are identical then the reduction circuitry is 
exactly the same.

The total adder delay is equal to that of d + 2 full-adders, where d is the longest spacing (in terms of the 
number of nonredundant positions) between two redundant positions. Our universal adder has a number 
of advantages over previous implementations. The only building block required in our design is 
full-adder, which leads to more regularity, possibility of using highly optimized FA cells, and employing 
any standard carry acceleration technique to achieve an O(log d) total delay. 

The cost per nonredundant position is minimal (i.e., one FA, as in nonredundant addition), while for 
redundant positions there is only one extra FA. Given that each FA can be implemented with three 
multiplexers (Fig. 5.2c), our adder cell for redundant positions costs six multiplexers, while the one 
proposed in [Phat01] for SDB and SBC hybrid cases is made of seven multiplexers, plus a few other 
gates. This is a pleasant surprise, because the use of standard cells often implies an increase in 
component count (layout area) or a sacrifice in performance.
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5.2 Symmetric WBS Hybrid Redundancy

Hybrid signed-digit (HSD) representations, introduced in [Phat94] and extended in [Phat01] to allow 
alternate digit sets in redundant positions, are essentially asymmetric, except for the limiting case that 
coincides with the fully redundant BSD number system. The reason is that in the three of the variants 
where redundant digits include negative values, there is one equally weighted posibit for each negabit, 
while other positions hold only posibits. For example, radix-2h digit sets associated with the hybrid 
representations shown in Table 5.II are [–2h–1, 2h – 1], [–2h, 2h – 1], [–2h–1, 3 × 2h–1 – 1], [0, 3 × 2h–1 – 1], 
and [0, 2h+1 – 1], respectively. We will show, in Chapter 6, that besides the BSD number system, the 
ordinary hybrid redundancy (i.e., allowing nonredundant positions to hold only posibits) provides for 
only one other 2-deep symmetric representation, which is the minimally redundant radix-4 SD number 
system. Fig. 5.3 shows a classification of redundant representations based on weighted bits and, in 
particular, depicts the place of various hybrid-redundant representations.

A canonical WBS digit set is redundant if and only if there is at least one position holding a set of more 
than one posibits and/or negabits [Jabe02]. In other words a position with only one posibit or negabit is 
nonredundant, while any other position is a redundant one, given the fact that in a canonical WBS 
encoding there is no empty position. This flexibility further extends the hybrid redundancy scheme to 
allow negabits both in redundant and arbitrary nonredundant positions. We use this extension, which 
will be more elaborated upon in Chapter 6, to design symmetric hybrid-redundant representations with 
arbitrary different spacing between consecutive redundant positions. For example consider the periodic 
radix-16 extended hybrid redundant number of Fig. 5.4, where the digit set is [–8, 8]. The adder cells as 
in Figs. 5.2a and 5.2b work for this number system as well, but the addition process is not 
representationally closed; the pattern of dots in the sum is shifted to the left by one binary position 
relative to the input operands.

5.3 Representationally Closed Addition

Numbers with arbitrary digit sets can be added digitwise to produce a sum with a digit set whose range 
is the sum of the ranges of the operand digits. This wider digit set can be kept intact and the result used 
as an operand in further arithmetic operations. It is also possible to convert the wider digit set to another, 
more convenient, one for further processing. Often, however, it is required to obtain results with the 
same digit set as inputs [Korn99]. Such representationally closed arithmetic is desirable for storage 
efficiency, reusability of the arithmetic cell designs, and regularity in VLSI circuit implementation.

While encoding-algorithm combinations that are not representationally closed can be useful and are in 
fact used in practice, when comparing a representationally closed scheme against a scheme that is not 
closed, fairness dictates that the overhead of conversion from the intermediate representation to the 
ultimate encoding be taken into account in any cost/speed comparisons. We explore representationally 
closed constant-time addition schemes for practical cases where the double primed components of the 
canonical WBS operands are relatively sparse. We present a general addition algorithm below and 
subsequently apply it to specific cases.
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Fig. 5.4  A symmetric hybrid-redundant number system.
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Algorithm 5.1 (Extended hybrid-redundant addition):

Step 1: Add the equally weighted double-primed bits of the second component for the two operands to 
form a 1-deep sum, possibly left-extended to the next redundant position to preserve sign information. 

Step 2: Using one binary FA cell per digit position, reduce the 3- or 4-deep WBS number composed of 
the two full components of the original operands, and the component produced by step 1, to a 2- or 3-
deep WBS number. Depth of 4 may occur only in redundant positions.

Step 3: Add the equally weighted digits (where the leftmost position of each digit holds its only 
redundant binary digit) of the two components of the latter result, in parallel, with special treatment of 
the redundant positions. �

We next demonstrate, in detail, the application of Algorithm 5.1 to addition with SDB hybrid 
representation. We also briefly examine the use of this algorithm for other variants. We show that steps 
1 and 2 take constant time, while step 3, which needs intradigit carry propagation, can be performed in 
O(log d) time at best, where d is the longest distance between two redundant positions.

Without loss of generality we show the application of Algorithm 5.1 for radix-2h periodic SDB hybrid-
redundant operands, where each digit includes a full h-posibit primed component, extending from 
position 0 to h – 1, and one inverted-negabit double-primed component in position h, overlapping with 
the least-significant primed posibit component of the next higher digit.
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Fig. 5.5.  Symbolic representation of step 1 in adding two SDB hybrid-redundant numbers.

Table 5.VI   Combining of the double-primed components for SDB hybrid addition

A″″″″ih B″″″″ih Sum T(i+1)h t(i+1)h−−−−1 . . . tih+1 tih

0 0 –2 0 1 . . . 1 0
0 1 –1 0 1 . . . 1 1
1 0 –1 0 1 . . . 1 1
1 1 0 1 0 . . . 0 0
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Fig. 5.5 depicts step 1 of Algorithm 5.1 for 4-digit radix-16 SDB hybrid operands, where T(i+1)h, 
t(i+1)h−1 . . . tih (i = 1, 2, 3, and h = 4), represent the sign extended 2’s-complement sum of two inverted 
negabits in position ih. For uniformity in treating positions whose indices are multiples of 4, we have 
placed a 1 in position 4 as the code for an inverted negabit with arithmetic value 0. 
 

T (i+1)h

A″tih ih

B″ih

 . . . t ih+1 t(i+1)h–1  
Fig. 5.6 Circuit for reducing the second components of Fig. 5.5

Table VI and Fig. 5.6 depict the truth table and logic implementation (actually a half adder) for deriving 
the 2’s-complement sum. The result of applying step 2 on the 4-deep WBS number of Fig. 5.5 is shown 
as the 3-deep WBS number in Fig. 5.7. The first row of full-adders in Fig. 5.8 constitutes the required 
hardware, whose operation can start at the same time as that of the circuit of Fig. 5.6. Step 3 is 
performed by an (h – 1)-bit carry-propagate adder in the second row of Fig. 5.8. The full-adder in 
position ih receives two posibits and one inverted negabit and generates an inverted negabit sum along 
with a posibit carry. The posibit carry out of the full-adder in position ih − 1 (i.e., s′ih in Fig. 5.8) is held 
in position ih and will not propagate beyond there. This bit, together with the inverted negabit sum S″ih
of the full-adder in position ih, form the SDB redundant digit of the result in the same position as that of 
the operands; hence the representational closure property.

S″ S″ S″ S″16 12 8 4

0

s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′ s′16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T16 T12 T8 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1w w w w w w w w ww w w w w ww

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1c cc c c c c c c c c c c c c c

Fig. 5.7 Step 3 of the SDB hybrid addition.

The total delay of the adder above is equal to that of h + 1 full-adders, which is the same as that of our 
simpler implementation in Section 5.1, given that h = d + 1. Note that any carry acceleration method can 
be applied in a straightforward manner to reduce the delay due to h cascaded FAs within the second row 
in the design of Fig. 5.8.

An implementation of SDB hybrid redundancy is offered in [Phat01], where intradigit borrow (as well 
as carry) propagation and the look-back mechanism complicate the adder cells for nonredundant and 
redundant positions, respectively, and standard carry acceleration logic is not directly applicable. 

The implementation above works equally well for BSD hybrid numbers, for it is the same as SDB 
hybrid except that the second component is right shifted one position. As for the SDC hybrid case, we 
can use the circuit in Fig. 5.6 to get a 2-bit sum of the double primed posibits (no extension is needed). 
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The remaining steps can be followed in Fig. 5.9. Due to the limited extension in step 1, some positions 
remain 2-deep. Therefore the corresponding FAs of the first row of Fig. 5.8 may be replaced by HAs. 
The SC hybrid representation can be handled similarly due to its resemblance to SDC hybrid.

Fig. 5.8  SDB hybrid-redundant representationally closed adder. T and t come from Fig. 5.6
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Fig. 5.9 SDC hybrid representationally closed addition.

For SBC hybrid (with double position redundant digit) and symmetric hybrid numbers, due to existence 
of negabits in nonredundant positions, step 1 of Algorithm 5.1 needs to be applied somewhat differently. 
Fig. 5.10 depicts the situation for symmetric hybrid numbers, where 0 (1) indicates a posibit (negabit) 
with constant value 0. In step 1, we make a 1-deep sum of the negabits as well as that of double-primed 
posibits in redundant positions. Moreover, the reduction to a 2-deep WBS number takes two steps. The 
generated bits in the leftmost column have been discarded in the final result. A collective nonzero value 
of those bits indicates an overflow/underflow. 
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The same scheme works for SBC hybrid case, for the encoding is the same except that the double-
primed components have been left-shifted to the next redundant position. The latency is equal to that of 
h + 1 FAs and 1 HA. Given that the circuit of Fig. 5.6 is actually a half-adder, the complexity of the 
symmetric hybrid adder amounts to three FAs per posibit nonredundant position, two FAs plus two HAs 
per redundant position, and two FAs plus one HA per negabit nonredundant position. Recall that our 
uniform representationally unclosed adder of Section 5.1 had one FA per nonredundant position and two 
FAs per redundant position. The added complexity is the price paid for symmetry and representational 
closure. The delay penalty, however, is minimal, given that the total adder delay is increased only by 
that of a half-adder.
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Fig. 5.10 Symmetric hybrid representationally closed addition.

5.4 Multiplication of Hybrid-Redundant Numbers

The first step in multiplication of two extended hybrid redundant numbers (or canonical WBS numbers) 
is to derive the partial product bit-matrix composed of posibits and negabits. Fig. 5.11 depicts the 
required gates in this step, for three different possible combinations of posibits and negabits, where 
upper (lower) case variables indicate negabits (posibits).

y
XX.y

Y

X
X.Yx

y
x.y

b c(a) (b) (c)

Fig. 5.11 Basic gates for derivation of the partial products.
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We will show in Chapter 7 that all (ν; µ)-compressors receiving ν equally weighted posibits and 
negabits in position i produce µ posibits and negabits in positions i through i + µ – 1, such that inputs 
and outputs have the same collective values. Here we show a similar result for the popular (4; 2) 
compressor. A conventional (4; 2) compressor receives 5 equally weighted bits in position i, (one of 
them normally being a carry from position i − 1), producing two equally weighted bits in position i + 1
and one bit in the same position i (Fig. 5.12a). The compression process is governed by the following 
equation [Kore02]: x1′ + x2′ + x3′ + x4′ + x5′ = 2(c′ + c″) + s ′

The arithmetic value α(X) of an inversely encoded negabit X can be expressed in terms of its logical 
value as α(X) = X − 1. Replacing any of the posibits in the above equation by a negabit will add −1 to 
the left hand side of the equation, which should be compensated for by adding −1 to the right-hand side. 
The appearance of one, three, or five negabits on the left-hand side, as is depicted in Fig. 5.12, causes 
the same number of −1s to be added to the right-hand side. These −1s could be absorbed by the sum bit 
s′, and zero, one, or two carry bits, respectively, thus turning to negabits with the same logical values. 
Two or four negabits on the left would similarly turn one or two of the carry bits to negabits, 
respectively. Note that usability of a conventional (4; 2) compressor to reduce any collection of 5
negabits and posibits is independent of the hardware implementation of the compressor.

Any partial product bit-matrix, can be reduced to a 2-deep WBS number, by using (4; 2) compressors, 
and also (3; 2) counters if needed. The resulting 2-deep WBS number can be reduced to a nonredundant 
2’s-complement number through carry acceleration circuits. It can also be converted to a desired WBS 
encoding (e.g., that of the input operands) through conversion process given in [Jabe02].

(a) (c) (d) (e) (f)(b)

Fig. 5.12 Reduction of alternate collections of 5 negabits and posibits

5.5 Summary

In this Chapter, we have revisited the previously studied classes of hybrid-redundant numbers by 
viewing them as subclasses of weighted bit-set (WBS) redundant representations. We showed that the 
class of canonical WBS numbers covers all the variants of the hybrid-redundant numbers previously 
considered. Moreover the class of canonical WBS numbers with a single negabit in some positions 
represents a new variant of hybrid-redundant numbers, where arbitrary nonredundant positions may hold 
negabits; this is in contrast to standard hybrid redundancy which is restricted to containing only posibits 
in all nonredundant positions. We noted that this possibility allows for designing new variants of 
symmetric hybrid redundant numbers with arbitrary spacing of redundant positions, which have not been 
considered before. The new variants, and the flexibility in choosing the encodings for existing systems, 
allow for optimizations not previously possible.



51

We showed that inverted encoding of negabits leads to the use of conventional full-adders for the 
reduction of any set of three equally weighted posibits and negabits to two bits, one with the same 
weight and the other with double the weight. Using this fact, we provided the high-level design for a 
universal hybrid-redundant adder capable of adding two extended hybrid-redundant numbers (or 
canonical WBS numbers) with advantages over previous implementations of hybrid redundancy in terms 
of circuit regularity, possibility of using standard carry acceleration techniques, shorter critical-path 
delay, and lower complexity. With regard to the latter, 1 (2) full-adder(s) per nonredundant (redundant) 
position is required. We further explored representationally closed addition schemes, with additional 
advantage of greater reusability, for all variants of hybrid redundant numbers including the new 
symmetric variants. Finally we showed a new functionality of the popular (4; 2) compressors in reducing 
any collection of five equally weighted posibits and negabits, and used it in the high level design of a 
multiplier for extended hybrid redundant numbers.
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Chapter 6 | Extended-Hybrid Redundant 
Number Systems

Redundant number systems enable us to perform digit-parallel addition with a small, constant latency, 
which is independent of operand widths [Aviz61], [Gonz00]. The redundancy ρ of a digit set [−α, β] is 
defined as the difference between the number of digit values (i.e., α + β + 1) and the radix r of the 
number system. The higher the redundancy index, the greater the number of bits needed to represent 
each digit, and the longer the potential delays in digit-parallel arithmetic. In many cases, a redundancy 
index of ρ = 2 is adequate, and one never needs to go beyond ρ = 3, for carry-free addition in radices 
higher than 2 [Parh90]. However, proper choice of the redundancy index ρ, coupled with suitable 
encoding of the resulting digit set, may allow for a more efficient (faster and/or more compact) VLSI 
implementation. Such variations in redundancy indices and associated digit-set encodings is the main 
focus of this chapter. Much of what we present deals, directly or indirectly, with facilitating area-time 
tradeoffs in the VLSI implementation of arithmetic operations on redundant operands.

Stored-transfer representations [Jabe01], weighted bit-set encodings for digit sets [Jabe02], and 
representation paradigms of high-radix signed-digit number systems [Jabe03] are all motivated by area-
time trade-off concerns, improvement in the representation coverage, speed of arithmetic, and/or 
regularity in VLSI implementation. Similarly, hybrid-redundant number systems introduced in [Phat94], 
and extended in [Phat01], provide a framework for the efficient design and implementation of digit-
parallel addition for a class of redundant number systems. Briefly, a hybrid-redundant number is 
composed mostly of normal, positively-weighted bits (posibits), with some radix-2 positions holding 
redundant digits. Unfortunately, the design and implementation of redundant arithmetic based on the 
original notion of hybrid redundancy engenders some limitations such as the following:

• Considerable difference in the range of positive and negative numbers, leading to inefficiencies 
in the implementation of subtraction.

• Inapplicability of standard carry acceleration methods, and the associated highly optimized 
circuits, due to the use of nonstandard adder cells. 

• Inability to faithfully cover, as a representation paradigm, almost all symmetric digit sets as 
well as many other useful digit sets.

To circumvent these problems, which are more fully explained in Section 6.2, we reformulate and 
extend the hybrid redundancy, within the framework of weighted bit-set encodings, in Section 6.3.
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Our quest for more efficient and VLSI-friendly carry-free addition schemes for hybrid-redundant 
numbers leads us to a scheme for the encoding of negabits (i.e., negatively weighted bits) in Section 6.4, 
where we explore different functionalities for standard full-adders in the summation of any collection of 
three negabits and posibits. This leads to the design of efficient adder cells for both nonredundant and 
redundant positions in a hybrid-redundant representation. Section 6.5 demonstrates the power of 
extended hybrid redundancy scheme in deriving symmetric hybrid-redundant number systems with 
arbitrary spacing of redundant positions. This is followed by implementation details of an efficient and 
regular adder/subtractor for symmetric operands, where a representationally closed version of the adder 
is also provided. Finally, Section 6.6 provides a summary of this chapter.

6.1. Limitations of Ordinary Hybrid Redundancy

A hybrid-redundant number system has k radix-2 positions numbered 0 to k – 1, from the least to the 
most significant position, respectively. Each position may be nonredundant, holding a posibit (i.e., a 
normal bit in [0, 1]), or redundant with a digit in [–n, p], where n, p ≥ 0. The digit in position i (0 ≤ i < k) 
has the weight 2i. Some practical values for n and p have been reproduced in Table 6.I from [Phat01]. At 
the extreme of no redundant position, a hybrid-redundant number system represents unsigned binary 
integers. Efficient adder cells for computing xi + yi + ti are offered in [Phat94] and [Phat01], where xi and 
yi, the digits in position i of the two operands, belong to the same digit set from Table 6.I, and ti, the 
transfer digit coming from the right context, is restricted to [–1, 1]. The latter has been made possible 
through equal-weight grouping and look-back mechanisms [Phat01]. For other possible digit sets and 
arbitrary pairing of digit sets in position i, the outgoing transfer ti+1 from position i may assume larger 
values (e.g., ti+1 є [–2, 2]), leading to more complex adder cells.

A hybrid-redundant number system is periodic if the number of posibit place-holders between two 
redundant positions remains constant and digit sets associated to redundant positions are the same, with 
the period h being one more than the constant distance. Such periodic hybrid-redundant systems can be 
viewed as efficient encodings for special classes of GSD representations. However, there exist useful 
GSD number systems, periodic by definition, that cannot be represented via ordinary hybrid redundancy. 
For example, the radix-10 GSD representation with digits in [−9, 9] has no counterpart in hybrid 
redundancy. We will show later (Theorem 6.1) that the subclass of symmetric ordinary hybrid-redundant 
representations is very limited and that efficient implementations exist only for fully redundant binary 
signed-digit (BSD) and minimally redundant radix-4 number systems, both of which had been studied 
and used prior to, and in contexts other than, hybrid redundancy.

Table 6.I. Redundant digit sets in the hybrid redundancy schemes of [Phat01]

Type of redundant digit Digit set: [–n, p]

Binary signed-digit (BSD) [–1, 1] 
Stored double borrow (SDB) [–2, 1] 
Stored borrow or carry (SBC) [–1, 2] 
Stored carry (SC) [0, 2] 
Stored double carry (SDC) [0, 3] 
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Definition 6.1 (Right-side and left-side periodic hybrid redundancy): In a hybrid-redundant 
representation of period h, the position index for the redundant binary digit in [–n, p] is either 0 or h – 1
(mod h). We refer to the former (latter) as right-side (left-side) hybrid redundancy. Taking each period 
of the hybrid-redundant representation as a radix-2h GSD position, the corresponding digit set of a right-
side (left-side) redundant representation is [–n, 2h + p –2] ([–2h–1n, 2h–1p + 2h–1 – 1]). �

Lemma 6.1 (Symmetry of digit sets associated with periodic hybrid-redundant representations): Left-
side hybrid-redundant digit sets cannot be symmetric except for h = 1, while symmetric right-side hybrid 
redundancy is possible for all h ≥ 1. 

Proof: For the left-side hybrid redundant digit set [–2h–1n, 2h–1p + 2h–1 – 1] to be symmetric, we must 
have 2h–1n = 2h–1p + 2h–1 – 1 or n = p + 1 – 1/2h–1. It is obvious that the latter equation has integer 
solutions for n and p only if h = 1. The corresponding equation for right-side hybrid redundancy is
n = p + 2h – 2, which has a solution for any h ≥ 1. �

Fig. 6.1.  Hybrid -redundant adder with right-side redundant digit positions.

In a hybrid-redundant adder, as described in [Phat94] and [Phat01], the adder cell of a redundant 
position does not propagate the incoming transfer (e.g., carry or borrow). Transfers generated by 
redundant or nonredundant positions may propagate up to the next redundant position, where they sink. 
This process is depicted in Fig. 6.1, where the larger boxes representing adder cells in redundant 
positions are intended to reflect the greater complexity of those cells relative to adder cells in 
nonredundant positions. 

To keep the complexity of the adder cells in check, the range of transfer values in [Phat01] has been 
chosen to be [–1, 1], which is as narrow as possible. This is achieved through the constraint 2 ≤ n + p ≤ 3
(see Table 6.I), along with two techniques. One technique is equal-weight grouping, which effectively 
leads to encoding a 4-valued redundant binary digit (i.e., n + p = 3) as a radix-4 digit, where the doubly 
weighted bit of a redundant digit, together with the posibit in the next higher position, rise to a new 
redundant position with n + p = 2. The other technique is the lookback mechanism, where the value of 
the transfer generated by the adder cell of a redundant position is made dependent on the values of the 
posibits in the previous nonredundant positions. This dependency guarantees that the redundant position 
will be able to absorb an incoming carry or borrow from the right context. The constraint n + p = 2 for 
redundant positions, enforced by equal-weight grouping, when applied to the result in Lemma 6.1, leads 
to severe restrictions on designing symmetric hybrid-redundant digit sets, as explained by the following 
lemma.
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Lemma 6.2 (Restricted symmetry in ordinary hybrid redundancy): There are only two possible 
symmetric ordinary hybrid-redundant digit sets meeting the constraint n + p = 2. 

Proof: According to Lemma 6.1, for left-side hybrid redundancy, a symmetric digit set is possible only 
if h = 1. This, when combined with the constraint n + p = 2, yields n = p = 1 and leads to the BSD 
representation. For right-side hybrid redundancy, Lemma 6.1 dictates n = p + 2h – 2. The latter, 
combined with the constraint n + p = 2, leads to n = 2h–1 and p = 2 – 2h–1. Because p ≥ 0, we must have p
= n = 1 or p = 0 with n = 2. The former solution again represents the BSD number system, while the 
latter leads to the minimally redundant radix-4 representation. �

The adder cells of [Phat94] and [Phat01] for redundant and nonredundant positions do not use standard 
full-adders as building blocks. This design decision is justified, even for nonredundant positions, by the 
fact that redundant positions may generate borrows as well as carries, which must then ripple through 
nonredundant positions. In Section 6.5, we will show that the addition of posibits in a nonredundant 
position and the incoming borrow or carry can indeed be delegated to a common full-adder. The benefits 
of such a design are the use of highly optimized standard full-adder cells and the possibility of carry 
acceleration within multiple nonredundant positions; neither of these applies to the adder cells of 
[Phat94] and [Phat01].

