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Chapter 1

INTRODUCTION

People from the beginning of recorded history have constructed barriers
across rivers and other water courses to store or divert water. The earliest
of these dams were used to water farms. For example, the ancient Egyptians
built earth dams that raised the river level and diverted water into canals to
irrigate fields above the river. Behind the dam, waters pile up to form an
artificial lake which sometime can be very long. The artificial lake backed up
by a dam is called a reservoir.
Dams are built primarily for irrigation, water supply, flood control, elec-

tric power, recreation, and improvement of navigation. Many modern dams
are multipurpose. Irrigation dams store water to equalize the water supply
for crops throughout the year. Water supply dams collect water for domes-
tic, industrial, and municipal uses for cities without suitable lakes or rivers
nearby for a water supply. Flood control dams impound floodwaters of rivers
and release them under control to the river below the dam. Hydroelectric
power dams are built to generate electric power by directing water in pen-
stocks through turbines, wheels with curved blades as spokes. The falling
water spins the blades of the turbines connected to generators. Power dams
are expected to generate power to repay the cost of construction. The out-
put depends, first, upon the head of water, or height of stored water above
the turbines. The higher the water the more weight and pressure bear upon
the turbine blades. A second factor is the volume of water throughout the
year. The minimum flow in dry months fixes the amount of firm power
which customers can rely upon to receive regularly. Sometimes extra power,
or run-of-stream power, generated in flood seasons can be sold, usually at
lower rates.

9



10 CHAPTER 1. INTRODUCTION

Dams also provide benefits other than those mentioned above. Their
reservoirs provide recreation, such as fishing and swimming. They become
refuges for fish and birds. Dams conserve soil by preventing erosion. They
slow down streams so that the water does not carry away soil. Dams can
also create problems. Their reservoirs may cover towns or historic and scenic
places. Dams may impair fishing. Another problem of dams is silting. Some
rivers pick up clay and sand and deposit them behind the dam, thereby
lessening its usefulness.

1.1 TYPES OF DAMS

Dams range in size and complexity of construction from low earth embank-
ment constructed to impound or divert water in small streams to massive
earth or concrete dams built across major rivers to store water. The type of
dam that is built and its size are a complex function of a demonstrated neces-
sity for water storage or diversion, the amount of water available, topography,
geology, and kinds and amount of local materials for construction. Although
large embankment dams do not posses the graceful and architecturally at-
tractive configurations of many concrete dams, they commonly require an
equal amount of engineering skill in planning, design, and construction. The
world’s largest dams, as measured by the volumes of materials used in their
construction, are embankment dams. In contrast, many of the world’s high-
est dams are built of concrete, and many of them are 180 m (600 ft) or more
high.
There are several basic types of dams. Differences depend on their geo-

metric configurations and the material of which they are constructed. Under
special circumstances, feature of the basic types are combined within a par-
ticular dam to meet unusual design requirement. The followings are the main
types of dams:
1. Embankment dams.
a. Homogenous dams, constructed entirely from a more or less uniform

natural material.
b. Zoned dams, containing materials of distinctly different properties

in various portions of dams.
2. Concrete arch and dome dams.
a. Single arch and dome dams.
b. Multiple-arch and multiple-dome dams.
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3. Concrete gravity and gravity-arch dams.
4. Concrete slab and buttress dams.
5. Dams combining two or more basic characteristics of the above basic

types.

1.1.1 Embankment Dams

A broad spectrum of natural and fabricated materials have been used in the
construction of embankment dams. Embankment dams are made by building
an embankment of gravel, sand, and clay across a river. To prevent leakage,
often a core, or inner wall, of concrete or other watertight materials is used.
In a rolled-fill dam, earth is hauled by vehicles onto the dam and rolled tight
with heavy machinery. In the hydraulic fill dam, earth is carried to the dam
by water in pipes or flumes and also deposited by the water. The placing of
the earth is so controlled that the finer, watertight materials form the core.
In the semihydraulic fill dam, trucks bring the earth to the dam and jets
of water distribute the materials. Rock dams are made by dumping rocks
across the river. A wall of rocks is then laid on the upstream side and over
this is built a waterproof facing of reinforced concrete, timber, or steel.
Controlling factors in choosing this type of dam are the amounts and