6.2. WBS Encodings and Hybrid Redundancy

WBS encoding, as introduced in [Jabe02 ], is capable of representing any GSD digit set, including those 
of hybrid-redundant systems. Furthermore, aperiodic hybrid-redundant number systems, not covered by 
the GSD paradigm, can also be represented by WBS encoding. Canonical WBS encodings, where each 
redundant radix-2 digit set is 3-valued and a proper subset of [–2, 2], are particularly useful for efficient 
carry-free addition.

Definition 6.2 (Canonical WBS encoding): The digit set in each radix-2 position of a canonical WBS 
encoding is [–2, 0], [–1, 0], [–1, 1], [0, 1], or [0, 2], which is representable by two equally weighted 
negabits, one negabit, a negabit and a posibit, one posibit, or two posibits, respectively. The multiplicity 
(i.e., the number of bits) of each position of a canonical WBS encoding is either 1 or 2. When 
multiplicities for all radix-2 positions are equal to 1, the encoding is called 1-deep; otherwise it is 2-
deep. �

Example 6.1 (Canonical WBS encoding): Figure 6.2 depicts the dot-notation representation of a 
canonical 2-deep WBS encoding of an 8-position redundant digit corresponding to the digit set 
[–73, 227] , where � (�) stands for a posibit (negabit). �

� � � � � � � �

� � � �

Fig. 6.2.  Dot -notation representation of a canonical WBS encoding.

Lemma 6.3 (1-deep WBS encoding of [–n, p]): A redundant radix-2 digit set [–n, p] can be faithfully 
represented by a 1-deep WBS encoding iff n + p = 2g – 1 for some g > 0. 
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Proof: Assume that there exist a g-position 1-deep WBS encoding representing exactly [–n, p]. It can be 
shown that for such an encoding, n (p) is the value of a g-bit binary number with 1s where the WBS 
encoding holds a negabit (posibit) and 0s elsewhere. That n + p = 2g – 1 follows immediately. For the 
sufficiency part, we construct a WBS encoding Ω with a negabit (posibit) in any position where the 
unsigned binary representation of n (p) has a 1. Because n + p = 2g – 1, each constituent bit of Ω has its 
unique position, hence a 1-deep WBS encoding. Furthermore, the most negative (positive) value in Ω
results from assigning 1s (0s) to negabits and 0s (1s) to posibits. The latter assignment establishes the 
range as being [–n, p]. �

Lemma 6.4 (Sparse 2-deep WBS encoding of a digit set): A redundant radix-2 digit set [–n, p] can be 
faithfully represented by a 2-deep WBS encoding, where the second tier of dots consists of a single bit 
in position j, iff n + p + 1 = 2g + 2j for some g > 0 and 0 ≤ j < g.

Proof: The digit set [–n, p] of a 2-deep WBS encoding, as described in this Lemma's statement, may be 
decomposed into [–n', p'] + {0, ±2j}, where the first component represents the primary digit set 
corresponding to the first tier of dots and ± relates to the second component holding a posibit or a 
negabit. The primary component is actually a 1-deep WBS encoding of [–n', p'], leading (by Lemma 
6.3) to n' + p' = 2g – 1. The latter equality, along with the decomposition above, lead to 
n + p + 1 = n' + p' + 1 + 2j = 2g + 2j. �

Corollary 6.1 (2-deep WBS encoding with 1-bit right-side second component): The redundant radix-2 
digit set [–n, p] can be faithfully represented by a 2-deep WBS encoding, with a 1-bit second component 
in position 0, iff n + p = 2g for some g > 0. �

Theorem 6.1 (Canonical WBS encoding of hybrid-redundant numbers): The interval of integers 
represented by a k-position hybrid-redundant number system is equivalently and faithfully representable 
by a k-position canonical WBS encoding iff for every redundant position that represents [–n, p], the 
following holds, where d is the distance to the next higher redundant position: n + p = 2g – 1 for some g
in the range 0 < g ≤ d + 2, or n + p = 2g for some g satisfying 0 < g ≤ d + 1. 

Proof: We construct a k-position canonical WBS encoding Ω with a single posibit in each nonredundant 
position of the given k-position hybrid-redundant system, and augment it with additional bits for faithful 
representation of all the redundant digits. To ensure that Ω is 2-deep, the maximum number of bits 
available for representing a redundant digit is d + 2; one in each of the d nonredundant positions to its 
immediate left and 2 in the redundant position itself. Note that to represent the full required range, the 
additional bits must be able to represent all integers in the interval [–n, p]. If n + p = 2g – 1, then a 1-
deep g-position WBS encoding representing [–n, p] exists by Lemma 6.2. It follows that 0 < g ≤ d + 2
must hold for a 2-deep overall encoding. Otherwise, given the 2-deep constraint, the only other 
possibility is 2-deep g-bit WBS encoding of [–n, p] with g ≤ d + 1 and a 1-bit right-side second 
component, which by Corollary 6.1 requires n + p = 2g. �

Example 6.2 (WBS encoding for hybrid-redundant number systems): Table 6.II depicts WBS encodings 
for some hybrid-redundant number systems, where the first five entries coincide with those studied in 
[Phat01]. The posibits in the most and least significant digit positions of the last two entries are shown in 
gray for better visualization of the periodic structure. �
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Table 6.II     Some hybrid-redundant number systems.

Composition (digit pattern) Conditions of Theorem 6.1 WBS encoding with 3 digits

1 BSD [–1, 1], h – 1 binary n + p = 2, g = 1 ≤ d + 1 = h = 4 ������� ��� ��
� � �

1 SDB [–2, 1], h – 1 binary n + p = 3, g = 2 ≤ d + 2 = 5 ������� ��� ��
� � �

1 SBC [–1, 2], h – 1 binary n + p = 3, g = 2 ≤ d + 2 = 5 ������� ��� ��
� � �

1 SC [0, 2], h – 1 binary n + p = 2, g = 1 ≤ d + 1 = 4 ������� ��� ��
� � �

1 SDC [0, 3], h – 1 binary n + p = 3, g = 2 ≤ d + 2 = 5 ������� ��� ��
� � �

1 in [–2, 0], h – 1 binary n + p = 2, g = 1≤ d + 1 = 4 ������� ��� ��
� � �

1 in [–3, 4] , h – 1 binary n + p = 7, g = 3 ≤ d + 2 = 5 ������� ��� ��
�� �� ��

1 in [–8, 8] , h – 1 binary n + p = 16, g = 4 ≤ d + 1 = 4 ������� ��� ��
������������

Theorem 6.1 and Table 6.II show that any of the five ordinary hybrid-redundant number systems 
efficiently implemented in [Phat01] is representable by a 2-deep WBS encoding. These canonical WBS 
representations may be regarded as hybrid-redundant number systems with redundant positions 
restricted by the constraint n + p ≤ 3. Thus, the redundant binary digit sets of canonical WBS encodings 
are the same as those studied in [Phat01], with the addition of [–2, 0]. Other hybrid-redundant number 
systems with redundant positions of wider range (e.g., those in the last two entries of Table 6.II), when 
represented by canonical WBS encoding, can be alternatively regarded as having other redundant digit 
sets with n + p = 2. Therefore, we can design adders for any hybrid-redundant system meeting the 
conditions of Theorem 6.1 based on the adder cells of [Phat01] along with a similar adder cell for the 
digit set [–2, 0]. 

An alternative approach for addition of canonical WBS numbers is offered in [Jabe02 ], where the 
negabits of each 2-deep operand are temporarily viewed as being posibits. The value represented by 
such an all-posibit interpretation is biased by a nonpositive constant relative to the value originally 
represented. Addition is, thus, reduced to standard multioperand addition of binary numbers, where two 
of the operands are the bias constants. The advantage here is that the adder is composed of only standard 
full-adders. Taking advantage of our new result [Jabe05a] that standard full-adder cells are capable of 
reducing any collection of three posibits and negabits, we provide a direct implementation (i.e., without 
pre-addition conversion to all-posibit operands) of adder cells for redundant and nonredundant positions 
in Section 6.5. 

Ordinary hybrid redundancy, as defined in [Phat94] and extended in [Phat01], does not allow single 
negabits in nonredundant positions. For example two’s complement numbers, with a negabit in their 
most significant bit position, may not be viewed as a special case of ordinary hybrid redundancy. 
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The third entry of Table 6.II, with a single negabit in its WBS encoding may be thought of as a counter 
example to the latter claim. However, one must note that in the implementations offered in [Phat01], this 
single negabit together with a posibit in the next higher position forms an SBC digit in the same
(redundant) position as the negabit, and is thus not considered and manipulated by itself as a 
nonredundant binary digit.

Since a negabit represents the nonredundant radix-2 digit set [–1, 0], we are motivated to extend the 
hybrid redundancy scheme to allow for negabits in nonredundant positions. This implies that, in 
designing the required adder cells, the negabit would be considered by itself as a nonredundant binary 
digit and not as part of a redundant digit.  

Definition 6.3 (Extended hybrid redundancy): A k-position extended hybrid-redundant number system
has k radix-2 digits in positions 0 to k – 1, weighted 20 to 2k–1, respectively. Each digit is from a 
contiguous redundant or nonredundant digit set with 0 as a member. Graphically a redundant position is 
shown as , or by a collection of two or more posibits (�) and negabits (�); a nonredundant position 
contains exactly one posibit or one negabit. �

Example 6.3 (Extended hybrid-redundant number system): In dot notation, the structure of an extended 
hybrid-redundant number system may appear, for example, as  � �  �  � � �  �, where the 
positions marked  may use any redundant digit set with 0 as a member. Any WBS encoding of 
redundant digits may be used. Examples include the five digit sets in Table 6.I, whose single- and 
double-position WBS encodings are shown in Fig. 6.3. �

For redundant digit sets meeting the conditions of Theorem 6.1, leading to 2-deep canonical WBS 
representations, implementation of hybrid-redundant addition is tantamount to reducing a 4-deep WBS 
encoding to an equivalent 2-deep encoding. This is taken up in Section 6.4. 
 

N/A

N/A

Double-
position
encoding

Single-
position
encoding

BSD

SDB

SBC

SC

SDC

Fig. 6.3.   Single/double-position WBS representations
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6.3 Inverted Encoding of Negabits

The relative complexity of the adder cells proposed in [Phat94] and [Phat01] is mainly due to carry and 
borrow propagation within the same circuit. It is well known that inverting all three inputs of a full-
adder will result in inverted sum and carry. This hints at using a standard full-adder for addition of three 
equally weighted negabits, and possibly extending it to any collection of three posibits and negabits. 
This intuition is also supported by the value-preserving transformations depicted in Fig. 6.4, which 
shows how any collection of three posibits and negabits with the same weight may be replaced by a bit
with the same weight and a doubly weighted one, without affecting the representable range.

Original 
dots in 
position j

Replaced with 
dots in positions
j + 1 and j

Multiples of
2   that are
representable

 j

0, 1, 2, 3

–1, 0, 1, 2

–2, –1, 0, 1

–3, –2, –1, 0

(a)

(b)

(c)

(d)

Fig. 6.4. Replacement of three equally weighted posibits and negabits. 

It is easily verified, by examining the four cases depicted in Fig. 6.4, that a standard full-adder receiving 
a combination of posibits and negabits with conventional encoding of negabits does not always produce 
the correct sum and carry values. However, inverted encoding of negabits (representing −1 as 0 and 0 as 
1) does allow the use of standard full-adders as universal adder cells for any collection of three negabits 
and posibits. The concept is more formally defined and justified below.

Definition 6.4 (Inverted encoding of negabits): Inverted encoding of negabits is exactly the opposite of 
the conventional encoding, as used in, for example, in the most significant position of standard two’s 
complement representation of binary integers. The lower (higher) value of a negabit, that is, –1 (0), is 
inversely encoded as 0 (1). We use uppercase (lowercase) letters to designate the logical value of a 
negabit (posibit). Then the arithmetic value of a negabit X (a posibit x) would be X – 1 (x). �

Figure 6.5 depicts the universal functionality of a standard full-adder in (3; 2) compression of any 
equally weighted collection of three negabits and posibits. For a justification, let x1, x2, and x3 denote the 
logical values of three equally weighted posibits and inversely encoded negabits. Recall from Definition 
6.4 that the arithmetic value of a posibit with logical value x is x but that of a negabit with logical value 
Y is Y – 1. Given c and s as the carry and sum outputs of a standard full-adder receiving x1, x2, and x3 as 
inputs, the justification of universality of full adders is summarized in Table 6.III, where negabits are 
shown in uppercase. 
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Similarly, one could use half-adders to convert any set of two equally weighted posibits and negabits to 
an arithmetically equivalent 1-deep two-bit result. This functionality of half-adders is justified by the 
contents of Table 6.IV. It has been shown [Jabe05 a] that conventional compressors present similar 
functionality in reducing more complex collections of posibits and negabits.

FA

s

incoutc

x y 

FA

S

incoutc

x Y 

FA

s

incoutC

X Y 

FA

S

inCoutC

X Y 

Fig. 6.5.  Univ ersality of a binary full-adder for adding equally weighted posibits (shown as 
lowercase variables) and negabits (uppercase).

Table 6.III. Justifying the universality of a full-adder as shown in Fig. 6.5. 
Input-collection Arithmetic equivalence

Three posibits x1, x2, x3 x1 + x2 + x3 = 2c + s

Two posibits x1, x2, and one negabit X3 x1 + x2 + (X3 – 1) = 2c + (S – 1) 

Two negabits X1, X2, and one posibit x3 (X1 – 1) + (X2 – 1) + x3 = 2(C – 1) + s

Three negabits X1, X2, X3 (X1 – 1) + (X2 – 1) + (X3 – 1) = 2(C – 1) + (S – 1) 

Table 6.IV. Half-adder functionality with posibit and negabits as inputs.

Logical input Logical output

� � �
� � �

Sum for 
the three 
cases �� �� �� 

0
0 0 −1 −2 00

0
1 1 0 −1 01

1
0 1 0 −1 01

1
1 2 1 0 10
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Addition of two canonical WBS operands is performed by conceptually copying the bits of the 2-deep 
operands in the bit placeholders of a 4-deep WBS representation. This is then followed by conversion 
(or reduction) to canonical WBS representation. In fact, only redundant WBS positions produce 4-deep 
results, with nonredundant positions yielding 2-deep results. But if the canonical WBS encodings of the 
two operands are not exactly alike, a nonredundant position of one may align with a redundant position 
of the other, thus leading to 3-deep positions as well. There is never a 1-deep position. Note that 
addition, as formulated above, can be viewed as a special case of digit-set conversion [Korn99]. The 
reduction of a 4-deep WBS number with no empty position can be done in two steps:

1. Reduce the 4-deep result to a 3-deep one, using full- and half-adders as appropriate.

2. Use a chain of full-adders for carry-propagate addition starting at an intermediate 3-deep 
position (or position 0), followed by a full-adder chain for 2-deep positions up to, but not 
including, the next 3-deep position. The carry-out of the full-adder for the last 2-deep position in 
a chain will stop at the following 3-deep position, where it joins the sum bit generated in that 
position. These two bits compose a redundant position i of the result.

When the number of bits in the like positions of the two operands are the same (i.e., they have the same 
redundancy pattern), the 4-deep intermediate sum contains 2- and 4-deep positions, and there will be no 
1- or 3-deep positions. Then it may be desired to have the final result with the same redundancy pattern 
as that of the operands. Based on whether the redundancy pattern is to be preserved, one of the following 
may be applied as the reduction step:

• Preserved redundancy pattern: Reduce every 2-, 3- (if applicable), and 4-deep position to at 
most 2-, 2-, and 3-deep positions, respectively, as an intermediate step by using a half-adder 
(full-adder) for each 2- (3-, 4-) deep position. In case of identical redundancy patterns for the two 
operands, where no 3-deep position exists at the outset, it is easy to see that after the second step 
above, redundant positions in the result are the same as that of the operands. The required 
universal reduction cells (i.e., independent of input and output polarities) for arbitrary positions i 
(4-deep), j (3-deep) and k (2-deep) are shown in the first row of Figs. 6.6a, 6.6b, and 6.6c, 
respectively, where the primed and double primed variables reflect the depth 2 of the operands 
and non-primed variables denote intermediate results. The second row full-adders perform the 
second step above.

• Shifted redundancy pattern: leave the 2-deep positions of the 4-deep representation intact by 
removing the half-adder in Fig. 6.6c, but reduce 3- and 4-deep positions as above. Therefore, in 
case of identical redundancy patterns of the two operands, positions related to nonredundant 
positions of the operands immediately to the left of redundant positions will be 3-deep after the 
first step and 2-deep (i.e., redundant) after the second step; hence shifting in the redundancy 
pattern. The simplified adder cells are depicted in Fig. 6.7. 

The approach that preserves the redundancy pattern does not necessarily lead to representational 
closure, because the latter requires not only a match in the redundancy patterns of the operands and 
the result but also identical polarity combinations for like positions. Where the polarity sets match in 
case of a shifted redundancy pattern, we have a representationally shifted result. The adder cells 
provided in [Phat01] for double-position redundant digits (i.e., SDB, SDC, and SBC) lead to 
representationally shifted outputs, which may be a desirable result in some applications.
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Often, however, one needs a result with exactly the same encoding as that of the operands. Such 
representationally closed arithmetic enhances regularity and reusability of arithmetic cells in VLSI 
design. Although the adder cells of Fig. 6.6, when applied to operands with the same encodings, do 
preserve the bit multiplicity in each position (i.e., they preserve the redundancy pattern), they do not 
possess the representational closure property. In Section 6.5, we use the cells of Fig. 6.7 to design a 
VLSI-friendly carry-free adder for a symmetric extended hybrid redundant adder, with and without 
the representational closure property.

Fig. 6.6.  Universal reduction cells for 4-, 3-, and 2-deep positions.
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Fig. 6.7. Adder cells leading to shifted redundancy pattern relative to those of the operands.
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6.4. Symmetric Extended Hybrid Redundancy

Recalling our discussion in Section 6.2, variants of symmetric ordinary hybrid redundancy are:

• Left- side redundant position: By Lemma 6.1, this is possible only for h = 1 and leads to fully 
redundant number systems, where all positions hold redundant digits (e.g., BSD for 2-deep 
encodings).

• Right-side redundant position: The redundant digit must be in [–(p + 2h – 2), p + 2h – 2] for all
h > 0, where p is the maximum positive value which can be represented by the right-side 
redundant position (see Lemma 6.1). A WBS encoding for such a digit set would have at least 
2h – 2 negabits in its redundant position. This means that the representation depth in redundant 
positions grows exponentially with the distance between redundant positions (i.e., h – 1).

The most important characteristic of ordinary hybrid redundancy is the design flexibility in allowing an 
arbitrary number of nonredundant positions between redundant positions for area-time trade-off, as it is 
this number that defines the area requirement and the associated latency for the design. With exponential 
growth of area for the redundant positions when symmetry is a requirement, any attempt to increase h
would be ineffective as an area-time trade-off measure. For example for h = 3, corresponding to a rather 
short distance of 2 between redundant positions, the encoding depth of redundant positions will be p + 6
(at least 6). Converting such a deep WBS encoding to a 2-deep (canonical) encoding reduces the number 
of nonredundant positions, which is counterproductive as regards to the main advantage of hybrid 
redundancy. 

Example 6.4 (Deep symmetric hybrid redundancy): Figure 6.8 depicts the WBS encoding of a 6-deep 
symmetric hybrid redundant number system, and its equivalent canonical WBS encoding. Each radix-8 
digit belongs to [–6, 6]. �

� � � � � � � � � � � � � � � � � �

� � � � � � � � �

� � �

� � �

� � �

� � �

(a) (b)

Fig. 6.8.  A deep (a), and an equivalent canonical WBS encoding (b) for a symmetric ordinary 
hybrid redundant number system.

Example 6.4, as an evidence of the result of Lemma 6.1, shows that ordinary 2-deep hybrid redundancy 
[Phat94], [Phat01] provides for only two different symmetric digit sets; BSD and minimally redundant 
radix-4 digit set. This intrinsic restriction does not allow for arbitrary spacing of redundant positions in 
symmetric number systems. This result is formally stated in the following theorem.
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Theorem 6.2 (Restricted spacing in symmetric ordinary hybrid-redundant representations): The 
maximum spacing between redundant positions in 2-deep symmetric ordinary hybrid-redundant number 
systems is 1. 

Proof: Because negabits are disallowed in nonredundant positions, they must be present in redundant 
positions in a way to completely counterbalance the posibits in nonredundant positions. Only two 
arrangements accomplish this. With no nonredundant position, the only 2-deep symmetric redundant 
digit is a binary signed digit; hence the BSD number system is the only symmetric ordinary hybrid-
redundant system with a period of 1 (spacing of 0). The contribution of a nonredundant posibit in 
position i to the positive range of the represented values is 2i. Given the maximum depth of 2, and 
absence of negabits in nonredundant positions, the only possible compensation in the negative range is 
the use of two negabits in position i − 1. This observation leads to the only other possibility for a 
symmetric digit set with 2-deep representation: single binary positions alternating with redundant 
positions containing two negabits. This representation with period of 2 (spacing of 1) corresponds to the 
minimally redundant radix-4 signed digit number system. �

Theorem 6.2 establishes that ordinary hybrid-redundant representations are mostly asymmetric, thus 
essentially denying designers the flexibility of spacing variations to trade off speed for economy 
(smaller VLSI area) in cases where symmetry is desired.

To reduce the depth of a high-radix symmetric ordinary hybrid redundant representation, it is possible to 
use more than one position for representation of the redundant binary digit set, as was suggested by the 
equal weight grouping in [Phat01].

Example 6.5 (Shallow encoding of symmetric hybrid redundancy): Figure 6.9 depicts a 10-deep (a), and 
a 3-deep (b) equivalent WBS encoding of a radix-8 hybrid-redundant number system with the digit set 
[–8, 8], where  stands for an equally weighted collection of 2 posibits and 8 negabits. �

Fig. 6.9.  Equivalent encodings of a hybrid -redundant number system.

The symmetric ordinary hybrid-redundant number system of Fig. 6.9b is not a 2-deep WBS encoding; it 
is thus unsuitable for the efficient universal addition scheme based on the adder cells of Fig. 6.7. The 
process of deriving its equivalent canonical WBS encoding, through transformations of Fig. 6.4, leaves a 
single negabit in each of the originally redundant positions with two posibits. The canonical WBS 
encoding thus derived no longer represents an ordinary hybrid-redundant number system (Fig. 6.10). 
This is indeed consistent with Theorem 6.2, and suggests a general method for constructing a 2-deep 
WBS encoding to represent a given symmetric range [–α, α]. We begin with a one-position WBS 
encoding with α posibits, and α negabits, and repeat the transformations of Fig. 6.4, until no other 
transformation step is possible. A formal correctness proof for this method may be found elsewhere 
[Jabe05a].
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� � � � � � � � � � � �

� � �

Fig. 6.10.  A canonical WBS encoding of an exten ded hybrid-
redundant number system with digit set [–8, 8] 

 

Theorem 6.2 and the latter construction of 2-deep symmetric encodings reinforce the superiority of 
extended hybrid redundancy over ordinary hybrid redundancy in designing useful 2-deep (i.e., low 
redundancy in the WBS context) symmetric hybrid-redundant number systems having arbitrary spacing, 
with the possibility of using the universal addition scheme, where the adder cells of Fig. 6.7 are the only 
cells needed. 