types of materials locally available for construction and the size and con-
figuration of the dam. Many small embankment dams are built entirely of
a single type of material such as stream alluvium, weathered bedrock, or
glacial till. Larger embankment dams generally are zoned and constructed
of a variety of materials, either extracted from different local sources, or
prepared by mechanical or hydraulic separation of a source material into
fractions with different properties. Where rock is used extensively, it may be
obtained by separation from bowldery stream deposits, glacial till, side-rock
accumulations, or by quarrying.
Construction of an embankment dam requires prior investigation of foun-

dation geology and an inventory and soil-mechanics study of materials avail-
able for emplacement in the embankment. An important element in a zoned
dam is an impermeable blanket or core which usually consists of clayey ma-
terials, obtained locally. In the absence of such materials, the dam is built of
quarried rock or unsorted pebbly or bowldery deposits, and the impermeable
core is constructed of ordinary concrete or asphaltic concrete. Alternatively,
in locations where natural impermeable materials are unavailable, embank-
ment dams are built of rock or earth-rock aggregates and impermeable layers
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Figure 1.1: Idealized section of embankment dams a) Rock-fill dam with
symmetrical clay core b) Rock and gravel dam with reinforced concrete slab

of reinforced concrete, asphaltic concrete, or riveted sheet steel are placed on
the upstream face of the dam. Control of seepage through the dam or under
it commonly requires installation of porous materials within or immediately
beneath the dam.

Embankment dams have been built on a great variety of foundations,
ranging fromweak, unconsolidated stream or glacial deposits to high-strength
sedimentary rocks and crystalline igneous and metamorphic rocks. A partic-
ular advantage of an embankment dam, as compared with a concrete dam, is
that the bearing-strength requirements of the foundation are much less. Mi-
nor settlement of an embankment dam owing to load stresses during and after
construction generally is not a serious matter because of the ability of the
embankment to adjust to small dislocations without failure. Cross-sections
of selected examples of embankment dams are shown in figure 1.1.
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1.1.2 Concrete Arch and Dome Dams

The ultimate complexity of design and analysis of stresses is attained in
arch and dome dams. These dams are thin, curved structures commonly
containing reinforcing, either steel rods or prestressed steel cables. Volume
requirements for aggregate for manufacture of concrete are much less than in
gravity and gravity-arch dams, but the competency of bedrock in foundations
and abutment to sustain or resist loads must be of a high order. Arch dams
usually are built in narrow, deep gorges in mountainous regions where access
and availability of construction materials pose especially acute problems. At
sites where abutments are not entirely satisfactory rock may be excavated
and replaced with concrete to form artificial abutments. Their height can be
as high as 272 m (905 ft).
Arch dams are of two kinds. Constant-radius arch dams commonly have

a vertical upstream face with a constant radius of curvature. Variable-radius
dams have upstream and downstream curves (extrados and intrados curves)
of systematically decreasing radii with depth below the crest When a dam
is also doubly curved, that is, it is curved in both horizontal and vertical
planes, it is sometimes called a ”dome” dam. Curves that have been used in
construction of arch or dome dams are arcs or sectors of circles, ellipses, or
parabola. Some dams are constructed with two or several contiguous arches
or domes, and are then described as multiple arch or multiple-dome dams.
Figure 1.2 shows Cross-section of several varieties of arch dams.
Engineering analysis of arch and dome dams assumes that two major

types of deflections or dislocations affect the dam and its abutments. Pressure
of water on the upstream face of the dam and, in some instances, uplift
pressures from seepage beneath the dam, tend to rotate the dam about its
base by cantilever action. In addition, the pressure of reservoir water tends
to flatten the arch and push it downstream, so that stresses are created which
act horizontally within the dam toward the abutments. That portion of the
bedrock abutment which receives the thrust from the load of reservoir water
either by a tendency for downstream movement of the dam or flattening of
the arch is called the thrust block and must be sufficiently strong to resist the
forces acting on it without failure or appreciable, dislocation. Simply stated,
an arch dam utilizes the strength of an arch to resist the loads placed upon it
by the familiar ”arch action”. It is clear that the foundation and abutments
must be competent not only to support the dead weight of the dam on the
foundation but also the forces that are directed into the abutments because of
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Figure 1.2: Cross-sections of several arch dams

arch action in response to loads created by impounded reservoir water, and,
in areas of cold climates, pressures exerted by ice forming on the reservoir
surface. In regions of seismic activity consideration must also be given to the
interaction of the dam and pulses of energy associated with earthquakes.

1.1.3 Concrete Gravity and Gravity-Arch Dams

A concrete gravity dam has a cross-section such that, with a flat bottom,
the dam is free-standing; that is, the dam has a center of gravity low enough
that the dam will not topple if unsupported at the abutments. Gravity dams
require maximum amounts of concrete for their construction as compared
with other types of concrete dams, and resist dislocation by the hydrostatic
pressure of reservoir water by sheer weight. Concrete gravity dams have
been constructed up to 285 m (950 ft)high. Properly constructed gravity
dams with adequate foundation probably are among the safest of all dams
and least susceptible to failure with time. They withstand the pressure or
push of water by their weight. In cross section, they are like a triangle, broad
at the base and narrow at the crest. They are built in this shape because
water pressure becomes greater with the depth of water. A typical gravity
dam is shown in figure 1.3.
Final selection of the site for a gravity or gravity-arch dam is made only

after comprehensive investigation of hydrologic, topographic, and, especially,
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Figure 1.3: Cross-section of typical concrete gravity dam

subsurface geologic conditions. A favorable site usually is one in a constric-
tion in a valley where sound bedrock is reasonably close to the surface both
in the floor and abutments of the dam.

An important consideration in construction of a concrete gravity or gravity-
arch dam is the availability, within a reasonable hauling distance, of adequate
deposit of aggregate suitable for manufacture of concrete, whether the ag-
gregate is obtained from unconsolidated deposits or is quarried.

The simplest form of a gravity dam is one in which the top or crest
is straight. depending on the topographic configuration of a valley and the
foundation geology, it may be possible to construct a gravity-arch dam which
incorporates the advantages of mass weight and low center of gravity of a
gravity dam with those inherent in an arch dam. in gravity-arch dams the
requirements for sound rock in abutments are somewhat more stringent than
in simple gravity dams.
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Figure 1.4: Cross-section of a concrete buttress dam

1.1.4 Concrete Slab and Buttress Dams

In locations where aggregate for concrete or for earthfill is in limited supply
and the foundation rocks are moderately to highly competent, buttress dams
provide a possible alternative to other kinds of dams. They are up to 130
m (430 ft) high. In cross-section, buttress dams resemble gravity dams, but
with flatter upstream slopes. In a buttress dam a slab of reinforced concrete
upstream rest on a succession of upright buttress which have thicknesses and
a spacing sufficient to support the concrete slab and the load of the water
in the reservoir that exert on the slab. A cross-section of a typical buttress
dam is shown in figure 1.4

1.2 APPURTENANTFEATURESOFDAMS

Appurtenances are structures and equipment on a project site, other than
the dam itself. They include, but are not limited to, such facilities as intake
towers, powerhouse structures, tunnels, canals, penstocks, low-level outlets,
surge tanks and towers, gate hoist mechanisms and their supporting struc-
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tures, and all critical water control and release facilities. Also included are
mechanical and electrical control and standby power supply equipment lo-
cated in the powerhouse or in the remote control centres.
In previous sections of this chapter the characteristics and configurations

of basic types of dams have been outlined, but no consideration was given to
the various appurtenant features that enable use of a dam and the reservoir
behind it for their intended purposes. In this section mention is made of
various features that are incorporated into the designs of dams for control
of flow of water impounded in the reservoir through or outside of a dam.
Design of many of these features requires intensive prior investigations of
hydrology, topography, and subsurface geology of the dam site. Following is
a tabulation and description of several kinds of appurtenant features included
in the construction of dams.
Coffer dams usually are temporary structures built upstream from a