Numbers with arbitrary digit sets can be added digitwise to produce a sum with a digit set whose range 
is the sum of the ranges of the operand digits. This wider digit set can be kept intact and the result used 
as an operand in further arithmetic operations. It is also possible to convert the wider digit set to another, 
more convenient, one for further processing. Often, however, it is required to obtain results with the 
same digit set as inputs [Korn99]. Such representationally closed arithmetic is desirable for storage 
efficiency, reusability of the arithmetic cell designs, and regularity in VLSI circuit implementation. 
While encoding-algorithm combinations that are not representationally closed can be useful and are in 
fact used in practice, when comparing a representationally closed scheme against a scheme that is not 
closed, fairness dictates that the overhead of conversion from the intermediate representation to the 
ultimate encoding be taken into account in any cost/speed comparisons. 

Where the two operands in addition are represented with the same canonical WBS encoding, the 
reduction cells of Figs. 6.6a and 6.6c may be used to produce a 2-deep result with the same redundancy 
pattern of the operands. Preserving the redundancy pattern is a necessary condition for representational 
closure, but it is not sufficient; the number of posibits and negabits of the like positions of the result and 
the operands should be the same as well. One obvious case, in which the latter property is sufficient, is 
when the encoding consists of only posibits (e.g., SC digit) or negabits. The adder cells of Fig. 6.7, 
however, preserve representational closure, except for a one position left shift of the result, that is, the 
number of posibits and negabits of any position i + 1 of the result is equal to that of position i of either 
operand. 

Figure 6.11 depicts, in dot notation, representationally closed addition of two 3-digit symmetric hybrid-
redundant operands with the digit set [–8, 8]. Figure 6.12 shows a regular adder design for an arbitrary 
radix-2h digit i extending from position ih to (i + 1)h − 1, where the only building blocks are full-adders 
and half-adders (shaded with dots) and cells drawn with dashed lines belong to position ih − 1. 

The following steps explain the addition process:

1. Replace the 2-deep equal-weight negabits by an (h + 1)-position 1-deep 2’s-complement number 
of the same value. This produces a new negabit in the next redundant position. According to 
Table 6.IV, a standard half-adder can produce the 2-bit 2’s-complement sum of two negabits. 
Sign-extending this to h bits produces the desired result; however, due to our inverted encoding 
of negabits, an inversion is required. The required circuitry for this step, a half-adder in the 
leftmost position of each radix-2h digit and two inverters, can be seen in Fig. 6.12. 
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2. At the same time, reduce the 4- (2-) deep posibit positions by one full- (half-) adder. The 
intermediate result thus derived will be 3-deep. Zero valued posibit constants (bold 0), and zero 
valued negabit constant (1), have been added in the least significant digit position of Fig. 6.11 for 
regularity. The delay for this step is equal to that of one full-adder.

3. Use one full-adder per position to reduce the 3-deep result to one with depth 2. The latency of 
this step is again equal to the delay of one full-adder.

4. Use a chain of h full-adders per every h positions to derive the final result. The delay of this step 
is equal to that of h cascaded full adders. For large h (say, ≥ 4), one may use carry acceleration 
techniques to gain a delay of O(log h). 
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Fig. 6.11.  Representationally closed addition of symmetric hybrid -redundant operands.

The extra cost for subtraction is minimal. We negate the subtrahend by bitwise inversion of each digit, 
and then perform addition as above. That a simple bit-wise inversion of each digit negates that digit, and 
thus the whole number is negated, is justified by the following equations for an h position symmetric 
digit.
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Arithmetic value of an h position symmetric digit D, given that of a negabit X is X − 1, is:

V (D) = 2 h−1 (Xh−1 − 1) + 2h−2 xh−2 +…+ 2x1 + x0 + x'0.

Arithmetic value of D', obtained by bitwise inversion of D, may be computed as follows. Derive the 
logical representation of D' by replacing each variable x by 1 − x in the representation of D:

D' = 1 − Xh−1 1 −xh−2 … 1 − x1 1 − x0

1 − x'0

Then compute the arithmetic value V (D') as above:

V (D') = 2 h−1 (1 − Xh−1 − 1) + 2h−2 (1 − xh−2) +…+ 2 (1 − x1) + (1 − x0) + (1 − x'0) =

− (2h−1 Xh−1 + 2h−2 xh−2 +…+ 2x1 + x0 + x'0) + 2h−2 +…+ 2 + 1 + 1 =

− (2h−1 (Xh−1 − 1) + 2 h−2 xh−2 +…+ 2x1 + x0 + x'0) = − V (D).

Fig. 6.12.  Representationally closed adder for digit i of radix-2h symmetric hybrid redundant numbers
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The overall adder circuitry, as depicted in Fig. 6.12, amounts to two full-adders and one half-adder per 
radix-2 position. An inverter per bit and a multiplexer is the minimum possible penalty for subtraction, 
which is fortunately realizable in this case, as noted above. The total addition delay, corresponding to 
the critical path of Fig. 6.12 (the heavy bold line) is equal to that of h full-adders and two half-adders. 
With a carry acceleration circuit, an O(log h) delay can be easily achieved. Note that a representationally 
shifted adder, based on the adder cells of Fig. 6.7, consumes one  (two) full-adder(s) per nonredundant 
(redundant) position, that is, a total of h + 1 full-adders per radix-2h digit. The delay, in this case, is equal 
to that of h + 1 full-adders, almost the same as in the case of representationally closed adder. However, 
the hardware penalty for representational closure is rather substantial; the equivalent of one extra half-
adder (and one extra full-adder) per redundant (nonredundant) position.

6.5. Summary

The hybrid redundancy scheme of [Phat01] constitutes as an easily understood concept leading to 
straightforward management of area-time trade-off in the design of hybrid-redundant number systems. 
The designer has the option of considering as many posibits between the redundant positions as required 
by the area-time targets. The redundant positions are practically restricted to at most 4-valued digit sets 
to enhance addition speed. The latter, with the help of equal-weight grouping, has led to 2-deep 
encodings (using the terminology of WBS encodings) of hybrid redundant number systems. However, 
the ordinary hybrid redundancy scheme as defined in [Phat01] fails to offer the latter design flexibility 
when shallow symmetric number systems are desired, does not directly allow the use of carry 
acceleration techniques, and fails to support subtraction by means of the same circuitry used for addition. 

In this chapter, we provided an in-depth analysis of limitations of ordinary hybrid redundancy and 
showed that these problems can be overcome by two innovations:

• Allowing single negabits in nonredundant positions: This possibility, which led to definition of 
extended hybrid-redundant number systems, helps in designing shallow symmetric hybrid 
redundant number systems, which would become impractically deep otherwise (the depth 
increases exponentially with the spacing of redundant positions).

• Inverted encoding of negabits: This simple idea leads to universal functionality of conventional 
full/half-adders and compressors in reducing any combination of posibits and negabits and 
renders carry acceleration techniques directly applicable. Conventional binary full/half-adders 
have been studied extensively with regard to area, speed, and energy efficiency; hence, using 
them in our designs allows a wide choice of predesigned and highly optimized cells. Furthermore 
negation operation is quite efficient, leading to direct reusability of addition circuitry for 
subtraction. For example negation, in the case of popular symmetric number systems is done by 
bitwise inversion. 
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We showed that when representationally shifted results are acceptable, as is generally the case in 
ordinary hybrid redundancy, a universal adder may be designed with one (two) full-adders per 
nonredundant (redundant) position. The adder delay for radix-2h periodic number systems equals to that 
of h + 1 full-adders. As shown in the representationally closed adder of Fig. 6.12, the hardware penalty 
for the coexistence of symmetry and representational closure, both desired in practice, is the equivalent 
of one extra half-adder (and one extra full-adder) per redundant (nonredundant) position. 
Fortunately, however, the addition delay is almost the same (that of h full-adders and two half-adders in 
series), so the speed penalty is not serious.

Further research on the extended hybrid redundancy schemes may proceed by considering the design of 
multipliers and dividers as well as efficient circuits for converting from various extended hybrid-
redundant formats to standard 2’s-complement binary format.
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Chapter 7 | Weighted Two-Valued Digit-Set
                          Encodings

Contributions to redundant number representation and associated arithmetic systems are of two main 
types. In abstract studies (e.g., [Matu82], [Parh90], [Korn94]), arithmetic algorithms are presented in 
terms of digit-level operations, specifying how each result digit is derived from operand digits and 
auxiliary quantities such as interdigit transfers. Implementation-oriented studies, on the other hand, are 
often based on specific encodings for the digit sets encountered in solving particular design problems; 
for example, construction of a high-speed 2’s-complement full-tree multiplier [Taka85], design of high-
throughput floating-point units [Matu97], [Niel97], or enhanced implementation of floating-point 
addition and rounding [Fahm03]. Some contributions of this latter type have dealt with limited classes of 
digit-set encodings without directly associating them with a specific design problem or application. 
Examples include the hybrid redundancy scheme [Phat94], [Phat01] and representation paradigms for 
high-radix signed-digit number systems [Jabe03 ].

This chapter aims to fill the gap between the aforementioned contributions. We note that radices of 
practical interest are invariably powers of 2; thus, in practice, a redundant number is formed by a 
collection of digits, each associated with a power-of-2 weight. Within each digit position, a digit value is 
also practically encoded as a collection of weighted bits. For example, the possibly asymmetric digit set 
[α, β], with α ≥ –2η–1 and β < 2η–1, might be encoded as an η-bit 2’s-complement number, giving its bits 
the weights –2η–1, 2η–2, . . . , 2, 1. Similarly, binary signed-digit (BSD) numbers [Aviz61] are commonly 
represented by using two bits weighted –2i and 2i for the position-i digit, leading to the (n, p) encoding 
[Parh90]. Also in carry-save [Metz59] and stored-transfer [Jabe01] redundant representations, the stored 
carry or transfer digit is composed of bits with the same weights as those of the main digit. Finally, a 
hybrid-redundant representation [Phat01] may have redundant positions with stored-double-borrow 
(SDB) digits in [–2, 1], each of which is encoded using two bits of weight –2i and one bit of weight 2i or 
with a pair of bits of weights –2i+1 and 2i. Under such conditions (i.e., power-of-2 radix and weighted 
bit-set representation of each digit), the number as a whole is encoded by a collection of bits; posibits in 
{0, 1} or negabits in {–1, 0}, each weighted by a positive or negative power of two, respectively. 

The weighted bit-set (WBS) encoding [Jabe02 ] has been studied based on the observation just made. 
Any addition scheme for WBS-encoded operands entails the problem of combining bits with potentially 
opposite polarities. Some studies have presented variations of full- and half-adders as a solution to the 
latter problem. Examples include the PPM cell, proposed in connection with redundant representations 
of complex numbers [Dupr91] and later used in the design of a borrow-save adder [Mign00], and four 
half-adder variants that reduce various combinations of equally weighted posibits and negabits 
[Daum03]. A rather complex dual-purpose logic [Phat01] for addition of two stored-double-borrow 
(SDB) or stored-borrow-or-carry (SBC) digits has addressed a similar problem. Inverted encoding of 
negabits (representing −1 by 0, and 0 by 1, which is exactly the opposite of conventional encoding) 
allows standard full- and half-adders to be applied for deriving the sum and carry bits of either polarity 
for any collection of two or three posibits and negabits [Jabe05 a].
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Given that two-valued digit sets other than {0, 1} and {–1, 0} have found applications in practice (e.g., 
{–1, 1} in representing stored-transfer numbers [Jabe01]), we are motivated to generalize binary digits 
to two-valued digits (twits) and to extend WBS encoding to allow twits in any position. This is taken up 
in Sections 7.1 and 7.2, where we define twits and weighted twit-set (WTS) encodings and examine their 
properties. These include the bias encoding of twits (as a generalization of the aforementioned inverted 
encoding of negabits), which leads to the possibility of twit manipulations by means of standard 
full/half-adders. This reliance on the use of standard building blocks makes our results imminently 
practical. WBS-like encodings, as a subclass of WTS encodings with immediate practical interest, are 
introduced in Section 7.3, where we establish necessary and sufficient conditions for contiguity of digit 
sets and existence of equivalent canonical forms. In WBS-like encodings, each binary position, possibly 
including noncontiguous twits, represents a contiguous digit set with 0 as a member. WTS interpretation 
of previously studied redundant number systems (such as generalized signed-digit [Parh90], hybrid-
redundant [Phat94], [Phat01], and stored-transfer [Jabe01 ] representations) is taken up in Section 7.4, 
where we also provide a general arithmetic framework for WBS-like encoded numbers, based primarily 
on the notion of digit-set conversion [Korn94], [Korn99], and offer a representationally closed 
addition/subtraction high level design, for a subclass of WTS encodings. Section 7.5 provides a 
summary of the chapter and offers a comprehensive hierarchical classification of all redundant number 
representations that the authors have encountered in the literature as instances of WTS encodings.

Various properties of twits and of WTS encodings cited in this chapter are stated as theorems and 
associated corollaries, and supported by formal proofs, in Appendix 7.A. 
7.1. Two-Valued Digits (Twits)

Besides negabits and posibits used in the WBS definition [Jabe02], other two-valued digits, such as 
transfer digits in {–1, 1}, have been found useful in practice [Jabe01]. Also, one could think of an SDC, 
or stored-double-carry [Parh 90], digit in [0, 3] as being represented, with improved encoding efficiency, 
by a pair of equally weighted two-valued digits in {0, 1} and {0, 2}, respectively, instead of by 3 equally 
weighted posibits. Digit sets not including 0, such as [1, 3], cannot be faithfully represented by any 
collection of posibits and/or negabits. However a posibit and a two-valued digit in {1, 2}, both of the 
same weight, can represent [1, 3] precisely. This motivates us to generalize binary digits to two-valued 
digits in Definition 7.1 and to extend WBS encoding to include any two-valued digit (see Definition 7.3 
at the beginning of Section 7.2).

Definition 7.1 (Two-valued digit or twit): A twit has two possible values, λ and λ + γ. A twit encoded as 
a bit x represents the value λ + γx, with λ (lower value) and γ > 0 (gap size) being the twit parameters. If  
γ = 1 (γ > 1), the twit is contiguous (noncontiguous). If λ ≠ 0 (λ = 0), the twit is biased (unbiased). The 
least (highest) representable value by a collection of m equally weighted twits is Λ(m) (Λ(m) + Γ(m)), where 
Λ(m) = ∑0≤i<m λi and Γ(m) = ∑0≤i<m γi. �

For notational convenience, we use letters to denote twits according to the following conventions. 
Regular (boldface) type is used to denote contiguous (noncontiguous) twits, while lower (UPPER) case 
is used for unbiased (biased) twits having λ = 0 (λ ≠ 0). When 0 is not one of the two twit values, we 
underline the twit’s symbolic name. Twits in the same digit position are distinguished by using prime, 
double-prime, triple-prime, and so on. For ease of reference, these conventions are illustrated in Fig. 7.1, 
and some special twits, along with their representations in dot and symbolic notations, are depicted in 
Fig. 7.2. 
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Boldface
type
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type

a a

A, A A, A
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A
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E
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γ > 1γ = 1

λ ≠ 0

λ = 0

Note: 
Underlining 
is used to 
denote twits 
with both 
possible 
values 
nonzero;
e.g., unibit.

Fig. 7.1.  Conventions for twit symbolic names .

Name Lower 
value

Dot
notation

Gap 
size

Bit or posibit

Negabit

Unibit

0 1

–1 1

–1 2 

Doublebit 0 2

Negadoublebit –2 2 

(a)

(e)

(b)

(c)

(d)

Symbolic
notation
x ′, y ″, z ′″

X ′, Y ″, Z ′″

X ′′′′ , Y ″″″″ , Z ′″′″′″′″

x ′′′′ , y ″″″″ , z ′″′″′″′″

X ′′′′ , Y ″″″″ , Z ′″′″′″′″

�

Upper 
value

1

0

1

2

0

Fig. 7.2.  Some examples of two -valued digits or twits.

It has been shown elsewhere [Jabe05a] that a standard full-adder is capable of correct (3; 2) reduction of 
posibits and negabits, provided that negabits are inversely encoded, with the lower −1 value of a negabit 
encoded as 0 and the upper 0 value encoded as 1. In other words, the arithmetic value of a negabit with 
the same logical value as a posibit is biased by −1. This observation may be generalized as follows.

Definition 7.2 (Bias encoding of twits): Encoding of the lower value λ and higher value λ + γ of a twit 
as 0 and 1, respectively, is called bias encoding (the lower value λ is biased relative to lower value of a 
posibit). Twit bias is then synonymous with the lower value λ. �

Twit property 1 (Twit-FA): The sum and carry outputs of a standard full-adder, receiving three bias 
encoded twits with equal gaps, can represent arithmetically correct sum and carry twits with the same 
gaps. This property, which stems from our special bias encoding of twits, is justified by Theorem 7.1 in 
Appendix 7.A. �

The bias λ for a negabit is –1; that is, for a bias-encoded negabit, logical 0 means –1 and logical 1 means 
0, which is the opposite of the convention used for the negabit in the most significant position of a 2’s-
complement number. Similarly, for a bias-encoded unibit, logical 0 means –1 and logical 1 means 1; 
again the opposite of the universally adopted sign convention. However, given that each of the two 
possible encodings of a twit is the logical inverse of the other, any required conversion is trivial. 
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Example 7.1 (Twit-FA): Figure 7.3a shows the functionality of a standard full-adder as twit-FA for 
different collections of three posibits and negabits. The functionality of the full-adder of Fig. 7.3b in 
adding a unibit (−1 + 2X), a doublebit (0 + 2Cin), and a negadoublebit (−2 + 2y) is justified by:

−3 + 2 (X + y + Cin) = 2  (−1 + 2Cout) + (−1 + 2S) 

where 2Cout + S = X + y + Cin represents the normal full-adder functionality.  �

FA

s

incoutc

x y 

FA

S

incoutc

x Y 

FA

s

incoutC

X Y 

FA

S

inCoutC

X Y 

(b)(a)

FA

S

inCoutC

X y

Fig. 7.3. Twit-FA used for adding various collections of three twits. 

Twit property 2 (Twit compressor): A standard compressor, normally implemented by a collection of 
standard full-adders, may receive equigap twits in lieu of input posibits and produce twits with the same 
gap where one normally sees output posibits. This property is justified by Corollary 7.1 in Appendix 
7.A. �

Twit property 3 (In-place reduction of twits): Three equally weighted, equigap, bias-encoded twits may 
be reduced by a full-adder to two equally weighted twits, one with a doubled gap (the carry output) and 
one with the original gap (the sum output). Furthermore, two equally weighted twits can be replaced by 
two other twits with the same weights, where the bias of one is increased by a constant and that of the 
other is decreased by the same constant. This property is justified by Corollary 7.2 in Appendix 7.A. �

Example 7.2 (Twit reductions): A collection of two posibits and one negabit may be reduced to a 
doubly weighted posibit and one negabit (per twit property 1), a doublebit and a negabit, a {1, 2} twit 
and a negadoublebit (per the first part of twit property 3), or a unibit and a posibit (per the second part of 
twit property 3). The last three in-place reductions are depicted in Fig. 7.4. We will make good use of 
the latter reduction in generating the unibit transfer of a stored transfer addition in Section 7.4. �

�

�

�

� {1,2} �

Fig. 7.4. Two posibits and one negabit, along with three possible in-place reductions.
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Twit property 4 (Gaps in representation): Consider for each twit in a collection of equally weighted 
twits, the difference between its gap and sum of the gaps of all twits with smaller gap sizes. The largest 
of these differences equals the maximum distance between consecutive integer values in the ordered 
collection of integers representable by the twit collection. When the largest difference is 1, the twit 
collection can represent a contiguous interval of integers. Furthermore, if the representable contiguous 
interval is [–α, β] and includes 0, it may equivalently be represented by an equally weighted collection 
of α negabits and β posibits. Justifications are provided by Theorem 7.2 and Corollaries 7.3 and 7.4 in 
Appendix 7.A.  �

Example 7.3 (Representational efficiency of twits): The set of three twits {0, 1}, {–2, 0}, and {1, 5}, 
with gaps of γ0 = 1, γ1 = 2, and γ2 = 4, meets the conditions of twit property 4. The set represents integers 
in [–1, 6], which can equivalently be represented by a collection of 1 negabit and 6 posibits. This 
example demonstrates the representational power of twit collections in enhancing the overall encoding 
efficiency of redundant binary digits (3 twits versus 7 negabits/posibits). This observation is generalized 
as twit property 5 below.�

Twit property 5 (Size of twit representation): A contiguous interval [α, β] of integers is representable 
by the minimum number m = log2(β – α + 1) of equally weighted twits whose gaps are 
1, 2, 4, . . . , 2m–2, β – α + 1 – 2m–1. For β – α + 1 = 2m, encoding efficiency of the resulting 
representation (see Definition 7.4 in Section 7.2) is maximal. This property is justified by Theorem 7.3 
and Corollary 7.5 in Appendix 7.A. �

7.2. Weighted Twit-Set (WTS) Encodings

Having defined twits and examined some of their properties, we proceed to introduce a very general 
twit-based encoding scheme as a tool for unifying, evaluating, and comparing redundant number 
representations. 

Definition 7.3 (WTS-encoded numbers): A k-position weighted twit-set (WTS) encoding is 
characterized by k integers mk–1, . . . , m1, m0, where the representation has k radix-2 positions indexed 0
to k – 1 and the multiplicity of digit position i (0 ≤ i < k) of weight 2i is mi (i.e., it is comprised of mi
twits). We postulate for the most significant position that mk–1 > 0. Other positions may be empty, that is, 
mi ≥ 0 for 0 ≤ i < k – 1. �

Note that WBS encodings [Jabe02], elaborated upon in Section 7.3, constitute special cases of WTS 
encodings, where the twits are restricted to posibits and/or negabits.

Definition 7.4 (Characteristics of WTS encodings): The lowest (highest) value collectively 
representable by the twits in position i is Λi (Λilm + Γi), where lΛi = ∑0≤j<mi λj and Γi = ∑0≤j<mi γj.  Positional 
bias is a synonym for the lowest positional value Λi. The maximum distance for position i (see twit 
property 4) is denoted as dimax. The effective gap of the twit {λ, λ + γ} in position i is ε = 2iγ. The lowest 
(highest) value collectively representable by the i rightmost positions of the WTS encoding is
Λ+

i (Λ+
i + Γ+

i), where Λ+
i = ∑0≤j<i 2jΛj is the partial encoding bias and Γ+

i = ∑0≤j<i 2jΓj. The lowest 
(highest) value representable by such a k-position encoding as a whole is Λ+ (Λ+ + Γ+), where Λ+ is the 
total encoding bias. The redundancy index of position i is defined as ρi = Γi – 1, where a negative ρi of 
–1 occurs in empty positions (denoted by ∇ in our extended dot notation) and ρk–1 ≥ 0 by Definition 7.3.
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The ordered collection ρk–1 . . . ρ1ρ0 of the k positional redundancy indices is the redundancy pattern and 
R = Γ+ + 1 – 2k is the total redundancy index, which may be represented as the possibly redundant radix-
2 number (ρk–1 . . . ρ1ρ0)two. Similarly, the ith partial redundancy index is defined as
Ri = (ρi–1 . . . ρ1ρ0)two = Γ+

i  + 1 – 2i, with R0 = 0. The total encoding cost is E = ∑0≤i<k mi, leading to the 
encoding efficiency e = log2(Γ++ 1) / E = log2(2k+R) /E. �

Definition 7.5 (Strongly contiguous WTS encoding): A strongly contiguous WTS encoding is one 
where each digit position represents a nonempty interval of integers (see twit property 4) and, 
consequently, so does the entire encoding. �

Definition 7.6 (Equivalent WTS encodings): WTS encodings representing precisely the same set of 
integer values are equivalent. Strongly equivalent WTS encodings are equivalent and equiwidth (have 
the same number k of positions). �

Definition 7.7 (Complementary WTS encodings): If the negation of every integer representable by a 
WTS encoding is representable by another WTS encoding, and vice versa, the two encodings are 
complementary. If each twit of a given WTS encoding is replaced by an inverted twit (e.g., posibits by 
negabits, negabits by posibits, and doublebits by negadoublebits), with possible swapping of placements 
in the same position, the encoding that results is strongly complementary to the original one. �

Equivalent or complementary WTS encodings that are equiwidth have the same total redundancy indices, 
but their redundancy patterns may be different in general; redundancy patterns are the same in case of 
strong complementation. Complementary equiwidth WTS encodings are not necessarily strongly 
complementary.

Fig. 7.5.  Equivalent and complementary WTS encodings .

Example 7.4 (equivalent WTS encodings): The 8-position WBS encoding (a) in Fig. 7.5 is equivalent to 
the 7-position encoding (b). Furthermore, encoding (a) is strongly equivalent to the 8-position encoding 
(c), strongly complementary to the 8-position encoding (d), and complementary to the 8-position 
encoding (e). �
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7.3. WBS-Like Encodings

The digit sets encountered in practice are, almost always, contiguous and include 0 as a member. These 
contiguous zero-included digit sets may be represented by a collection of equally weighted posibits and 
negabits in a straightforward manner, leading to a WBS encoding. However, a noncontiguous and/or 
zero-excluded twit may contribute in the representation of the same digit set and enhance the encoding 
efficiency (see Example 7.2).  The equivalence of the two representations (i.e., with and without twits 
other than posibits and negabits) hints that any result obtained for WBS encodings [Jabe02] might be 
valid for WTS encodings with contiguous zero-included digit sets in each nonempty position. Therefore 
we define the class of WBS-like encodings and review the properties of WBS encodings that are 
applicable to WBS-like encodings. 

Definition 7.8 (WBS-like encoding): A WBS-like encoding is a strongly contiguous WTS encoding that 
meets the conditions of the last part of twit property 4 in every digit position; that is, each digit position 
represents an interval of integers including 0 or, equivalently, is representable by a collection of equally 
weighted posibits and negabits.�

Example 7.5 (WBS-like encodings): Table 7.I depicts some WBS encodings along with their equivalent 
WBS-like encodings illustrating the advantage of noncontiguous twits in improving the encoding 
efficiency. The first entry represents a two digits radix-16 periodic hybrid redundant number system 
[Phat01] with stored-double-borrow (SDB) redundant positions using digits in [−2, 1]. The second one 
is a stored transfer representation [Jabe01] with transfer digits in [−1, 1]. The third one is a made-up 
example intended to illustrate the generality of our encodings in that they need not be regular or 
periodic. �

Table 7.I. Some WBS and equivalent WBS-like encodings.

Encoding name WBS encoding WBS-like encoding Range

SDB hybrid –272, 255

Stored transfer –153, 136

Not named –119, 170

WBS Property 1 (Contiguity): A WBS encoding is said to be contiguous iff the set of integers 
represented by the encoding exactly coincides with a contiguous interval of integers. Obviously, A WBS 
encoding with no empty position is contiguous. But if the right context of an empty position is deep 
enough to compensate for the missing range caused by the empty position, then the whole encoding 
could still be contiguous. Formal description of this property is provided by Theorem 7.4 in Appendix 
7.A. �
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WBS property 1 suggests that even though it is possible to avoid having any posibit or negabit in a 
particular position j, doing so would require additional bits in less significant positions (two in position j
– 1, four in position j – 2, and so on). Thus, for encoding efficiency, it is advantageous to enforce mi > 0
for all i. On the other hand, replacement of a pair of bits of the same polarity in position j by one bit in 
position j + 1, through the substitutions outlined in Fig. 7.6, keeps mi  ≤ 2, and further improves encoding 
efficiency. These observations lead us to define the class of canonical WBS encodings.

Definition 7.9 (Canonical WBS encodings): A k-position WBS encoding is canonical iff it is strongly 
contiguous (Definition 7.5) and has ρ i ≤ 1 (i.e., 1 ≤ mi ≤ 2) for 0 ≤ i ≤ k – 2. �

Several strongly equivalent canonical encodings may exist for a given WBS encoding Ω. For example, 
if Ω is symmetric, any strongly equivalent canonical encoding Ω′ leads to another strongly equivalent 
encoding Ω″ which is strongly complementary to Ω′. Interestingly, these encodings have the same 
redundancy pattern.

WBS property 2 (Uniqueness of redundancy patterns among strongly equivalent canonical encodings):
For all equivalent canonical WBS encodings with the same number of positions, the numbers of bits in 
the like positions are the same. Theorem 7.5 in Appendix 7.A provides justification for this property. �

WBS property 2, which is established through the transformations depicted in Fig. 7.6, has led to the 
possibility of designing a universal adder circuit for all such encodings [Jabe05 a].

Original 
dots in 
position j

Replaced with 
dots in positions
j + 1 and j

Multiples of
2   that are
representable

 j

0, 1, 2, 3

–1, 0, 1, 2

–2, –1, 0, 1

–3, –2, –1, 0

(a)

(b)

(c)

(d)

Fig. 7.6.  Substitutions used in the proof of WBS Property 2 (Theorem 7.5 in Appendix 7.A) 
 

WBS property 3 (Redundancy of a WBS encoding): A given k-position WBS encoding is redundant iff 
in any of its strongly equivalent canonical forms, ρj > 0 for some j < k. �

WBS property 3 is a direct consequence of WBS property 2. We have deliberately associated the 
redundancy of a WBS encoding with the redundancy of its strongly equivalent canonical forms because 
existence of a redundant position by itself does not imply a positive total redundancy index. For 
example, the 3-position WBS encoding having the redundancy pattern 0 –1 2 (i.e., with position 1
empty) is nonredundant, even though its position 0 is redundant.
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WBS Property 4 (Efficiency of canonical WBS encodings): The encoding efficiency of a canonical 
encoding Ω is maximal among all WBS encodings strongly equivalent to Ω. This property is established 
by Theorem 7.6 in Appendix 7.A. �

7.4. Arithmetic on WTS-Encoded Operands

While arbitrary WTS encodings can be envisaged and used, circuit implementation of arithmetic 
functions in VLSI favors regularity in the numbers and kinds of twits associated with the various 
positions. Thus, we define the class of periodic WTS encodings.

Definition 7.10 (Periodic WTS encodings): A k-position WTS encoding is deemed periodic iff there 
exists h < k, such that the twit collection of position i + jh is precisely the same as that of position i, for 0
≤ i ≤ h – 1 and 0 < j ≤ k/h – 1; the smallest such h is the period. �

Assuming k to be a multiple of h, a periodic WBS-like-encoded number represents a generalized signed-
digit (GSD) number system in radix 2h utilizing the digit set [α, β], with α = Λ+

h, and β = Λ+
h + Γ+

h, 
where Λ+

h = (Λ h–1 . . . Λ 1Λ0)two and  Γ+h = (Γ h–1 . . . Γ 1Γ0)two.

x′ x′ x′ y′ y′5 4 3 2 1 y′0
x′′3 y′′0

0y ′ ′′′ ′′′ ′′′ ′′3x ′ ′′′ ′′′ ′′′ ′′

z ′ z ′ z ′ z ′ z ′5 4 3 2 1 z ′0
Z ′′5 Z ′′4 Z ′′3 Z ′′2 Z ′′1 Z ′′0

u ′ u ′ v′ v′ v′5 4 3 2 1 v′0u ′ u ′7 6

8U ′ ′′ ′′ ′′ ′ 4V ′ ′′ ′′ ′′ ′

7

u ′ u ′ V ′ v′ v′5 4 3 2 1 v′0U ′ u ′7 6

U ′ ′′ ′′ ′′ ′ 3V ′ ′′ ′′ ′′ ′

Numbe r sy stem

2-digit  r adix -8   
s tored-t riple -car ry

6-digit  bin ary
s igned -digit

2-digit  hybrid with
SDB  redu nd ancy

(a)

(c )

(b)

Symbolic re pre se nta tion

Same as  (c ),  
but with unibits

(d)

Fig. 7.7.  Symbolic representation of periodic  WTS-encoded numbers.

Example 7.6 (Symbolic representation of WTS encodings): The symbolic representations for a 2-digit 
radix-8 stored-triple-carry (STC) number, a 6-digit BSD number, and a 2-digit radix-16 stored double-
borrow (SDB) hybrid-redundant number are depicted in Fig. 7.7. Note that the digit sets for these WTS-
encoded GSD number systems are [0, 10], [–1, 1], [–16, 15], and [–16, 15], respectively. �

A general framework for arithmetic operations with WTS-encoded operands may be established 
following the general framework of arithmetic for WBS encodings [Jabe02]. Given that addition 
operation may be viewed as a special case of digit-set conversion [Korn99], and arithmetic functions on 
WTS operands can always be reduced to one or more addition operations, the central problem in WTS 
arithmetic is recognized as conversion of a deep digit set to a one with less depth. This is where bias 
encoding of twits helps in using standard compressors for reducing the representation depth to a desired 
level. When the input operands and the derived results have the same WTS encodings, the arithmetic is 
said to be representationally closed, where a key example and its associated advantages, has been 
explained elsewhere [Jabe05 a] in connection with SDB hybrid-redundant operands.
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To illustrate the advantages of WTS encoding and of the use of twit-FAs in enhancing encoding 
efficiency and regularity of VLSI design as well as addition speed, we adapt the representationally 
closed WBS addition algorithm of [Jabe05 a] to a WBS-like encoded stored-transfer representation. One 
such encoding can be seen in the second entry of Table 7.I with unibit transfers. In the following, we 
shift each of the unibit transfer digits h positions to the left as depicted in Fig. 7.8a in order to achieve a 
wider representation range. Because the most significant position then holds a single unibit, it violates 
the WBS-like restriction on positional contiguity (Definition 7.8) and also results in a representation gap 
by Theorem 7.4 (see Appendix 7.A). A simple fix is to replace the single unibit in the most-significant 
position by a posibit and a negabit (Fig. 7.8b). With these modifications, the representation remains 
periodic, except for the most-significant digit whose transfer is now a shifted binary signed digit instead 
of a shifted unibit.

� � �� � � �� � � �� � � ��

� � � �

(a) SUT encoding w ith 
      shifted transfers and          
      representation gap

� � �� � � �� � � �� � � ��

� � � �

(b) SUT encoding w ith 
      shifted transfers and      
      no representation gap

�

Fig. 7.8.  Stored unibit encodings with shifted transfers .

Definition 7.11 (SUT representation): The digit set ∆ of a radix-2h periodic stored-unibit-transfer (SUT) 
representation with shifted transfers is composed of a radix-2h main part ∆′ = [–2h−1, 2h−1 – 1] in 2’s-
complement form and a twit transfer part G = {–2h, 2h}, except in the most significant position where 
the transfer set is {–2h, 0, 2h}. �

It is interesting to note that, due to use of noncontiguous twits (i.e., unibits) in the SUT definition, ∆ is 
not contiguous, but with the most significant position modified to hold a contiguous digit set, the 
number system as a whole is contiguous. Also, the SUT representation may be regarded as an extended 
hybrid-redundant number system [Jabe05b] with the digit set [−1, 2] in redundant positions, but it has no 
equivalent in ordinary hybrid-redundant scheme [Phat01]. For, the redundant digit set, composed of a 
negabit and a doubly weighted unibit, is not contiguous; it exactly represents {−3, −2, 1, 2}. 

We now proceed to provide the high-level design for an adder for SUT operands. Figure 7.9 depicts a 
symbolic representation of addition steps for two 4-digit radix-16 SUT operands, where T(i+1)h–1 and 
t(i+1)h–2 . . . tih (i = 1, 2, 3, h = 4), denote sign-extended 2’s-complement sum of two unibits in position ih. 
The required circuit, actually very similar to a half-adder per each redundant position, is shown in Fig. 
7.10, with a justification provided in Table 7.II. The overall SUT adder is depicted in Fig. 7.11, where 
the adder cells in the first row serve as reduction units. The full-adders in the second row are serially 
interconnected and perform a standard h-bit ripple-carry addition. This part of the circuit can be replaced 
by any desired fast adder design incorporating carry accleration. A second-row full-adder in position ih
(except in the most significant digit position) generates a sum bit and a unibit transfer by in-place 
reduction of two posibits and one negabit (see twit property 3, and Corollary 7.2 in Appendix 7.A). 
Position kh needs a different treatment (that is why the details for that position are left out in Fig. 7.9); 
there are 3 negabits and three posibits to be added: a′kh, b′kh, A″kh, B″kh, and transfers coming from the 
first (Ckh) and second rows of full-adders. Figure 7.12 depicts the required hardware in position kh, 
along with overflow detection logic, where the overflow bits do not always indicate a real overflow [see 
Chapter 10]. This condition of “ apparent overflow” is pretty much the norm in redundant number 
representation schemes [Parh93].
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S ″″″″ S ″″″″ S ″″″″ S ″″″″

b′ B′ b′ b′ b′ B′ b′ b′ b′ B′ b′ b′ b′ B′ b′ b′16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16 12 48
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b′

A′ a′ a′ a′ A′ a′ a′ a′ A′ a′ a′ a′ A′ a′ a′15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a′0
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16 12 8 4

A ″″″″ A ″″″″ A ″″″″

B ″″″″ B ″″″″ B ″″″″

A ″

12

b′

0

Fig. 7.9.  Representationally closed SUT addition .

For subtraction, one usually negates the subtrahend, and then performs addition. However, we can apply 
a more efficient approach based on negating each digit independently. An SUT digit has a 2’s-
complement number as the main part, which can be negated via 2’s complementation, and a unibit 
transfer which is negated by inversion. To negate the main digit, we simply invert its bits and let 
tih = sub, where sub (Fig. 7.10) is the subtraction control signal (1 for subtraction, 0 for addition). The 
hardware modification to accommodate subtraction is minimal and consists of replacing the half-adder 
in the first row of position ih by a full-adder. The most significant transfer being a BSD, again needs 
special treatment: to negate it, we simply invert its posibit and negabit components and do not apply the 
sub control as in other positions. Based on the description above, the time penalty for negation is 
minimal and consists of a single inverter delay.

Table 7.II. Combining of the unibit transfers for SUT addition.

A″″″″ih B″″″″ih Sum T(i+1)h−1 t(i+1)h−2 . . . tih+2 tih+1 tih

0 0 –2 0 1 . . . 1 1 0

0 1 0 1 0 . . . 0 0 0

1 0 0 1 0 . . . 0 0 0

1 1 2 1 0 . . . 0 1 0

T(i+1)h–1 

tih

 . . . t ih+2 t (i+1)h–2 

Sub

t ih+1 

A″″″″ih

B″″″″ih

Fig. 7.10.  Circuit for reducing unibit transfers of Fig. 7.9. 
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FA FA FA HA

FA FA FAHA

. . .

. . .

T(i+1)h–1 

B (i+1)h–1 

A (i+1)h–1 

t ih+2 

b ih+2 

a ih+2 

t ih+1 

b ih+1 

a ih+1 

bih

aih

w ihwih+1 wih+2 W (i+1)h–1 

C (i+1)h c ih+1 c ih+2 c (i+1)h–1 

S ′  (i+1)h–1 s ′ s ′ s ′ih+2 ih+1 ih

S ″″″″ih
Fig. 7.11.  SUT radix -2h redundant adder.

kh

FA

FA

Negative 
overflow

khC

s′

kha′

S″kh
B″kh

khb′A″kh

Positive 
overflow

Fig. 7.12.  The c ell at the most significant position of our SUT adder.

7.5. Summary

In this chapter, we introduced the use of general two-valued digits, or twits, that include posibits and 
negabits as special cases. We showed that weighted twit-set (WTS) encodings cover all positional 
redundant number systems that have appeared in the literature, including those employing subranges of 
integers (perhaps excluding zero) and noncontiguous digit sets. Figure 7.13 presents a hierarchical 
classification of all redundant representations that can be obtained from WTS encodings at the root. We 
showed how bias encoding of twits, as a generalization of inverted encoding of negabits, leads to new 
functionalities for standard full/half-adders and compressors in reducing equally weighted, equigap 
twits. The latter possibility led to use of standard reduction (e.g., Wallace tree) and carry acceleration 
techniques to implement arithmetic on WTS-encoded operands. Focusing on a subclass of WTS 
representations, those that possess equivalent WBS encodings, a twit-based representationally closed 
adder design for stored-unibit-transfer (SUT) representation was described. This twit-based design offers 
advantages over a similar WBS-based implementation of SDB hybrid redundancy [Jabe05 a] in speed 
and time/logic penalty for subtraction relative to addition. Unified descriptions of these and other 
diverse implementations of redundant arithmetic can be viewed as evidence for the generality and 
usefulness of the WTS paradigm. Research on the representational power of twit-based encodings and 
their various applications is continuing. Problems currently being addressed include developing theories 
for general WTS representations (including twit-based formulation of digit-set conversions, necessary 
and sufficient conditions for constant-time WTS conversion, and representability of arbitrary digit sets), 
and deriving design details for twit-based multipliers, dividers, and other arithmetic circuits. Design of 
application-specific units for DSP applications and cryptography is also envisaged.
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Fig. 7.13.  The hierarchy of number representations resulting from WTS encoding 
(tree branches go from left to right and top to bottom).
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Appendix 7.A  
 
Theorem 7.1 (Twit FA): A standard full-adder cell receiving as inputs any three equally weighted, 
equigap, bias-encoded twits with values in {λi, λi + γ}, i = 1, 2, 3, produces carry and sum twits which 
have the same gap as the inputs and with bias values λc and λs satisfying 2λc + λs = λ1 + λ2 + λ3.

Proof: We describe the operation of an equigap twit full-adder and show that it can be implemented by a 
standard binary full-adder. Form the sum of three equally weighted equigap bias-encoded twits λ1 + γx1, 
λ2 + γx2, λ3 + γx3:

(λ1 + γx1) + (λ2 + γx2) + (λ3 + γx3) = (λ1 + λ2 + λ3) + γ (x1 + x2 + x3)

Let c and s be the carry and sum outputs of a standard full-adder, with the encoding bits x1, x2, and x3 as 
inputs, and select biases λc and λs such that 2λc + λs = λ1 + λ2 + λ3. Substituting 2λc + λs for λ1 + λ2
+ λ3 and 2c + s for x1 + x2 + x3 in the right-hand side of the equation above, we get:

(2λc + λs) + γ(2 c + s) = 2(λc + γc) + (λs + γs)

Note that selection of λc and λs is always possible; if λ1 + λ2 + λ3 is even (odd) , say equal to 2j (2j + 1), 
then λs = 2i (2i + 1), and λc = j – i, for all integers i and j. Design peculiarities may guide the latter 
choices. For example with equibias input twits, the output carry and sum twits can be made to have the 
same bias. �

Corollary 7.1 (Twit compressor): A standard binary (ν; µ)-compressor receiving ν equally weighted, 
equigap twits in position i produces µ twits with the same gap in positions i to i + µ – 1, such that inputs 
and outputs have the same collective values. Moreover, because any (multicolumn) posibit compressor 
can be implemented by a collection of standard full-adders, such a compressor may receive equigap 
twits, in lieu of input posibits, and produce twits with the same gap where one normally would see 
output posibits. �

Corollary 7.2 (In-place reduction of twits): Three equally weighted, equigap, bias-encoded twits λ1 + 
γx1, λ2 + γx2, and λ3 + γx3, may be reduced, by a full-adder, to two equally weighted twits, one with a 
doubled-gap (i.e., the carry output), and one with the original gap (the sum output), such that:

(2λc + 2γc) + λs + γs = (λ1 + λ2 + λ3) + γ(x1 + x2 + x3)

Furthermore, the equally weighted twits {2λc, 2λc + 2γ}, having an even bias, and {λs, λs + γ} can be 
replaced with {2λc+ 1, 2λc+ 1+ 2γ} and {λs−1, λs− 1+ γ}, respectively. �
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Theorem 7.2 (Gaps in representation): The maximum distance between consecutive integer values in an 
ordered collection of integers representable by a set of m ≥ 1 equally weighted twits, given the twit gaps 
in descending order {γm–1, . . . , γ1, γ0}, is:

dmax = max{(γj – Γ(j)) | 0 ≤ j < m},  where Γ(0)o = 0 and Γ(j) = ∑0≤i< j γi

Proof (by induction on m): Let {λi, λi + γi} denote the values of a twit. The base case m = 1 is obvious, 
given that the formula yields dmax = max{(γj – Γ(j)) | 0 ≤ j < 1} = γ0. Now assume that m – 1 twits 
represents the ordered set of integers Ψm–1 = {Λ(m–1), . . . , Λ(m–1) + Γ(m–1)}, per the theorem’s statement, 
with dmax = max{(γj – Γ(j)) | 0 ≤ j < m − 1}, where Λ(m–1) = ∑0≤i<m–1 λi and Γ(m–1) = ∑0≤i<m–1 γi. We now 
include {λm–1, λm–1 + γm–1} in the set of twits. The represented values for the m-twit collection are:

Ψm = {(λm–1 + v) | v ∈ Ψm–1} ∪ {(λm–1 + γm–1 + v) | v ∈ Ψm–1}

The value of dmax within each of the subcollections in Ψm remains the same as that of Ψm–1. If the ranges 
of values in the two parts of Ψm overlap, then dmax for Ψm remains the same as that of Ψm–1, which 
together with γm–1 ≤ Γ(m–1) (due to the overlap), meet the condition of the theorem’s statement. Otherwise 
the new dmax is the maximum of the old one, and the distance between the minimum value of the second 
part of Ψm and the maximum value of the first part, i.e., λm–1 + γm–1 + Λ(m–1) – (λm–1 + Λ(m–1) + Γ(m–1)) = 
γm–1 – Γ(m–1). �

Corollary 7.3 (Representational contiguity of twit sets): A nonempty set of equally weighted twits 
represents an interval of integers (i.e., dmax = 1) iff, given the gaps in descending order {γm–1, . . . , γ1, γ0}, 
γ0 = 1 and γj ≤ 1 + Γ(j)  for 0 < j ≤ m – 1. �

Corollary 7.4 (WBS-like twit collections): The interval of integers represented by m twits meeting the 
conditions of Corollary 7.3, and Λ(m) ≤ 0 ≤ Λ(m) + Γ(m), is representable by a collection of –Λ(m) negabits 
and Λ(m) + Γ(m) posibits, where the redundancy index (Definition 7.4) of the interval is Γ(m) – 1. �

Theorem 7.3 (Size of twit representation): A contiguous interval [Λ(m), Λ(m) + Γ(m)] of integers is 
representable by at least m = log2(Γ(m)l + 1) equally weighted twits {λi, λi + 2i}, 0 ≤ i ≤ m – 2, and
{λm–1, λm–1 + γm–1} with γm–1 = Γ(m) + 1 – 2m–1. 

Proof: We have 2m–1 ≤ Γ(m) = ∑0≤i<m γi ≤ 2m – 1 by the Theorem’s conditions. We choose λi, for 
0 ≤ i ≤ m – 1, such that Λ(m) = ∑0≤i≤m–1 λi. Such a set of m twits represents the interval [Λ(m), Λ(m) + Γ(m)] 
for it meets the conditions of Corollary 7.4. We prove that m is minimal by contradiction. Suppose there 
is a collection of (n < m) twits with gaps in descending order {γ ′n–1, . . . , γ ′1, γ ′0}, collectively 
representing [Λ(m), Λ(m) + Γ(m)]. Then, we have: 2m–1 ≤ ∑0≤i<n γ ′i = Γ(m) ≤ 2m – 1.
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For the latter inequality to hold, there must be at least one twit gap satisfying γ ′j > 2j. Assume that γ ′j is 
the first such twit gap (the one with the smallest index). But by Corollary 7.4 we have:

γ ′j ≤ 1 + γ ′0 + γ ′1 + γ ′2 + . . . +γ ′j–1 ≤ 1 + 1 + 2 + 4 + . . . + 2 j–1 = 2j

The derived constraint γ ′j ≤ 2j clearly contradicts the requirement γ ′j > 2j. �

Corollary 7.5 (Maximal efficiency twit set): A set of m equally weighted twits with gaps γi = 2i, for
0 ≤ i ≤ m – 1, represents an interval of 2m integers with maximal encoding efficiency e = 1 (see 
Definition 7.4). �

Theorem 7.4 (WBS representation of intervals): An interval [Λ+, Λ+ + Γ+] of integer values containing 
Γ+ + 1 consecutive integers is representable by a WBS encoding with redundancy pattern ρk–1 . . . ρ1ρ0
iff for all indices i in the range 0 < i < k, we have Ri ≥ 0. 

Proof: The necessity part is easy to prove. If Ri < 0 for some i, then positions 0 to i – 1 collectively 
represent fewer than 2i distinct values. At least one of the 2i mod-2i equivalence classes must be 
unrepresented among these values. Given that bits in positions i and higher can only represent multiples 
of 2i, there must be gaps in the representation. We prove the sufficiency part by induction on k. Recall 
that mk–1 is nonzero by Definition 7.1. This leads to m0 > 0, because either position 0 is the only position 
or else the assumed condition Ri ≥ 0 guarantees R1 = ρ0 = m0 – 1 ≥ 0. The base case is k = 1; a one-
position WBS representation with m0 > 0 covers all integers from Λ0 to Λ0 + Γ0. Suppose that the 
theorem holds for any WBS representation with at most k – 1 positions. Let a k-position representation Ω
be obtained by extending a (k – g)-position representation, where g ≥ 1, with mk–1 > 0 and mj = 0 for 
k – g ≤ j < k – 1, that is, assume that the leftmost g components of redundancy pattern are 
ρk–1 –1 –1 . . . –1. Then, by our assumptions, Rk–1 = Rk–2 = . . . = Rk–g ≥ 0. In particular, 
Rk–1 = (–1 –1 . . . –1 ρk–g–1  . . . ρ1 ρ0)two ≥ 0 leads to –2k–1 + 2k–g  + Rk–g ≥ 0, or  Rk–g + 2k–g ≥ 2k–1. This 
implies that the interval represented by the rightmost k – g positions of Ω contains at least 2k–1 
consecutive values. These values combined with multiples of 2k–1 representable by the bit(s) in position 
k – 1 yield a continuous interval of integers overall. �

Theorem 7.5 (Uniqueness of redundancy pattern for strongly equivalent canonical WBS encodings): 
Any WBS encoding with total redundancy index R and the redundancy pattern ρk–1 . . . ρ1ρ0 satisfying 
Ri ≥ 0 for 0 < i < k, and thus representing a continuous interval of integers by Theorem 7.1, is strongly 
equivalent to one or more canonical WBS encodings with a common redundancy pattern and the same 
total redundancy index R.
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Proof: We describe the process for deriving a canonical encoding from a given WBS encoding. Scan the 
redundancy indices ρi from the right until you find ρj ≥ 2 for some j < k–1. If no such position exists, the 
encoding is already in the desired canonical form; we will show later that ρi ≥ 0 for 0 ≤ i ≤ j – 1. If you 
find ρj ≥ 2, take three of the bits in position j and make the substitution shown in Fig. 7.6. This does not 
change the set of values representable (which preserves the total redundancy index R) and reduces ρj by 
2. Repeating this process eventually leads to ρj ≤ 1 for 0 ≤ j < k – 1. To show that the resulting 
redundancy indices satisfy ρj ≥ 0, 0 ≤ j < k – 1, we note that Rj = (–1 ρj–2 . . . ρ0)two has a value of –1 
when all the redundancy indices assume the maximal value of 1. We can prove the uniqueness of the 
redundancy pattern by contradiction. Suppose that another equivalent canonical encoding with a 
different redundancy pattern exist, and let l be the leftmost (most significant) position in which 
redundancy indices differ. If R′ is the total redundancy index for this second canonical encoding, R – R′
(that is, the difference between the sizes of intervals representable by the two encodings) will be 
nonzero, given that R – R′ ≥ 2l – (1 1 . . . 1)two = 1. �

Corollary 7.6 (WBS redundancy): A given k-position WBS encoding is redundant iff in any of its 
strongly equivalent canonical forms, ρj > 0 for some j < k. �

Theorem 7.6 (Efficiency of canonical WBS encodings): Among all strongly equivalent WBS 
encodings, canonical encodings have the highest encoding efficiency.

Proof: We show, by contradiction, that the encoding cost E = ∑0≤i<k mi is minimal for canonical 
encodings. If a canonical encoding does not have the lowest cost among all strongly equivalent WBS 
encodings, uniqueness of the redundancy pattern for canonical encodings implies that the lowest-cost 
strongly equivalent encoding must be noncanonical. This is impossible, however, because the process of 
transforming a WBS encoding to a canonical form (described in the proof of Theorem 7.5) is solely 
composed of repeated applications of the substitutions shown in Fig. 5, and each such substitution 
reduces the encoding cost E by 1. �

Theorem 7.7 (Canonical encoding with a given range): For an interval [–N, P] of integers, that includes 
0, and integer k in [1, log2 (N + P + 1) ], a k-position canonical WBS encoding representing exactly
[–N, P] exists.

Proof: A trivial one-position WBS encoding with the given range has N negabits and P posibits, and
R = m0 – 1 = N + P – 1. A k-position canonical encoding equivalent to the above can be easily derived 
by the construction of Theorem 7.5. �

Corollary 7.7 (WBS encoding for a GSD representation): For any radix-2h GSD number system with 
the digit set [α, β], there exists a periodic canonical WBS encoding with period h, where
1 ≤ h ≤ log2(β – α + 1) . �
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Chapter 8 | Suitable Number
                          Systems and Encodings

We have studied in Chapters 2 to 7, a variety of redundant number systems, and their representations. 
We now examine them against the desired properties for a suitable number system for a general purpose 
carry-free arithmetic environment. The desired properties, besides minimal cost and delay, are maximal 
encoding efficiency, representational closure, digit set preservation, and symmetry, as defined in 
Definitions 1.5 to 1.8. Regularity of VLSI design is also an important desired property, which is 
fortunately shared by all of our high level designs based on standard full and half adders. Table 8.I 
shows a comparison of several redundant number representations, where the period for boldface entries 
is h−1, and is h otherwise. The contents of the first three columns come from our discussion on various 
number systems/representations and their implementations in previous chapters. We discuss the last four 
columns below.

Table 8.I Comparison of redundant number representations.

System Closed Preserved Digit set ∆∆∆∆ ξξξξ Delay 
coefficient

Cost 
coefficient

Subtraction 
delay 

penalty
Sign magnitude SD Yes Yes [−r+1, r−1] 2 4+log2h 1++h XOR
2’s complement SD Yes Yes [−r+1, r−1] 2 2+log2h 1+h XOR

HSD [Phat94] Yes Yes [−r/2, r−1] 1 h 1+h XOR+

SDB hybrid [Phat01] No Yes [−r, r−1] 2 h 1+h XOR+

SDB hybrid [Jabe05 a] No Yes [−r, r−1] 2 1+log2h 1+h XOR+

SDB hybrid [Jabe05 a] Yes Yes [−r, r−1] 2 1+log2h 2+h XOR+

Augmented SDB hybrid Yes Yes [−r, r−1] 4 1+log2h 2+h XOR+

Stored BSD transfer Yes Yes [−r/2−1, r/2] 2−k 1+log2h 2+h XOR+

Stored shifted 
unibit transfer (SUT) Yes Yes

[−3r/2, −r/2−1], 
 [r/2, 3r/2−1] 3 1+log2h 2+h XOR

Stored SBC transfer Yes No [−r/2−1, r/2+1] 2−k 1+log2h 2+h XOR+

Stored {−1, 2} transfer Yes No [−r/2−1, r/2+1] 1 1+log2h 2+h XOR+

Stored posibit transfer No Yes [−r/2, r/2] 1 1+log2h 1+h XOR
Stored posibit transfer Yes Yes [−r/2, r/2] 1 1++log2h 2.5+h XOR
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8.1 Representational power

Without loss of generality, and for the ease of comparison we assume periodic number systems, where 
each number is represented by k digits, and each digit is represented by h + 1 twits. In the number 
representations we have studied, each digit has 1 (2) redundancy twit(s). This remains h (h − 1) twits in 
h (h − 1) consecutive positions for the rest of each digit, which leads to 2h (2h−1), for the representation’s 
radix, and h (h − 1) for the period. Therefore the total number of twits are the same (i.e., k(h + 1)) in all 
the representations. For a better comparison of the representational powers of the number systems 
studied, we define the representational power ratio ξ as the ratio of the cardinality of a number system to 
the cardinality of a kh bit nonredundant number system (i.e., 2kh).

Definition 8.1 (Cardinality): The cardinality of a WBS-like digit set ∆ = [−n, p] is |∆| = n + p + 1. The 
cardinality of a periodic k digit radix-r number representation with digit set ∆ is |∆k| = N + P + 1, where 
P = pΣi=0k−1 ri (−N = − nΣ i=0

k−1 ri), is the most positive (negative) number represented. �

Definition 8.2 (Unit digit value): The Unit digit value, of a periodic k digit radix-r number 
representation is the value υ = Σi=0k−1 ri of a k digit radix-r number, where the value of each digit is 1. �

Using Definitions 8.1 and 8.2, we derive the following:

|∆k| = N + P + 1 = (n + p)υ + 1 = 1 + (|∆| − 1)υ.

For ease of comparison between symmetric and asymmetric number systems, we use cardinality of the 
maximum symmetric range.

Definition 8.3 (Cardinality of the maximum symmetric range): The maximum symmetric range of a 
digit set ∆ = [−n, p] is ∆s = [−min ( n, p), min (n, p)] as was per Definition 1.9. The maximum symmetric 
range of a periodic k-digit radix-r number representation is likewise defined as ∆ks = [−min ( N, P), min 
(N, P)]. The cardinalities of ∆s and ∆ks are |∆s| = 2 min (n, p) + 1 and |∆ks | = 2 min (N, P) + 1. �

Given that min (N, P) = min ( n, p) υ, the symmetric range cardinality is derived as:

|∆ks | = 2 min (n, p) υ + 1 = 1 + (| ∆s| − 1)υ.

Definition 8.4 (Representational power coefficient for the maximum symmetric range): The 
representational power coefficient ξ for the maximum symmetric range of a periodic k-digit radix-r
number is the ratio of the symmetric range cardinality |∆ks|, and the cardinality of a nonredundant kh bit 
number representation, which is 2kh, leading to ξ = |∆ks| ⁄ 2kh. �

Combining the equations for |∆ks| and ξ, with υ = Σi=0k−1 ri = (rk − 1) ⁄ (r − 1) and r = 2h leads to:

ξ = r−k + (|∆s| − 1) (1 − r−k) ⁄ (r − 1).
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For r = 2h−1, ξ is divided by 2k. We derive the approximate ξ values for different cases of Table 8.I, as 
follows:

• Signed digit and SDB hybrid number systems: The symmetric range for the signed digit number 
system (First two entries) and the SDB hybrid representations is ∆s = [−2h +1, 2h−1], with 
|∆s| = 2h+1− 1 = 2r − 1, leading to:

ξ = r−k + (2r − 2) (1 − r−k) / (r − 1) = 2 − r−k ≅ 2. 
 

• HSD, stored BSD transfer, and stored posibit number systems: The symmetric range for These 
three cases is ∆s = [−2h−1, 2h−1], with |∆s| = 2h + 1 = r + 1, leading to: 

ξ = r−k + r (1 − r−k) / (r − 1) = 1 + (1 − r−k) / (r − 1) ≅ 1. 
 

• Stored {-1, 2} transfer and stored SBC transfer representations: In these cases, with period h and
h − 1, we have |∆s| = 2h−1 +3 = r + 3,  and |∆s| = 2h + 1 = r + 1, leading to ξ ≅ 1 and ξ ≅ 2−k, 
respectively. The considerable degradation of the representational power, in the latter case, is due 
to an extra redundancy twit per digit.

• SUT: Definitions 8.1 and 8.2 do not apply for the SUT case, for the digit set is not continuous, 
and is actually composed of two intervals [−3×2h−1, −2h−1−1] and [2h−1, 3×2h−1−1], as depicted by 
the solid lines in Figure 8.1. But note that the SUT number representation as a whole represents 
an interval of integers. Therefore we derive the |∆ks| directly as 2 min (N, P) + 1. There are a 
negabit in position h−1 and a unibit (negabit in MSD) in position h of each digit, leading to 
N = (2h + 2h−1)υ. For the positive range, observe that there are h−1 posibits in positions 0 to h−2
and a unibit (posibit in MSD) in position h of each digit leading to P = (2h + 2h−1 − 1)υ = N − υ, 
and thus min (N, P) = P. Therefore we have |∆ks | = 2 (2h + 2h−1 − 1) υ + 1 = (3r − 2)υ, which 
leads to ξ = 3 − 2r−k + (1 − r−k) / (r − 1) ≅ 3. 

 

Fig. 8.1 The noncontiguous digit set for the SUT representation

For a fair comparison of the representational powers of different redundant representations, we should 
allow for the possibility of augmenting other representations, with an extra twit in position kh, as in 
SUT. But it can be easily verified that the only other representation where the augmentation increases 
the symmetric range is the SDB hybrid, which may be augmented by a unibit in position kh, for which 
case we have added an entry in Table 8.I, under the name Augmented SDB hybrid. For this case we have 
N = 2h υ + 2kh and P = (2h − 1) υ + 2kh, leading to min (N, P) = P and |∆ks | = 2(2h −1) υ + 2kh+1 + 1 =
4×2kh − 1, leading to ξ ≅ 4. 
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8.2 Delay (cost) comparison

For easy comparison of the addition delay (cost), for redundant representations studied, we use the delay 
(cost) coefficient, which is the approximate ratio between the actual delay (cost) and the delay (cost) of 
one full adder. For example for an h-bit carry propagate adder where the critical path of the addition 
logic consists of h full adders, the delay (cost) coefficient is h (h). When a logarithmic carry accelerating 
logic (such as carry look ahead) is used, it is 1+log2 h (1+h). We use i+ (i > 0) to indicate more than i 
times and less than i + 1 times. Similarly i++ indicates more than i+ times, but still less than i + 1 times. 
For comparison of the subtraction delay, we consider only the delay penalty imposed for 
complementation. For example in a nonredundant subtraction the penalty is equal to that of the delay of 
an XOR gate used for complementation of each bit. In the following, we analyze the delay (cost) 
coefficients of Table 8.I:

• Simple signed digit (first two entries): 4+ and 2+, in the column for delay coefficient, come 
from the relevant high radix coefficients computed in Chapter 2 (Table 2.V). For both entries 
carry acceleration logic is applicable, where some extra control logic is necessary for the sign 
magnitude paraidgm. The delay penalty for subtraction is equal to that of an XOR gate used for 
complementing the sign bits in sign magnitude representation, and complementing all the bits in 
two’s complement representation.

• Hybrid redundant (old implementations): The carry acceleration techniques are not directly 
applicable in the implementations given in [Phat94] and [Phat01], which are based on look-back 
mechanism and both carry and borrow propagation. Therefore the delay coefficients in these 
cases are linearly proportional to h. The adder cells in the old implementations of hybrid 
redundancy are more complex than the new full adder implementations of [Jabe05 a]; hence the 
1+h cost coefficients. Subtraction of hybrid redundant numbers has not been discussed by Phatak
and Koren [Phat94, Phat01]. But it is easy to see that besides the XOR gate per bit, needed for 
bit-wise complementation, the following increment operation (as a part of two’s 
complementation), complicates the derivation of the carry out of a redundant position; hence 
XOR+ in subtraction penalty column. 

• Hybrid redundant (new implementations and augmented entries): Before applying carry 
acceleration, we have the delay of one level of full adders (Figure 6.16) hence the 1+log2 h
entries. The 2+h entries in the cost coefficient column are due to the second row full adders in 
nonredundant positions of representationally closed implementations. Subtraction starts with 
reduction of a 5-deep WBS number, which requires for one extra full adder in redundant 
positions; hence XOR+ for subtraction penalty.

• Stored transfer entries: The 1+log2 h and 2+h entries, are justified as in the previous case. The 
1+h entry, for the representationally unclosed stored posibit transfer case is due to the delay of 
the universal addition scheme used here. The 1++log2h and 3+h entries for representationally 
closed stored posibit transfer case is due to one extra level of full adders (Figure 6.22). The 
increment part of two’s complementation does not complicate the subtraction operation in the 
SUT and stored posibit transfer cases; hence simple XOR entries.
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8.3 Choosing the best number system

Where the representational closure property is not required, the best choice in Table 8.I is naturally the 
one before the last entry, where the symmetric stored posibit transfer representation with the universal 
addition scheme exhibits the lowest cost and fastest carry-free arithmetic. 

The best choice, for a general purpose carry-free arithmetic environment, should support 
representational closure. Among the three symmetric entries of Table 8.I, with representational closure 
property (i.e., the stored SBC transfer, its two-valued version, and the stored posibit transfer), the stored 
posibit transfer number system exhibits, symmetry, digit set preservation, ξ = 1, regularity, and 
reasonable delay and cost. But the two cases with minimally asymmetric digit sets and highest 
representational power coefficients (i.e., the augmented SDB hybrid and the SUT number systems) offer 
better figures. They both provide for much wider symmetric range, less delay, and less cost. The 
advantage of the augmented SDB hybrid is its wider symmetric range (ξ = 4), but the SUT number 
system (ξ = 3) shows less delay, less cost, and less subtraction delay and cost penalty (details in Chapter 
7). These observations tend to distinguish three of the representations as the best choices, namely:

• Stored posibit transfer (SPT)

• Stored shifted unibit transfer (SUT)

• Augmented SDB hybrid redundant

In Chapter 9, we study WBS-like multiplication and division, with examples from the above choices. 
Note that addition and subtraction operations for these number representations were studied, in detail, in 
Chapter 5, 6, and 7. Here we study the problem of conversion between two's complement and any of the 
three representations, and vise versa.

8.4 Conversion of WBS-like representation to (from) two's complement

Conversion of WBS-like numbers to canonical WBS encoding was discussed in Chapters 4 and 7. The 
particular 2-deep bit pattern of each canonical WBS encoding may lead to its special conversion method 
to and from two's complement representation. We show, below, three special conversion methods for 
our three selected encodings.

8.4.1 Conversion of stored posibit transfer to (from) two's complement

We show, in Fig. 8.2, the steps of conversion of a four digit radix-16 stored posibit transfer encoding to 
its equivalent two's complement representation. In the first step we replace each negabit X'j (except for 
the MSB), by a posibit x'j, with the same logical value, and an equally weighted constant –1. Then we 
replace each –1, with a string of a –1, followed by 1111. Clearly these conversions do not change the 
value of the number as a whole. 
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X?15 x?14 x?13 x?12 X?11 x?10 x?9 x?8 X?7 x?6 x?5 x?4 X?3 x?2 x?1 x?0
x@12 x@8 x@4 x@0

___________________________________________________________________________
X?15 x?14 x?13 x?12 x?11 x?10 x?9 x?8 x?7 x?6 x?5 x?4 x?3 x?2 x?1 x?0

x@12 –1   x@8 –1   x@4 –1   x@0
___________________________________________________________________________

X?15 x?14 x?13 x?12 x?11 x?10 x?9 x?8 x?7 x?6 x?5 x?4 x?3 x?2 x?1 x?0
–1 1 1 x@12 1 1 x@8 1 1 x@4 1 x@0

1 1 1
Fig. 8.2 The first two steps of the conversion of an SPT encoding to 2's complement

Now we can derive the result by a conventional carry look-ahead adder with block size 4, but with 
simplified logic due to special 0 and 1 constants of the second component. The simplified carry 
propagate (pi), carry generate (gi), positional carry (ci), interim sum (wi), block carry propagate (Pi), and 
block carry generate (Gi) signals are:

p0 = x'0 + x"0, g0 = x'0x"0, c0 = 0, w0 = x'0 ⊕ x"0,
p1 = x'1, g1= 0, c1 = x'0x"0, w1 = x'1,
p2 = x'2, g2 = 0, c2 = x'0x"0x'1, w2 = x'2,

p3 = 1, g3 = x'3, c3 = x'0x"0x'1x'2, w3 = !x'3,
pi = 1, gi = x'i + x"i, wi = !(x'i ⊕ x"i), for i = 4, 8, and 12,

pi = 1, gi = x'i, ci = ci–1 + x'i–1 + x"i–1, wi = !x'i, for i = 5, 9, and 13,
pi = 1, gi = x'i, ci = ci–2 + x'i–2 + x"i–2 + x'i–1, wi = !x'i, for i = 6, 10, and 14,
pi = x'i, gi = 0, ci = ci–3 + x'i–3 + x"i–3 + x'i–2 + x'i–1, wi = x'i, for i = 7 and 11,
pi = X'i, gi = 0, ci = ci–3 + x'i–3 + x"i–3 + x'i–2 + x'i–1, wi = X'i, for i = 15,

P0= (x'0 + x"0)x'1x'2, G0 = x'0x"0x'1x'2 + x'3, c4 = G0,
P1 = x'7, G1= x'7 (x'4 + x"4 + x'5 + x'6), c8 = G1 + G0 x'7,

P2 = x'11, G2 = x'11 (x'8 + x"8 + x'9 + x'10), c12 = G2 + G1 x'11+ G0 x'7 x'11,
P3 = X'15, G3= X'15 (x'12 + x"12 + x'13 + x'14). 

 
The encoding of –1 in position 15, as a negabit, would be 0. The latest delivered signal is: 

S15 = w15 ⊕ c15 = X'15 ⊕ (c12 + x'12 + x"12 + x'13 + x'14) = c12 !X'15 + X'15 !x!c12 + x !X'15,

where x = x'12 + x"12 + x'13 + x'14. The latency of S15 is 2 gate levels more than that of c12, which is 4 gate 
levels. Thus the total latency of the 4-digit radix-16 SPT to 2's complement converter amounts to 6 gate 
levels. Note that the latency of a 16-bit carry look-ahead adder with 4-bit blocks is 9 gate levels 
[Parh00].
Conversion of a two's complement number to its stored posibit transfer equivalent is easy. In our four 
digit radix-16 example above, we need a negabit in positions 4j + 3, instead of the posibits x'4j+3, and an 
extra posibit in every position 4j, for 0 ≤ j ≤ 3. A posibit xi, with value xi may indeed be replaced by a 
negabit !Xi, with value –xi in the same position i, and a posibit xi in position i +1, with value 2xi, where 
the replacement does not change the represented value. Therefore the required conversion is done by 
only copying each posibit in positions 4j + 3 into immediate next positions, and regarding the original as 
a negabit (see Fig. 3.5 for a justification). 
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8.4.2 Conversion of SDB hybrid and SUT to (from) two's complement

Figures 8.3 and 8.4 depict the first two steps of conversion to two's complement for augmented SDB 
hybrid and SUT numbers, respectively. Note that in Fig. 8.4 a unibit is replaced by a posibit with the 
same encoding in the next higher position and a –1 in the same position. The actual logical equations for 
the required carry look-ahead adders are similar to those in the previous section. 

To convert a two's complement number to its equivalent radix-16 SDB hybrid representation, we simply 
insert a 1 as a zero valued negabit in positions 4j (j > 0) of the second component of the desired SDB 
hybrid encoding. For the MSD, we have a negabit in the MSB of the two's complement number, which 
should be replaced by a posibit in the same position and a negabit/unibit pair in the next higher position. 
For example a negabit y15, of a 16-bit two's complement number, would be replaced by a posibit x'15, and 
a negabit/unibit pair X"16/X"16, in the next higher position, where x'15 = X"16 = !X"16 = y15. Table 8.II 
justifies the replacement. Note that conventional encoding of negabits has been assumed for y15.

X'16 x'15 x'14 x'13 x'12 x'11 x'10 x'9 x'8 x'7 x'6 x'5 x'4 x'3 x'2 x'1 x'0
X"16 X"12 X"8 X"4
___________________________________________________________________________
X'16 x'15 x'14 x'13 x'12 x'11 x'10 x'9 x'8 x'7 x'6 x'5 x'4 x'3 x'2 x'1 x'0
X"16 x"12 x"8 x"4

–1 –1 –1 
___________________________________________________________________________
X'16 x'15 x'14 x'13 x'12 x'11 x'10 x'9 x'8 x'7 x'6 x'5 x'4 x'3 x'2 X'1 x'0
X'16 1 1 1 x"12 1 1 1 x"8 1 1 1 x"4
X"16 1

Fig. 8.3 First 2 steps of the conversion of an augmented SDB hybrid encoding to 2's complement

X'16 X'15 x'14 x'13 x'12 X'11 x'10 x'9 x'8 X'7 x'6 x'5 x'4 X'3 x'2 x'1 x'0
X"16 X"12 X"8 X"4
___________________________________________________________________________
X'16 x'15 x'14 x'13 x'12 x'11 x'10 x'9 x'8 x'7 x'6 x'5 x'4 x'3 x'2 X'1 x'0
x"16 –1  x"12 –1 –1  x"8 –1 –1  x"4 –1 –1    

___________________________________________________________________________
X'16 x'15 x'14 x'13 x'12 x'11 x'10 x'9 x'8 x'7 x'6 x'5 x'4 x'3 x'2 X'1 x'0
X"16 1 X"12 1 x"8 1 x"4 1

1 1 1

Fig. 8.4 The first two steps of the conversion of an SUT encoding to 2's complement

Table 8.II Conversion of the MSB of a 2's complement number to the most significant hybrid digit and the 
augmented unibit of the equivalent augmented SDB hybrid encoding

y15 Value X'15 X"16 X"16
0 0 0 1 0
1 –1 1 0 1 
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Next we consider the conversion of a 16-bit two's complement number to its equivalent 4 digit radix-16
SUT number. Here we need to replace y4jy4j–1 bit pairs of the two's complement number (j > 0) by a 
posibit x'4j, a unibit X"4j, and a negabit X'4j–1. Table 8.III helps in deriving the required logic equations:

x'4j = !( y4j ⊕ y4j–1), X"4j = y4j + y4j–1, X'4j–1 = !y4j–1.

For the MSB of the 2's complement number, we just invert it due to biased encoding of the target. The 
Most significant transfer will be 0 (i.e., a negabit 1 and a posibit 0).

Table 8.III Conversion of two's complement to SUT

y4j y4j–1 Value x'4j X"4j X'4j–1
0 0 0 1 0 1
0 1 1 0 1 0
1 0 2 0 1 1
1 1 3 1 1 0

8.5 Floating Point Redundant Arithmetic

Operations on floating point operands, normally, consist of few steps, some of which could possibly 
execute in parallel. Floating point addition/subtraction consists of equalizing the exponent components 
of the two operands, adjusting the significand of the operand whose exponent has been changed, by an 
appropriate shift operation, adding the significands, and normalizing the result. Floating point 
multiplication (division), requires performing multiplication (division) on the significands, and addition 
(subtraction) of exponents, followed by a post normalization of the result.

In a floating point redundant number both the significand and the exponent may be kept in redundant 
form. For the execution efficiency of the shifts required for exponent equalization and the post 
normalization operations, a sound decision is to choose the base of the exponent of the floating point 
representation equal to the radix of underlying redundant representation. The reason is that a one binary 
position shift, by standard shift registers, on WBS-like operands does not preserve the representational 
closure property. But an h binary positions shift is representationally closed, where the base of the 
exponents and the radix of the underlying periodic WBS-like encoding are both equal to 2h (More on 
shifts in Section 9.4). 
 
Equalizing the exponents requires exponent comparison, and post normalization operation needs 
detection of the first nonzero-digit of the significand. Embedded in both operations is the comparison of 
a redundant digit with zero. We take up the zero detection issue in Section 9.2. 
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8.6 Summary

In this chapter we selected three WBS-like encodings as suitable number representation for 
representationally closed redundant arithmetic. The selection criteria besides the speed and cost 
considerations were symmetry, digit-set preservation, representational closure, and representational 
power. The three selected encodings, namely the SPT, SUT, and augmented SDB hybrid, all show 
maximal speed and lowest cost as compared to other possible choices enumerated in Table 8.I. They all, 
exhibit representational closure and digit-set preservation properties. The stored posibit transfer 
encoding is fully symmetric, while the symmetric range representational power of the SUT and
augmented SDB hybrid are 3 and 4 times more, respectively. The latter figures should not be misleading 
in comparison of representational powers. Augmenting the stored posibit transfer encoding by 1 twit in 
position kh, does not increase the symmetric range, unless we augment with a unibit, in which case the 
number system would become noncontiguous. But augmenting with a negabit/posibit pair, while 
preserving contiguity, would raise the representational power to 4, i.e., it can bit the SDB hybrid 
encoding if one extra bit in the whole encoding is tolerated.
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Chapter 9 | WBS-Like Multiplication &    
  Division

Redundant number representations have been widely used for representing intermediate results of a 
multiplication or a division operation, while the original operands and the result may be nonredundant. 
Stored carry and binary signed digit representations are usually used to represent intermediate results in 
partial product reduction [Gonz00]. Producing redundant quotient digits and redundant partial 
remainders is common in fast division techniques [Parh00]. In this Chapter we study multiplication and 
division of WBS-like numbers, and compare the performance of our methods with that of conventional 
nonredundant multiplication and division algorithms.

9.1 WBS-like multiplication

Multiplication operation is generally composed of three steps performed in a sequence:

• Derivation of partial products
• Reduction of partial products
• Computing the result by a final addition

We study WBS-like multiplication, for each of the three parts in the following sections

9.1.1 Partial product derivation for WBS-like operands

Derivation of partial products may be achieved through twit by twit multiplication (e.g., the AND matrix 
of conventional multipliers), digit by digit multiplication (e.g., a decimal digit multiplier), or by a table 
look-up for digit multipliers. WBS-multiplication does not introduce any special problem for the latter 
method. For the other two methods, we need to design special twit multipliers for each kind of twit 
pairs. Since a WBS-like number can be encoded as an equivalent WBS number, we need to design only 
three gates (or Boolean element creators, as named in [Flyn01]) as in Figure 9.1, where the outputs of 
the gates a, b, and c, are posibit, negabit, and posibit respectively, also shown in Table 9.I for 
multiplication of twits T1 and T2. 

y
XX.y

Y

X
X.Yx

y
x.y

b c(a) (b) (c)

Fig. 9.1 Basic gates for derivation of the partial products.
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Table 9.I. Multiplication of two twits

T1 T2 T1T2
� � �
� � �
� � �

9.1.2 Partial product reduction

In the second step of a WBS-like multiplication, we have a twit matrix composed of posibits and
negabits. A conventionally encoded negabit has been named, elsewhere, as a signed Boolean element, 
and a partial product array (PPA) of signed and unsigned Boolean elements as signed PPA [Flyn01]. To 
reduce a signed PPA, special adders has been designed [Peza71, Schw91, Schw92, Mand96], specially 
in the context of function approximation using multipliers. The principal idea for reduction of a signed 
PPA [Flyn01] is similar to our method for converting a WBS encoding to an equivalent 2CL encoding 
described in Theorem 4.6. But here we take advantage of inverted encoding of negabits, which leads to a 
more efficient signed PPA reduction.

Fig. 9.2 Canonical partial product reduction to a 2-deep result
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A signed PPA is, in fact, a WBS encoding of the product, which should be reduced to a 2-deep 
equivalent WBS encoding. Recalling Theorem 7.1 (Twit FA) and Corollary 6.2 (Twit compressors), we 
can reduce the partial products, pretty much the same way as in standard partial product reduction 
methods [Parh00]. Figure 9.2 depicts, in our extended dot notation, the first and second parts of 
multiplication of two-digit radix- 16 stored posibit transfer (SPT) numbers. The second box shows the 
non- reduced partial product. The next four boxes show the hierarchy of partial product reduction leading 
to a 2-deep result in the 7th box. The partial products are computed by a program (see appendix 1), 
where the inputs to full/half adders are always picked from top to bottom. We name such a partial 
product reduction as a canonical reduction. The partial product reduction takes five levels, while the 
same process for multiplication of two 8-bit non-redundant binary numbers will take four levels. This 
means that the delay for partial product reduction in the redundant case is 25% more than that of the 
non- redundant case. However we should note that the range of the integers represented by the redundant 
representation (i.e., [– 136, 136]) is 6.25% more than that of the non-redundant case (i.e., [0, 255]  or
[– 128, 127]). Moreover Table 9.II, shows that for very high radix cases, such as radix 256,  the number 
of levels for both redundant and non-redundant operands are the same. 

Table 9.II Comparison of partial product reduction levels

Reduction Levels
Digits Radix Redundant Nonredundant
4 16 7 6
4 32 7 6
4 64 8 7
4 128 8 7
4 256 8 8

9.1.3 Derivation of the final product

The 2-deep WBS encoding of the product in Fig.9.2 is not equivalent to that of the multiplication 
operands. It may be converted to a desired WBS encoding following the process discussed in Chapter 4. 
However, to reduce the total delay of a representationally closed WBS multiplication, we may 
reconfigure the assignments of twits to full/half adders such that the reduction process directly leads to a 
2-deep result with the same encoding as that of the operands. 

Figure 9.3 depicts a heuristically non-canonical partial product reduction of the same multiplication as in 
Fig. 9.1, leading to a 2-deep WBS result in the 6th level, which is convertible to the desired encoding 
with only intra-digit carry propagation limited to the width of a radix-16 digit. The total delay for partial 
product reduction and conversion to the desired stored posibit transfer representation amounts to the 
delay of nine full adders, five for reduction to the level 6 and four full adders for deriving the most 
significant digit of the result. Note that the MSD is derived through a virtual borrow propagation, which 
is actually a carry propagation due to inverted encoding of negabits. In three places in the 5th level of 
reduction, we have used constant posibits (0) and negabits (1), without changing the value of the partial 
product in that level. A constant negabit in the 6th level has also helped in the derivation of the desired 
result. A similar design (i.e., with simple carry propagation in the last stage) for 8 bit nonredundant 
operands would result in a delay equal to that of 14 full adders and two half adders.
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9.1.4 Booth recoding of the multiplier

Booth recoding [Boot51] and its variations has been used in many multiplier designs [Parh00], in order 
to reduce the number of originally generated partial products. In this section we examine a Booth 
recoding of stored posibit transfer numbers and its possible application in the design of redundant 
multipliers.

Fig. 9.3 Representationally closed WBS multiplication

In the conventional modified Booth recoding, a two's complement multiplier is converted to an 
equivalent minimally redundant radix-4 signed digit number [Parh00]. A stored posibit transfer number 
can similarly be converted. Fig. 9.4 depicts the conversion of a radix-256 stored posibit transfer digit to 
an equivalent four digit minimally redundant radix-4 signed digit number. Let |x| denote the arithmetic 
value of twit x, and assume that twits with the same name irrespective of the letter case and font style 
(bold or underlined), have the same logical code in {0, 1}. For example the logical code for x'1 and X'1
are always the same, i.e., either both 0 or both 1, leading to |!X'j| = 1 – |X'j| = 1 – (|x'j| – 1) = – |x'j|.
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In Figure 9.4 each posibit x'2i–1 in position 2i–1, for i = 1, 2, 3, is replaced by a negabit !X'2i–1, in the 
same position, with value – |x'2i–1|, and same posibit in position 2i, with value 2|x'2i–1|, such that the 
replacement does not change the total value represented. As is clear in Fig. 9.4 each radix-4 digit 
consisting of a negabit and two posibits in its immediate right position, is actually a minimally 
redundant radix-4 signed digit in [–2, 2]. It is easy to verify that a standard modified Booth recoder 
receiving the three twits of such a radix-4 digit produces the required signals needed for selecting the 
relevant multiples of the multiplicand. Nevertheless we provide the required logic in Fig. 9.6 in the next 
Section. The conversion of Fig. 9.4 is not actually needed as a pre-recoding operation; we just used it to 
explain the inputs to the recoder.  Note that for any stored posibit transfer digit with 2j positions, the 
Booth recoding method, just described, will produce j multiples, which is equal to the number of 
multiples in the nonredundant case. But without Booth recoding, there would be 2j + 1 multiples per one 
2j-position digit of the multiplier.

X'7 x'6  x'5 x'4  x'3 x'2   x'1 x'0
x"0-----------------------------------------------

X'7 x'6 !X'5 x'4 !X'3 x'2 !X'1 x'0
x'5 x'3 x'1 x"0

Fig. 9.4 Conversion of a stored posibit transfer digit to radix-4 signed digits

We redesign the multiplier of Fig. 9.3, with Booth recoding of the multiplier. In the design time, we 
don't know which of the output signals of the Booth recoder would be selected for a given radix-4 digit 
of the multiplier. Therefore, we have to arrange the extended dot notation of partial products such that 
the reduction logic implemented based on our design would accept either multiples (i.e., zero, ± the 
multiplicand, or ± twice the multiplicand). Fig. 9.5a shows the first level partial products for the same 
multiplication as that of Fig. 9.3, but with Booth recoding applied. For better illustration, we have 
deliberately not filled the empty places among the dots of the first partial product by those of the second 
one, and so on. Fig. 9.5b shows the equivalent partial products with the gaps filled, leading to an 8-row 
partial product matrix. Note that the first level partial products of Fig 9.3 (without Booth recoding), had 
12 rows for 8 partial products, but Fig. 9.5b has 8 rows for 4 Booth partial products. We will show, 
below, that for practically wider operands, the reduction ratio due to Booth recoding approaches the 
same value as for the nonredundant operands.

For wider operands, the Booth recoding of the redundant multiplier exhibits a much better effect on 
reduction of the rows in first level partial products, leading to less total reduction levels. Table 9.III 
compares the number of levels, derived by a simulation program (appendix 1), for nonredundant and 
redundant Booth multiplications. As is evident, for wider stored posibit transfer operands, Booth 
recoding is more beneficial. The reason is that in the nonredundant case, each two bits of the multiplier 
provide one Booth signal, while in the stored posibit transfer case, in the vicinity of redundant positions, 
each three twits provide one Booth signal. The latter observation leads to the pleasant result that for 
practical wide operands with sparse second component (e.g. 32 positions or more and one redundant 
position in 8), our stored posibit transfer multiplier design leads to less overall delay, compared to 
nonredundant multipliers.
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Fig. 9.5 The first level partial products of a nonredundant Booth multiplication

Table 9.III Comparison of partial product reduction levels, when Booth recoding applied

Reduction Levels
Digits Radix Redundant Nonredundant
4 16 5 4
4 32 5 5
4 64 6 5
4 128 6 6
4 256 6 6

9.2 WBS-like Division

Division is generally believed to be the most complex arithmetic operation among the four basic ones. 
Several division methods, implemented by software, firmware, or hardware have been invented during 
past decades. Division methods may be divided in two basic categories, namely those based on repeated 
subtractions, and multiplicative methods. Both categories include radix-2 and higher-radix versions. The 
subtractive methods are further divided to restoring and nonrestoring methods, where the latter has 
synchronous and asynchronous (i.e., the well known SRT [Robe58] method) versions. The 
multiplicative methods, too, are divided into two groups; one converges, the divisor to 1 and the 
dividend to the desired quotient, through repeated multiplications of both the dividend and divisor by the 
same multipliers [Ande67]. The other one [Fowl89] computes the reciprocal of the divisor through, for 
example, extracting the route of equation 1/X – D = 0, where D is the divisor. Extraction of the route X is 
normally done by repeated multiplication and addition operations, based on the Newton-Raphson 
iteration or through table look up [Parh87]. A final multiplication of the dividend by the reciprocal of the 
divisor derives the quotient. Both subtractive and multiplicative methods may use redundant 
representations, such as carry save, for intermediate results. A comprehensive coverage of all these 
methods may be found in [Erce94] and [Parh00]. Some advanced designs are offered in [Flyn01]. 
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Our concern in this section is to design a representationally closed division method for redundant 
operands, where the dividend, divisor, quotient, and the remainder are all represented in the same 
redundant number system. Several approaches may be considered:

1) The simplest approach is to use the redundant to two's complement converter of Section 8.4, to 
convert both the dividend and divisor to their equivalent two's complement representations, and 
then use the most appropriate division hardware to derive the two's complement quotient and 
remainder. This should be followed by converting the results back to redundant encoding of the 
operands. The pre-division, redundant to two's complement, conversion, as discussed in Section 
8.4, requires at most one add cycle, and the time for post-division conversion is negligible and
can be part of the last cycle. Given that the conventional two's complement division requires 
several cycles, the extra one cycle for pre-division conversion may be justified in computations 
where division does not frequently occur, i.e. the extra cycle may be well paid for by the times 
saved in executing several non-division redundant operations between two divisions.

2) One may keep the dividend in the original redundant encoding, and only convert the divisor. The 
quotient digit selection in this case could be similar to the approach in [Parh00], where the partial
remainders are kept in stored carry representation, and the number represented by only the few 
most significant positions of the partial remainder is enough for quotient digit selection. The 
extra add cycle, mentioned in the first approach is still needed for conversion of the divisor.

3) Looking for a division method which does not require the divisor to be restricted to two's 
complement representation, we picked an advanced algorithm in [Flyn01]. This algorithm is 
based on the following equation, where Z, D, Dh, and Dl, are the dividend, divisor, its most 
significant, and least significant halves respectively.

Z ⁄ D = Z ⁄ (Dh + Dl) = Z (Dh – Dl) ⁄ (Dh
2 – Dl2)

If, as usual, we assume a normalized fractional devisor, Dl
2 in the denominator of the above 

equation would be negligible (reason to be given below), and can be omitted leading to the 
following simpler equation. 

Z ⁄ D = Z(Dh – Dl) ⁄ Dh2

We can look up for 1 ⁄ Dh2 in a table, while at the same time performing the computation of 
Z (Dh – Dl), followed by a final multiplication. We can keep all the operands and intermediate 
results in redundant form, and derive the final quotient and remainder (Z – QD, where Q is the 
derived quotient) in redundant format as well. Note that no inter-digit carry propagation would 
be necessary. In the next section we provide the details of our design.

9.2.1 Representationally closed carry-free division of stored posibit transfer operands

In this section, we provide the details of our design based on approach 3 above. Assume that the 
dividend Z and the divisor D are normalized fractional 2m-digit stored posibit transfer operands of 
the division operation, where each stored posibit transfer digit has h binary positions (h = 4 and –2m
≤ i ≤ – 1, in the example below). Z and D being normalized, lead to |z–1| > 0 and |d–1| > 0. 
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Z = .z–1 z–2 … z –2m+1 z–2m                    D = .d–1 d–2 … d–m d–m–1 … d–2m+1 d–2m

zi = Z'3 z'2 z'1 z'0 di = D'3 d'2 d'1 d'0
z"0 d"0

To see that Dl2 is negligible in the expression Dh2 – Dl2, we compare the range of Dh2 and Dl2. Each 
digit di belongs to [–r ⁄ 2, r ⁄ 2], where r = 2h, is the radix, and h is the number of positions in each 
digit. Then we have: Dh2 ≥ r–1, due to D being normalized and

Dl2 ≤ r2 ⁄ 4 (r–m–1 + r–m–2 + … + r–2m+1 + r–2m)2 = r2 ⁄ 4  (r–m – r–2m)2 ⁄ (r – 1)2.

It can be shown that the right hand side of the latter inequality is less than r–2m ⁄ 2, for r > 2 + 21⁄2 > 3, 
where r, being practically a power of two, is at least 4. Therefore deletion of Dl2 < ulp ⁄ 2, from the 
expression Dh2 – Dl2 does not introduce any error in the computation [Flyn01], hence the suitability 
of the equation

Q = Z ⁄ D = Z(Dh – Dl) ⁄ Dh2.

For Dh – Dl, we don't need to actually perform any subtraction. The latter expression serves as the 
multiplier in Z(Dh – Dl). We feed Z, as the multiplicand, and D as the input to the Booth recoder of 
the multiplication logic. We negate the least significant mh ⁄ 2 (h is normally even in practice) Booth 
signals to take care of subtraction in Dh – Dl. 

Fig. 9.6 shows the required Booth recoder cell, where X resembles the negabits in the odd positions 
(after the conversion of Fig. 9.4, where the complementation is fused in the logic). Inputs y and z, 
resemble the posibits in even positions. The most significant negabit of each stored transfer digit 
should be complemented before feeding, as X, into the logic. Note that the conversion of Fig. 9.4 
does not actually take place. The X and y signals of the ith Booth recoding cell (0 ≤ i ≤ h ⁄ 2 – 1, for 
each digit) are provided by the posibits in positions 2i + 1 and 2i of the original stored posibit 
transfer digit, respectively. The z signal of the ith cell comes from the posibit in position 2i – 1. There 
are two exceptions however; for i = 0, the second component posibit in position 0 provides z, and for 
i = h ⁄ 2 – 1, X is provided by the complement of the negabit in position h – 1. S1 is the conventional 
sign signal of the Booth encoder and its complement S0, is provided for inverted Booth recoding of 
Dl. The computation (actually a single multiplication) of the nominator Z(Dh – Dl) and looking up
1 ⁄ Dh2, in a pre-computed table, can be done in parallel. Then another multiplication derives the 
quotient. The size of the look-up table would be more than that for the nonredundant division of 
[Flyn01], because an m digit radix-2h stored posibit transfer operand has a total of (m + 1)h twits, 
while a similar nonredundant operand has mh bits.
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9.3 Summary

In this chapter, we provided high level designs for representationally closed stored posibit transfer 
multiplication and division. Similar designs for other WBS-like encodings, such as SUT and SDB 
hybrid representations, are feasible. We showed that in spite of existence of negabits in arbitrary 
positions of the multiplicand, Booth recoding can be applied to reduce the number of first level 
partial products. Moreover the extra second component sparse twits in the multiplier do not increase 
the number of Booth multiples as compared to a nonredundant multiplier with the same number of 
positions. Furthermore it turns out, as a pleasant surprise, that for practically wide redundant 
operands, with practically sparse second components, the number of reduction levels, where Booth 
recoding is applied, is the same as that of nonredundant operands with the same width. Thus the 
overall delay of our redundant multiplier is less than that of a nonredundant one with the same 
operand width. The overall delay is composed of three components; first one is the delay of Booth 
recoding, which is the same for both redundant and nonredundant operands, second one is the delay 
for partial product reduction, which was also shown to be the same. However the delay for final 
product derivation, in our redundant multiplier is less than that of the nonredundant case. The carry 
propagation chain of the last stage of the redundant multiplier is limited to the width of one 
redundant digit, while an operand width carry propagation chain is necessary to derive the 
nonredundant product. As was shown by the heuristic used in deriving the final product in Fig. 9.3, 
representational closure of our redundant multiplier does not introduce any extra delay.

Fig. 9.6 Booth recoder for Dh (sign is S1) and Dl (sign is S0). X weights twice as y and z.

X
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We observed that the subtractive division methods are not suitable for representationally closed 
redundant division. Thus we extended the high level multiplicative division design of [Flyn01], for 
stored posibit transfer operands. We showed that it is possible to keep the dividend and the divisor in 
redundant form, and use our redundant multiplier for the two multiplications embedded in the 
division algorithm, where the reciprocal of square of the most significant half of the divisor is looked 
up in a table implemented by a ROM or a PLA. Due to extra second component twits of the stored 
posibit transfer encoded divisor, our look up table imposes extra delay. But the limited carry 
propagation of the last stage of the multiplication is faster than the full carry propagation of the 
nonredundant version, and well pays off the extra look up delay, leading to overall less delay for our 
redundant division scheme.
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Chapter 10 |Arithmetic Support Functions 

In the previous chapters we focused on the four basic arithmetic operations without explicitly 
addressing, in detail, the negation operation (or sign change) and the three standard detection operations, 
namely zero, sign, and over/underflow detection. Professor Parhami provides a comprehensive study of 
these operations on GSD [Parh90] number systems in [Parh93]. Negation can always be performed 
through subtracting from zero, but better performance is possible with specific tailor designed logics. 
We show that among the three selected encodings of Chapter 8, negation of SPT-encoded numbers is the 
simplest; just a twit-wise inversion of the number to be negated. Negation for the other two encodings, 
namely the SDB hybrid and SUT, require intradigit propagation as in all asymmetric GSD number 
systems [Parh93]. But it turns out that interdigit propagation is unavoidable for the other three detection 
operations. Whereas sequential linear latency algorithms are offered in [Parh93] for GSD numbers in
general, we provide concrete solutions, with logarithmic latency, for detection operations in our three 
selected encodings. We present high level design of a tree structured logic shared by zero, sign, and 
over/underflow detection operations. Finally, we study the design of arithmetic shift operations (binary 
and radix) for the three selected encodings.

10.1 Negation of WTS-encoded numbers

It is naturally desirable to negate a twit by inverting its logical value.

Definition 10.1 (Negated twit): The negation of a twit with logical value x, characteristic {λ, γ}, and 
arithmetic value λ + γx, is a twit with logical value !x and arithmetic value – λ – γx.�

Lemma 10.1 (Negated twit): Given a twit {λ, γ}, with logical value x, the characteristic of its negation 
as per Definition 10.1 is {– λ – γ, γ}.

Proof: The following equation shows that the value –λ – γx, of the negated twit can be represented by a 
twit {– λ – γ, γ} with logical value !x. 

–λ – γx = – λ – γ + γ(1 – x) = – λ – γ + γ(!x).�

The above Definition and Lemma lead to a minimal cost/delay negation operation of WTS-encoded 
numbers. We simply invert the logical value of each twit, and regard it as a twit whose lower value has 
been negated and then reduced by its gap value. Unfortunately, the encoding of the negation result is 
not, in general, the same as the original encoding, but there are special cases where, simple inversion 
preserves the representational closure property. Negation of three special case twits, which have been 
used in the three selected encodings of Chapter 8, is shown in Table 10.I, where a negated twit is 
characterized by {λn, γn}.
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Table 10.I Negation of special case twits

Twit symbol λ γ λn ==== – λ – γ γn ==== γ Negated twit symbol
� 0 1 – 1 1 �

� – 1 1 0 1 �

� – 1 2 – 1 2 �

Representational closure is, obviously, preserved for WTS-encodings, where the twits are symmetric 
(e.g., unibit), and/or there are equal number of complementary twits (e.g., posibits and negabits) in each 
position. Whenever the minimal cost/delay representationally closed negation is not possible, negation 
with no interdigit transfer propagation may be possible. It has indeed been shown that the latter is 
always true for all GSD number systems irrespective of the encoding used [Parh93]. Here we examine 
the negation operation on our three selected encodings.

10.1.1 Negation of SDB hybrid redundant numbers

Each SDB hybrid redundant digit, where double position encoding of SDB digit (see Table. 5.II) is used 
in a redundant position, may be viewed as a two's complement number. Therefore negation may be 
performed as a simple, digit parallel, two's complement operation. Two's complementing of each digit 
includes an increment operation possibly causing intradigit carry propagation. But due to asymmetry of 
two's complement representation, negation of 00…0 (representing – r for say the ith digit extending from 
position (i – 1)h to position ih) produces a posibit constant 1 in position ih, where it can't be held by the 
existing negabit in that position. To make room for this posibit 1, we use the following trick:  

a) Do not complement the negabit in position ih when it has logical value 0 (i.e., when it represents 
arithmetic value –1), and add posibit constant 1 to that position. The net effect is the same as 
complementing the negabit. 

b) Feed the added posibit 1 in position ih, as a carry-in to the increment logic of two's 
complementing digit i + 1. 

The preserved negabit 0 (representing –1) in position ih absorbs any possible coming posibit 1 through 
increment logic of position i, hence avoiding interdigit propagation. Then the whole negation operation, 
effectively, is composed of:

• Inverting all the posibits
• Setting all the negabits to 0
• Provide the carry-in of the two's complementing increment logic with the complements of the 

negabits, except for the LSD.

The negabit of the most significant digit should be treated differently, for there is no increment logic 
starting in that position. We do invert that negabit, and a carry 1 out of that position indicates an 
apparent overflow, which does not necessarily mean that the negation result cannot be represented 
[Parh93] (see also 10.3).
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10.1.2 Negation of SUT-encoded numbers

An SUT digit is composed of a main two's complement part and a unibit as the second component. The 
unibit is negated by inversion as shown in Table 10.I. Negation of the main part, as a two's complement 
number is naturally done by twit-wise inversion, followed by an increment operation. The latter may 
generate a carry to the next more significant digit, where it should be absorbed for a digit parallel 
negation to be possible. To make room for this carry (or posibit transfer), instead of directly performing 
the increment operation, we do the following (for the ith digit, 0 ≤ i < k, where k is the total number of 
digits):

a) Add a constant 1 to the inverted unibit X"ih, leading to a double-bit with the same logical value, 
and replace it with a posibit x"ih+1 in position ih + 1

b) Add x"ih+1, to the twit-wise inverted main part, generating a posibit transfer c(i+1)h
c) Merge c(i+1)h, with the first component posibit w'(i+1)h, deriving a new posibit with logical 

value !(w'(i+1)h ⊕ c(i+1)h) and a unibit in the same position with logical value w'(i+1)h | c(i+1)h

Step a) is explained by 1 + X"ih = 1 + (– 1 + 2x"ih) = 2x"ih, where x"ih is logical value of X"ih. Table 
10.II, depicts a truth table justifying Step c). Besides the initial inversion of all the twits, the negation 
operation uses one half adder per nonredundant positions, for the increment, and the logic required for 
Step c), is as simple as a half adder (one per each redundant position).

Table 10.II Truth table for the equations of Step c of SUT negation

w'(i+1)h c(i+1)h w'(i+1)h + c(i+1)h � �

0 0 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 2 1 1

10.1.3 Negation of Stored Posibit Transfer (SPT) numbers

For symmetric digit sets, negation of each digit can be represented independent of other digits, for it 
always exists in the digit set. In other words, as noted in [Parh93], for a more general case, negation of a 
number with digits belonging to a symmetric digit set, does not generate transfers to more significant 
digits. The stored posibit transfer (SPT) encoding is symmetric, and as shown below, a simple twit-wise 
inversion negates a SPT number, while preserving representational closure.

Recall Table 10.I, where we showed that to negate the arithmetic value represented by a negabit 
(posibit), it is sufficient to invert its logical valuet, and regard it as a posibit (negabit). Assuming that the 
ith digit of a SPT number is shown as X'(i+1)h–1 x'(i +1)h–2… x'ih+1 x'ih + x"ih,, the negated digit can be 
represented as:

− (X'(i+1)h–1 x'(i +1)h–2… x'ih+1 x'ih + x"ih) = y'(i+1)h Y'(i +1)h–1… Y'1 Y'0 + Y"0.
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Each y twit, in the latter equation, is the logical inversion of the corresponding x twit. Where is the 
representational closure then? The following theorem presents an interesting property of the SPT 
encoding, and answers the question.

Theorem 10.1 (Symmetry and complementarily): A symmetric contiguous WBS encoding is equivalent 
to its strongly complementary encoding.

Proof: Recalling Definition 6.5, to derive the strongly complementary encoding of a WBS encoding we 
replace each negabit (posibit) by a posibit (negabit). Assume that the original encoding represents an 
interval of integers [–N, P]. Replacing all posibits (negabits), by negabits (posibits), shifts the interval by 
–P (+N). This leads to [–P, N], as the representable interval for the equivalent strongly complementary 
encoding. That in a symmetric WBS encoding we have N = P concludes the proof. ■

Applying the result of Theorem 10.1 to the SPT encodings, we can regard the above y (Y) twit(s) as 
negabit (posibits), thus restoring the representational closure. This can be formally stated as follows:

Corollary 10.1 (Negation of SPT-encoded numbers): To negate an SPT-encoded number, it is sufficient 
to invert logical values of all the twits in the representation. ■

10.2 Zero and sign detection of periodic contiguous WBS-like encoded numbers

Recalling Corollary 6.7 and Theorem 6.10, we may consider a periodic contiguous WBS-like encoding 
with digit set [–α, β], as a representation of a GSD number system with the same digit set. Thus the 
relevant results in [Parh93] apply here as well. But we try to concretize them by studying the zero and 
sign detection problems for our three selected encodings, where α > 0, β > 0, and practically the number 
of digits k > 1. With these conditions, Theorems 8 and 9 in [Parh93] reduce to the following theorem.

Theorem 10.2 (Zero and sign detection in the three selected encodings): Zero is represented solely by 
all zero radix-r digits in SUT, SPT, and alternatively interpreted SDB hybrid redundant encodings, 
where max (α, β) < r , and sign of such numbers is the same as that of most significant nonzero digit. ■

In the SDB hybrid encoding, where max (α, β) = r, Theorem 10.2 does not apply, but in the next section 
we present an alternative interpretation of SDB hybrid encoding, where max (α, β) < r, leading to 
application of Theorem 10.2 as well.

10.2.1 Zero and sign detection of SDB hybrid redundant numbers

Two consecutive SDB hybrid digits may collectively represent zero in two ways; either each of them, 
independently, represent zero or the more significant one represents 1, and the other one represents –r
(given that α = r). Therefore existence of a nonzero digit does not necessary imply that the whole 
number represents a nonzero value, and the zero detection techniques developed for nonredundant 
number representation systems do not apply for SDB hybrid. But a k digit radix 2h periodic SDB hybrid 
encoding, where consecutive digits overlap in positions whose index is a nonzero multiple of h, may be 
viewed as a k digit radix 2h periodic WBS encoding with an augmenting negabit in position kh and an 
enforced constant negabit, with logical value 1, in position 0 of the second component, where 
consecutive digits don't overlap. 
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This alternate interpretation of the same encoding leads to max (α, β) = 2h – 1 < r, which in turn implies, 
by Theorem 10.2, unique zero representation. Therefore once the zero and nonzero digits are 
distinguished, conventional algorithms for zero detection apply. Fortunately each digit in the WBS 
encoding described above has unique zero representation within a digit, where posibits are all 0, and the 
single second component negabit is 1, with arithmetic value 0. Sign of a single SDB hybrid redundant 
digit is easily detected by inspection of the logical value of the negabit. However, in the alternative 
interpretation of SDB hybrid encoding, sign of a single digit could depend on the logical values of all 
twits in a digit. In fact, only the value of an all zero digit is negative. Unique zero representation within, 
and sign detection of, a single digit could be equally important in cost/latency considerations for zero
and sign detection logic. In the next two sections we study the same problem for SUT and SPT digits, 
and show that single digit zero detection is more difficult, while single digit sign detection is as easy as 
in a two's complement digit.

10.2.2 Zero and sign detection of SUT and SPT numbers

With the application of Theorem 10.2 for SUT and SPT numbers, standard zero detection techniques 
used for nonredundant numbers, with logarithmic latency at best, may be used here as well. Sign 
detection, however, is not as easy as the immediate sign detection for e.g., two's complement numbers. 
Algorithms 8 and 9 of [Parh93] may be directly used for our SUT, SPT, and SDB hybrid (alternative 
interpretation of Section 10.2.1) numbers for sign detection, and combined zero and sign detection 
respectively. These sequential algorithms show a linear latency. However, we provide, below, a high 
level design of some logarithmic latency logic for combined zero and sign detection. Consider two 
consecutive digits gi+1 and gi, with zi+1 and zi, indicating whether their value is zero or not, and si+1 and
si, showing their signs, respectively. A z (s) signal with logical value 0 indicates that the corresponding 
digit g is nonzero (nonnegative). Then the following equations compute z (gi+1gi) and s (gi+1gi), the z and
s signals for the composite digit gi+1gi, respectively: z (gi+1gi) = zi+1zi, s (gi+1gi) = !(zi+1)si+1| zi+1si

Fig. 10.1 A ZSD cell

Fig. 10.1 shows the Zero and Sign Detector (ZSD) cell for two consecutive digits. A binary tree 
structure of the ZSD cells, as in Fig. 10.2, derives the sign of a redundant number, and determines 
whether it is zero, both with logarithmic latency. One last point to be noted for SUT and SPT encodings 
is that neither of them have single digit unique zero representation (Fig. 10.3), hence more complex 
logic for their z signals. But the s signal of an SUT or an SPT digit is determined only by their most 
significant twit (i.e., the only negabit in the digit's encoding); a zero negabit causes the digit to be 
nonpositive.

zs

zi+1 

zi

si+1 si
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Fig. 10.2 Zero/sign detector for 8 digit redundant numbers

10.3 Over/Underflow Detection of WBS-like-encoded results

A general treatment of over/underflow detection of GSD numbers is offered in [Parh93], where after 
easy detection of an apparent over/underflow, a sequential algorithm, with linear latency, either detects 
real over/underflow, or corrects the apparent over/underflow. The linear latency performance may not be 
desirable for very long data paths (e.g., 128 twits ) with small periods (e.g., h = 4). Following a similar 
approach as in Section 10.2, by focusing on the three selected encodings, we show that the hardware of 
Fig. 10.2 can be used to either detect real over/underflow, or with a slight modification correct the 
apparent over/underflow. Nevertheless, some real over/underflow conditions may be detected faster, by 
inspection of the twits in position kh.

SUT SPT
1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1

0 1 0 1

Fig. 10.3 Alternative zero representations (h ==== 4) 
 
In the following definitions, we assume a k position periodic WTS encoding with period h.

Definition 10.2 (Over/underflow twits): A collection of extra twits, besides the ones defined in the 
encoding, that are generated in position kh, and beyond, of the result of an arithmetic operation is called 
over/underflow twits. ■

z0

ZSD

s4s5z5

ZSD

s6s7 z6z7

ZSD

s  s  zz

z4

ZSD

s  s zz

ZSD

s0s1z1
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s2s3 z2z3
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s  s  zz
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Definition 10.3 (Apparent over/underflow): A positive (negative) collective value of over/underflow 
twits indicates an apparent overflow (underflow). ■

Definition 10.4 (Real over/underflow): When there is no possibility to make room, while preserving 
representational closure, for the value represented by the apparent overflow twits in the valid positions 
and twits of the result, a real over/underflow occurs.■ 

Definition 10.5 (Apparent over/underflow correction): When the collective value of apparent 
over/underflow twits plus the value represented by the valid twits of the encoding fall in the valid range 
of the underlying redundant representation, the apparent over/underflow is said to be correctable, 
otherwise there exist a real over/underflow. ■

In apparent over/underflow correction a valid result should be obtained by back-propagating the value 
represented by the apparent over/underflow twits. Note that when representational closure is not 
required, the over/underflow twits can be kept as they are in position kh, and beyond, of the result. For 
each of the three selected encodings, we study the peculiarities of the apparent over/underflow twits, and 
their back propagation, absorption (correction), or rejection (real overflow).

10.3.1 Apparent Over/Underflow Detection for WTS encodings

We provide, below, the details of apparent over/underflow detection for our three selected encodings. 
Then we study the problem of real over/underflow detection and apparent over/underflow correction for 
the selected encodings.

• SPT: Recalling the representationally closed SPT addition of Fig. 6.23, there are three apparent 
over/underflow twits, one negabit and two posibits, in position kh (k = h = 4). To make the task 
of over/underflow handling easier, we use another full adder to reduce the over/underflow twits 
to akh+1, a posibit in position kh+1, and Akh, a negabit in position kh (Fig. 10.4). 

�

�

�-----------------
                                                                         akh+1 Akh

Fig. 10.4 Reduction of SPT apparent overflow twits

• SUT: Recall Fig. 6.18, which depicts a representationally closed k digit radix 2h SUT addition, 
for k = h = 4. The two unibits in position kh, are the two apparent over/underflow twits A'kh and
A"kh.

• SDB hybrid: Fig. 10.5 depicts a representationally closed addition of two augmented SDB 
hybrid redundant operands, where the apparent over/underflow twits are shown to be a collection 
of one posibit, one negabit, and two unibits. Note that we have used the result expressed in 
Corollary 6.3 to reduce, in place, the twits in position kh. 
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It would make the real over/underflow detection easier, if we had fewer number of apparent 
over/underflow twits. Fig. 10.6 shows an alternative design for position kh, leading to one apparent 
over/underflow twit Akh+1, in position kh+1, a posibit akh (last in the carry chain of MSD), and a negabit 
Akh (directly from Tkh), both in position kh.

A'16 a'15 a'14 a'13 a'12 a'11 a'10 a'9 a'8 a'7 a'6 a'5 a'4 a'3 a'2 a'1 a'0
A"16 A"12 A"8 A"4
B'16 b'15 b'14 b'13 b'12 b'11 b'10 b'9 b'8 b'7 b'6 b'5 b'4 b'3 b'2 b'1 b'0
B"16 B"12 B"8 B"4
----------------------------------------------------------------------------------------------------------------------------
A"16 a'15 a'14 a'13 a'12 a'11 a'10 a'9 a'8 A'7 a'6 a'5 a'4 a'3 a'2 a'1 a'0
B"16 b'15 b'14 b'13 b'12 b'11 b'10 b'9 b'8 b'7 b'6 b'5 b'4 b'3 b'2 b'1 b'0
A'16 t15 t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4
B'16 T12 T8
T16
----------------------------------------------------------------------------------------------------------------------------
A"16 w15 w14 w13 w12 w11 w10 w9 w8 w7 w6 w5 w4 w3 w2 w1 w0
c16 c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1
B"16 T12 T8 1
A'16
B'16
T16
----------------------------------------------------------------------------------------------------------------------------
S'16 s'15 s'14 s'13 s'12 s'11 s'10 s'9 s'8 s'7 s'6 s'5 s'4 s'3 s'2 s'1 s'0
S'16 S"12 S"8 S"4
�
�
�

�

Fig. 10.5 Apparent over/underflow twits of representationally closed SDB hybrid addition

10.3.2 Real over/underflow detection

In all the three selected encodings, digits belong to redundant digit sets. Redundancy of the digit set 
provides for possibility of apparent over/underflow correction. One possible correction strategy is back 
propagation of the apparent over/underflow value.

Definition 10.6 (Back propagation): An existing apparent over/underflow value ω in the (i+1)th digit gi+1 
is back propagated through the ith digit gi of the result of an arithmetic operation, by correcting gi+1 to 
gi+1 – ω, and gi to gi + 2hω. ■

Definition 10.7 (Sink): During the back propagation, when an over/underflow value ω visits the ith digit 
gi, if the corrected digit value stays in the range of the digit set, we say that the over/underflow value
sinks in gi. We use signal s+i (s–i) to indicate that gi absorb the visiting overflow (underflow) value. ■

Definition 10.8 (Zip): The corrected digit value (i.e., gi + 2hω) due to back propagation, may be slightly 
over (under) the maximum (minimum) value represented by the digit set, in which case the excess value 
may zip over to the next right digit. We use signal z+i (z–i) to indicate the latter situation for digit gi. ■

Definition 10.9 (Reject): If the excess value after correction of a digit due to back propagation is too 
large to be absorbed by the right context, both the sink and zip signals will be set to 0, and we say that 
the visited digit rejects the visiting value. ■
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Table 10.III shows the sink/zip characteristic of a digit. 

Table 10.III sink/zip characteristic of a redundant digit

s z Action
0 0 Reject
0 1 Zip over
1 0 Sink
1 1 X

When an apparent over/underflow value during back propagation is rejected, or zips over the LSD, there 
is a real over/underflow. In the following subsections we examine the sink/zip properties of the digit sets 
of our three selected encodings, and derive the equations for s and z signals. But first we show that once 
these signals are derived for all digits of a result, they may be fed into the circuit of Fig. 10.2 to derive 
the overall s and z signals in the root of the ZSD tree.

We define z (gi+1gi) and s (gi+1gi), as the composite z and s signals for two consecutive digits gi+1 and gi. 
The following equations obviously hold. But Note that they are, given that s and z may not both be 1, 
logically equivalent to those in Section 10.2.2 above. Therefore the ZSD cell of Fig. 10.1 and the tree 
structure of Fig. 10.2 can be reused for over/underflow detection, as well as sign and zero detection. A 
real overflow (underflow) is detected if there is an apparent overflow (underflow), and the s signal, in 
the root of the sign, zero, and over/underflow detection tree, is low.

z (gi+1gi) = zi+1zi                   s (gi+1gi) = si+1| zi+1si
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10.3.2.1 Derivation of s and z signals for SDB hybrid redundant digits

An SDB hybrid redundant digit belongs to [–2h, 2h–1], where the period is h and r = 2h is the radix. A 
collective value 2 for the apparent overflow can be corrected if, for example, the value of the two most 
significant digits are –2h, leading to corrected digit values 2h–1 and 0, from left to right. Over/underflow 
twits with absolute collective values more than 1, complicate overflow handling. An alternative 
approach is to use the alternative interpretation of SDB hybrid encoding as we did in Section 10.2.1
above, where the digit set is [–1, 2h–1]. A digit with value –1 (0), can absorb (zip over to the next right 
digit) a 1 back propagating from its next left digit, turning itself to 2h–1. But it cannot absorb or pass a 
back propagating 2. For, receiving a constant 2 from left, is equivalent to adding 2h+1 to the receiving 
digit, and turning it to 2h–1+2h. The extra 2h cannot sink in the right context. With similar argument we 
can see that a digit of the alternative interpretation of the SDB hybrid encoding cannot absorb or pass the 
back propagating twit (s) with collective value less than –1. Therefore when the collective value of the 
apparent over/underflow twits (i.e., Akh+1, Akh, and akh of Fig. 10.6) is neither 1, nor –1, given that it 
cannot be zero, we may have an immediate real over/underflow. Immediate overflow (underflow) 
occurs, exactly, when the apparent overflow (underflow) value is 3 or 2 (–3 or –2), and the augmenting 
digit is nonnegative or 1 (negative or –2), respectively. Otherwise the real over/underflow detection is 
left to the ZSD tree. The equation for immediate real overflow v (underflow u) is as follows, and !v (!u) 
denote reduced apparent overflow (underflow):

v = S'kh Akh+1 (Akh akh | (Akh ⊕ akh) S" kh),       

u = !S'kh !Akh+1 (!Akh  !akh | (Akh ⊕ akh) !S"kh).

We recognize the overflow (underflow) handling capability of the ith digit by two signals si+ (si–) and
zi+ (zi–). si+ (si–) is high when its corresponding digit's value is –1 (2h–1), absorbing a back propagating
1 ( –1), and is low otherwise. zi+ (zi–) is similarly defined to represent the passing capability of the 
corresponding digit on a back propagating 1 (–1), when the digit's value is 0 (2h–2). Describing the ith
digit of the result by s'(i+1)h–1 s'(i+1)h–2 … s'ih+1 s'ih + S"ih, we can derive the equations for si± and zi±, as 
shown below for digits indexed 0 to k–1. 

–1: 00…00 + 0 → si+ = !(s'(i+1)h–1| s'(i+1)h–2|… |s'ih+1| s'ih)!S"ih
0: 00…00 + 1 or 00…01 + 0 → zi+ = !(s'(i+1)h–1| s'(i+1)h–2|… |s'ih+1) (s'ih ⊕ S"ih)

2h–1: 11…11 + 1 → si– = s'(i+1)h–1 s'(i+1)h–2… s'ih+1 s'ih S"ih
2h–2: 11…1 + 0 or 11…10 + 1 → zi– = s'(i+1)h–1 s'(i+1)h–2… s'ih+1 (s'ih ⊕ S"ih)

10.3.2.2 Derivation of s and z signals for SUT digits

To simplify over/underflow handling, as we did for SDB-hybrid redundant encoding we use alternative 
interpretation (i.e., with unshifted unibit transfers) of SUT digits, where a digit value belongs to 
[–2h–1–1, 2h–1]. A back propagating value with absolute value of more than 1, visiting an alternatively 
interpreted SUT digit, is not welcome, and will be rejected. The collective value of the apparent 
over/underflow twits for SUT encoding (i.e., A'kh and A"kh of Section 10.3.1) belongs to {–2, 0, 2}. 
Assume that the twits of the SUT encoding of the result in position kh, are denoted by s'kh and S"kh.
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The collective value of valid SUT twits in position kh (i.e., that of a posibit and a negabit) belongs to 
[–1, 1]. Therefore an apparent overflow (underflow) value 2 (–2), is rejected, i.e., turns to immediate 
real overflow (underflow) by position kh, iff the latter represents 1 (–1). These observations lead to the 
following equations for immediate real overflow (underflow) v (u).

v = A'kh A"kh s'kh S"kh,                               u = !A'kh  !A"kh !s'kh !S"kh.

A visiting value 1 (–1) sinks in an alternatively interpreted SUT digit, only when the digit value is 
–2h–1–1 (2h–1) and –2h–1 (2h–1–1), and it zips over, only when the digit value is –2h–1+1 (2h–1–2). 
Assuming that an alternatively interpreted SUT digit is denoted as S'(i+1)h–1 s'(i+1)h–2… s'ih+1 s'ih + S"ih, the 
latter observation leads to the following equations for si± and zi±, as shown below for digits indexed 0 to 
k–1. 

–2h–1–1: 00…00 + 0 and –2h–1: 00…01 + 0 → si+ = !(S'(i+1)h–1| s'(i+1)h–2|… |s'ih+1|S"ih)
–2h–1+1: 00…00 + 1 or 00…10 + 0 → zi+ = !(S'(i+1)h–1| s'(i+1)h–2|…s'ih+2|s'ih)(s'ih+1 ⊕ S"ih)

2h–1: 11…11 + 1 and 2h–1–1: 11…10 + 1 → si– = S' (i+1)h–1 s'(i+1)h–2… s'ih+1 S"ih
2h–1–2: 11…01 + 1 or 11…11 + 0 → zi– = S'(i+1)h–1 s'(i+1)h–2… s'ih+2 s'ih (s'ih+1 ⊕ S"ih)

10.3.2.3 Derivation of s and z signals for SPT digits

An SPT digit rejects any visiting value whose absolute is more than 1. The apparent over/underflow 
twits of an SPT result was denoted, in Section 10.3.1 above, as akh+1 and Akh. The collective apparent 
over/underflow value belongs to [–1, 2]. Therefore there is no immediate underflow. But immediate 
overflow occurs when the apparent overflow value is 2. This leads to the following equations:

v = akh+1Akh,                               u = 0. 

The range of an SPT digit is [–2h–1, 2h–1]. A visiting value 1 (– 1) sinks only when the digit value is
–2h–1 (2h–1), and zips over only when the digit value is –2h–1+1 (2h–1–1). These observations lead to the 
following equations:

–2h–1: 00…00 + 0 → si+ = !(S'(i+1)h–1| s'(i+1)h–2|… |s'ih+1| s'ih|s"ih) 

–2h–1+1: 00…01 + 0 or 00…00 + 1 → zi+ = !(S'(i+1)h–1| s'(i+1)h–2|… |s'ih+1)( s'ih ⊕ s"ih)

2h–1: 11…11 + 1 → si– = S' (i+1)h–1 s'(i+1)h–2… s'ih+1 s'ih s"ih

2h–1–1: 11…11 + 0 or 11…10 + 1 → zi– = S'(i+1)h–1 s'(i+1)h–2… s'ih+1 (s'ih ⊕ s"ih)

10.3.3 Apparent over/underflow correction

An apparent overflow (underflow) can be corrected when there is at least one digit with high si+ (si–), 
such that all its preceding digits, if any, have either high si+ (si–) or high zi+ (zi–). This leads to a high
s+ (s–) in the root of the ZSD tree. When there is a digit g with neither of si+ (si–) nor zi+ (zi–) being high, 
before the leftmost digit with high si+ (si–), a back propagating 1 (–1) caused by an apparent overflow 
(underflow), will not sink in, nor zip over g. The latter situation indicates a real overflow (underflow). 
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To correct the result in case of a high s± at the root of the tree, we should find the first digit with high s±
from the left. To search for this digit, we can follow the high s± children, giving priority to left child, 
until we reach at the desired high s±, which should be a leaf. The required logic for this kind of search is 
offered in [Parh99]. Having found the rightmost digit to be corrected, we set all the digit values, from 
the MSD to the found digit, to an appropriate correcting value, which is to be determined, below, for 
each of the three selected encodings.

10.3.3.1 Correcting value for SDB hybrid redundant encoding

The alternatively interpreted digit set of the SDB hybrid redundant encoding is [–1, 2h–1]. A visiting 
1 (–1) sinks only when the digit value is –1 (2h–1), correcting the digit value to 2h–1 (–1), and zips over, 
only when the digit value is 0 (2h–2), correcting the digit value to 2h–1 (–1). Therefore when the 
correctable digits are recognized by the logic described above, they should all be set to 2h–1, encoded as 
11…11 + 1 (–1, encoded as 00…00 + 0), for apparent overflow (underflow) correction.

10.3.3.2 Correcting values for SUT encoding

The alternatively interpreted digit set of the SUT encoding is [– 2h–1 –1, 2h–1]. A visiting 1 (–1) sinks 
only when the digit value is – 2h–1 –1 or – 2h–1 (2h–1 or 2h–1 –1), and zips over only when the digit value is 
–2h–1+1 (2h–1–2). The correcting value for z+(z–) digits is 2h–1 (–2h–1–1), encoded as 11…11 + 1
(00…00 + 0). But there are two kinds of sink digits, with different values leading to different correcting 
values. The correction can be performed by adding the bias 2h (–2h) to s+(s–) digits, but the following 
solution is less costly. For s+(s–) digits, either 00…00 + 0 (11…11 + 1) is corrected to 11…10 + 1
(00…01 + 0), or 00…01 + 0 (11…10 + 1) changes to 11…11 + 1 (00…00 + 0). Therefore it is easily 
seen that, for apparent overflow (underflow) correction all we have to do is to set all the twits of 
correctable digits to 1(0), except for the least significant posibit of the sink digit, which stays unchanged. 
Recall that only the rightmost digit to be corrected is a sink one, and the rest of the correctable digits are 
zip ones. 

10.3.3.3 Correcting value for SPT encoding

The SPT digit set is [–2h–1, 2h–1]. A visiting 1 (–1) sinks only when the digit value is –2h–1 (2h–1), 
correcting the digit value to 2h–1 (–2h–1), and zips over only when the digit value is –2h–1+1 (2h–1–1), 
correcting the digit value to 2h–1 (–2h–1). Therefore when the correctable digits are recognized by the 
logic described above, they should all be set to 2h–1 (–2h–1) encoded as 11…11 + 1 (00…00 + 0), for 
apparent overflow (underflow) correction.

10.3.4 Trusting the apparent over/underflow

For large periods (e.g. h = 8) and practical number of digits (k ≤ 8), the ZSD tree is not very deep (e.g., 3
levels for k = 8), leading to moderate extra delay for completion of arithmetic operations by real 
over/underflow detection. Nevertheless with a sacrifice in the range of representable numbers, the extra 
delay can be reduced to a minimum amount independent of k. Considering k-digit, alternatively 
interpreted , SDB hybrid redundant and SUT numbers, regardless of their augmenting twits (see 10.3.2.1
and 10.3.2.2, respectively), and the SPT encoded numbers, observe that the only apparent overflow 
(underflow) value visiting the kth digit is 1 (–1). Assume that the digit set is [–α, β], and the radix is r. 
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Then in case of apparent overflow (underflow) the minimum (maximum) representable number not 
leading to a real overflow (underflow) is µ = 1 –α…–α = rk – α α …α (λ = –1 β… β = –r + β β… β), or

µ = rk – αυ,                                 λ = – rk + βυ,

where υ = Σi=0k−1 ri is the unit digit value (see Definition 7.2). If we trust the apparent over/underflow 
detection, and always regard it as real over/underflow, we may loose some valid results in the range
[–αυ, βυ]. The positive (negative) loss is Λ+ = βυ – µ + 1 (Λ– = λ + αυ + 1). Replacing for µ (λ) in the 
latter expression, we derive:

Λ+ = Λ– = (α + β)υ – rk + 1. 
 
Recalling redundancy index ρ = α + β – r + 1, defined for GSD number systems [Parh90], and applying 
the latter to above range loss equation, while replacing υ = Σi=0k−1 ri, by (rk – 1) ⁄ (r – 1), leads to:

Λ+ = Λ– = ρυ + (r – 1)υ – rk + 1 →         Λ+ = Λ– = ρυ.

The cardinality of the representable range [–αυ, βυ] is (α + β)υ + 1 = ρυ + (r – 1)υ. Therefore the 
percentage of the total range loss Λ = 2ρυ to the representable range ρυ + (r – 1)υ is derived, after some 
manipulations as:

%ΛSPT = 200ρ ⁄ (ρ + r – 1) 
 
The percentage of the range loss for SPT encoding with ρ = 1, is 200 ⁄ r. For the SUT encoding, we 
should consider the contribution of the augmenting twits in the value of µ and λ. µ is actually increased 
by rk, and λ is decreased by rk. But the maximum and minimum representable numbers change likewise 
leading to no change in total loss Λ. The loss percentage for the SUT encoding is thus derived as:

200ρυ ⁄ ((ρ + r – 1)υ + 2rk)=200ρ ⁄ (ρ + r – 1 + 2rk (r – 1) ⁄ (r k – 1))=200ρ ⁄ (ρ + (r – 1) (3rk – 1) ⁄ (rk –1)), 
leading to %Λsut ≈ 200ρ ⁄ (ρ + 3 (r – 1)).

For SDB hybrid redundant encoding, given that the collective value of augmenting twits belongs to
[–2, 1], the loss percentage can likely be derived leading to % ΛSDB ≈ 200ρ ⁄ (ρ + 4(r – 1)).

For practical values of period h and r (e.g., h = 8 and r = 256) , the range loss percentage is  less than 
0.8% for the SPT, and slightly more than 0.5% for the SUT, and less than 0.4% for the SDB hybrid 
redundant encodings. 

10.4 Arithmetic shift operations on the three selected encodings 

We recognize two kinds of shift operations; binary shift is the same as standard shift operation, but radix 
shift is defined for practical cases where the radix is a power of two (r = 2h). In a representationally 
closed radix-2h shift, each twit in position i is moved ±h positions. The latter is easy to implement by 
standard shift registers, and is most suitable for floating point arithmetic as discussed in Chapter 8. But a 
representationally closed binary shift is not as easy, and requires intradigit propagation. Standard shift 
registers can be used for a binary shift, where the result should be modified for preserving the 
representational closure property.
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10.5 Summary

In this Chapter we studied the usual arithmetic support operations for WTS encodings focusing on the 
three selected encodings of Chapter 8 as candidates for general purpose representationally closed 
redundant arithmetic. We showed that twit-wise inversion of an SPT encoded number negates its value, 
but negation of the other two encodings requires intradigit propagation. We provided high level 
logarithmic latency logic to be used for sign, zero, and over/underflow detection operations, while 
presenting details of feeding the shared logic in case of each of the encodings. To keep the latency 
overhead of over/underflow detection to a minimum constant delay, we showed that trusting the 
apparent over/underflow signals, which are virtually available immediately after an arithmetic operation, 
sacrifices less than 0.8%, little over 0.5%, and less than 0.4% of the representable range of SPT, SUT, 
and the SDB hybrid redundant encodings, respectively. Finally we noted that the radix shift needed for 
redundant floating point operations can be performed in constant time, while other shifts (e.g., binary) 
require intradigit propagation.
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Chapter 11 | Conclusions

This research aimed at developing representationally closed redundant number encodings with efficient 
high level design of redundant arithmetic operations, which are suitable for a general purpose carry free
arithmetic processor. A number of properties were enumerated for the desired number representations 
and the arithmetic algorithms to manipulate them, namely:

• Symmetry, or minimal asymmetry
• Digit set preservation
• Maximal encoding efficiency
• Representational closure
• Periodicity

The last two properties are essential for regularity and reusability in VLSI implementation. 

In Chapter 2 we examined conventional signed digit number systems, and offered two's complement 
encoding of signed digits with a novel modification in the carry-free addition algorithm, where a 
position sum is compared with r ⁄ 2 (r being the radix) instead of α (representing the digit set [–α, α]). 
This modification was shown to lead to fairly efficient implementation of carry-free addition. 

Searching for even more efficient representations and algorithms, we developed the class of stored 
transfer encodings in Chapter 3, where each digit is composed of a main two's complement number and
a stored transfer value. The concept of storing the transfer instead of conventional fusing of the transfer 
with the next digit of the result, helped in reducing the addition latency. We proved some theorems on 
the properties of this new class, specially the necessity of at least three, and sufficiency of four transfer 
values for carry-free addition of stored transfer encoded numbers. The basics of a virtually two-valued 
stored transfer scheme with increased encoding efficiency were established.

Generalization, usually leads to discoveries of special useful cases. In Chapter 4, we presented a 
generalization of the stored transfer scheme called the weighted bit-set (WBS) encoding. We showed 
that this generalization is indeed a unified representation of previously explored redundant number 
systems including the generalized signed digit number systems, the hybrid redundancy scheme, and the 
stored transfer representation. We developed general arithmetic algorithms for WBS encoding based on 
using readily available and highly optimized, building blocks developed for conventional binary 
arithmetic. In particular by limiting the propagation to posibits, we showed advantages over the hybrid 
redundancy scheme, where coexistence of borrow and carry propagation slows arithmetic operations.
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In Chapters 5 and 6 we explored an interesting class of WBS encoding as an extension to hybrid 
redundancy scheme, which allowed for designing symmetric hybrid redundant number systems with 
arbitrary spacing of redundant positions such as the stored posibit transfer (SPT) encoding. In our 
extended hybrid redundancy scheme, negabits are allowed in nonredundant positions. We introduced the 
concept of inverted encoding of negabits (contrary to conventional encoding of negabits), and proved 
interesting properties of this novel encoding. The inverted encoding of negabits, surprisingly allowed for 
greater efficiency, while only standard cells, such as full/half adders, are used in the implementation of 
arithmetic operations. Possibility of using standard carry acceleration techniques for hybrid redundancy 
with inverted encoding of negabits is another important advantage.

The WBS encoding with all its interesting properties failed to exactly represent the virtually two-valued 
stored transfer encoding introduced in Chapter 3. We were thus motivated to further generalize the WBS 
encoding by introducing the concept of two-valued-digit (twit) in Chapter 7, which provides, as a special 
case, the two-valued unibit needed for two-valued stored transfer scheme. We also developed the bias 
encoding of twits, of which the inverted encoding of negabits is a special case, and showed that standard 
full/half adders, conventional compressors, and counters may be used to manipulate twits. We 
introduced our, super general, weighted twit-set encoding covering all the previously explored redundant 
number systems and allowing for new systems not explored before including those with discrete digit 
sets such as the shifted stored unibit transfer (SUT) encoding. General arithmetic algorithms for WTS-
encoded numbers were offered, and concrete high level designs for special cases from stored transfer, 
hybrid redundant, and extended hybrid redundant schemes were provided.

In Chapter 8 we reviewed the number systems and encodings described in Chapter 2-7, and provided a 
table summarizing all the properties of the encodings discussed as a tool to help in selection of a desired 
encoding meeting the needs of a particular task. Using this table, we selected three of the encodings as 
candidates for general purpose carry free arithmetic. The selected encodings are the symmetric SPT 
encoding, minimally asymmetric SUT, and SDB hybrid redundant representations. The two latter 
encodings were augmented with extra twits in their most significant positions leading to greater 
encoding efficiency. For better comparison of symmetric SPT encoding and the other two asymmetric 
encodings we derived the symmetric range of the asymmetric ones. Subtraction delay penalty was 
another measure considered in the comparison. Conversion of the selected encodings to (from) two's 
complement encoding, were considered in detail for the three selected encodings. Conversion from two's 
complement was shown to be almost immediate, but the reverse conversion requires obligatory carry 
propagation. We designed special carry look-ahead logics to reduce the latency of conversions. 
Peculiarities of floating point arithmetic on the three selected encodings were discussed. Choosing the 
radix of the exponent equal to that of the encodings prohibits the introduction of any time penalty for 
implementing the required shift operations for preliminary alignment and post-normalizations needed in 
floating point arithmetic.

To complete the set of arithmetic operations on the three candidate encodings, we provided, in Chapter 
9, high level carry free representationally closed multiplication and division algorithms, where interdigit 
carry propagation was not allowed, and WTS encodings were used for intermediate results. We showed 
that standard optimization techniques used in the design of efficient nonredundant multipliers, including 
the Booth recoding of the multiplier, and the popular (4; 2) compression of partial products can be 
directly used in the design of redundant multipliers, all achieved through the magic of inverted encoding 
of negabits. We found subtractive division methods not suitable for our redundant encodings, while 
multiplicative division proves to be appropriate. We then adopted an instance of advanced division 
designs of Flynn et. al [Flyn01] for our selected encodings.
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Arithmetic shifts and negation operations, zero, sign, and over/underflow detection are arithmetic 
support operations that should necessarily be considered for a full treatment of a general purpose carry 
free arithmetic. We covered these topics in Chapter 10, where we provided special logarithmic latency 
logic shared between zero, sign, and over/underflow detection units. We noted that trusting the apparent 
over/underflow signals, which are immediately available after arithmetic operations on redundant 
operands, prohibits the delay penalty for real over/underflow detection. The latter is achieved at the cost
of minor sacrifice in representation range of the underlying encoding. The figures for radix-256
encodings (i.e., with every 8th position being redundant), were 0.8%, 0.5%, and 0.4% range losses for 
SPT, SUT, and SDB hybrid redundant encodings, respectively.

To summarize the main results, we have achieved in this research:

� A platform for general purpose carry-free arithmetic consisting of:
� number system encoding (Chapters 3, 4,and 7) 
� Efficient high level design of basic arithmetic operations and arithmetic support 

operations (Chapters 2, 5, 6, 9, and 10)
� Guidelines for code optimization techniques for efficient use of carry-free instructions

� Development of new concepts in computer arithmetic such as:
� Representational closure
� Inverted encoding of negabits
� Two-valued digit (twit) arithmetic
� Bias encoding of twits leading to enhanced regularity in VLSI design

� Introduction of novel redundant number representations, and their efficient implementation such 
as:

� Stored transfer encoding of redundant number systems
� Weighted bit-set encoding, which provides for:

• Unification of GSD and hybrid redundant number systems
• Extension of hybrid redundancy scheme to include symmetric  number systems with 

arbitrary digit sets
� Weighted twit-set encoding covering all possible redundant number systems including 

those with discrete digit sets

Some possible topics for continuing research are: 
• Twit interpretation of digit-set conversion
• Necessary and sufficient conditions for constant time WTS conversion
• Representability of any digit set by twits
• Impacts of WTS arithmetic on computer architecture
• Impacts of WTS arithmetic on compiler and code optimization techniques
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