dam to divert stream flow around the excavation for a dam. In valleys of
steep profile diversion commonly is accomplished by a tunnel or tunnels in
the walls of the valley. Commonly the diversion tunnels are put to further
use to control flow from reservoir either for drainage of the reservoir or for
flow under pressure into a hydroelectric generating plant. In valleys of low
profile diversion is by tunnels, canals, or by conduits which subsequently
are buried by the dam. It is not unusual in embankment dams to incorporate
the coffer dam into the larger embankment structure comprising the designed
dam.
Tunnels in bedrock outside of dams serve a variety of purposes. Flow

through them is controlled by valves external to the dam or in valve chambers
or vaults within the dam or in bedrock outside of the dam. Tunnels for control
of the water level in the reservoir are commonly called gravity tunnel and
serve a principal function in diverting water to some point downstream from
the dam. Tunnels that transmit water under pressure to elevate the water to
a higher level than the intake of the tunnel or to generate hydroelectric power
are called pressure tunnel and usually require considerable competency in the
rock through which they are constructed . Valves control the flow of water
through tunnels and penstocks. In many large dams the valves are installed
in underground vaults or chambers to which access is gained downstream
from the dam.
Many dams are constructed to generate hydroelectric power. The pow-

erhouse is located at, or in the vicinity of, the toe of a dam or at some
distance downstream. Flow of water into the power house is controlled by
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valves upstream from the dam, within the dam downstream, or in valve
vaults excavated in rock outside of the dam.
A sluice is a passage through the dam itself for lowering the water level

of the reservoir. Pipes for conducting water to the power turbines are called
penstocks. The flow of water from intake towers through spillways, sluices,
and penstocks is regulated by control gates.
A Spillway is designed to contain and control overflow of reservoir water

when the reservoir is full. Spillways are, or should be, designed to accommo-
date flows during maximum flood stage so as to prevent damage to the dam
and appurtenant features. Their size and location with respect to the dam
is determined by the size and type of dam, local topography geology and a
careful review of the history of stream flow at the site of the dam. Water
may pass over the crest of the dam itself, or near the dam in chutes, tun-
nels, or shafts. Overflow of embankment dams outside of a spillway can have
especially disastrous consequences so that safety usually requires a spillway
capable of containing at least a hundred-year flood. Spillways are located
within or on the downstream face of a dam outside of the dam on one side or
the other, or within the reservoir, where water spills into a ”glory hole” and
passes through a shaft and tunnel or tunnels in the abutment of the dam.
Gates are devices installed in the tops of spillways to control the flow of

water over the spillway.
Levees are artificial riverbanks constructed high enough to prevent flood-

ing. A dam across a river intended to permit flow, once a certain depth of
water has been reached, may be called a barrage. A small dam that forms
a millpond or fishpond is called a weir.

1.3 SAFETYOFDAMSANDRESERVOIRS

There are Several types of reservoirs as defined by their locations. The com-
mon type is a reservoir behind a dam in a valley. Increasing use is being made
of tidal-storage reservoir for power generation along coast lines and excavated
reservoirs for water storage for municipal or other use. In the latter type the
excavated material commonly is employed to construct an embankment on
one or all sides of the reservoir.
Reservoirs and their associated dams serve many purposes including elec-

tric power generation, storage and diversion of irrigation water, storage of
industrial and municipal water supplies, recreation, and flood control. Less



1.3. SAFETY OF DAMS AND RESERVOIRS 19

frequent uses of reservoirs include storage and control of stream water for
navigation, and storage of sewage and waste products from mining or manu-
facturing operations. In some stances fuel powered and thermonuclear power
plants require large volumes of cooling water, and reservoirs are constructed
for this purpose. Whether a dam backs up water for a long or a short dis-
tance is not important from the structural point of view. Pressure depends
not upon how far water is backed upstream but upon its depth at the dam.
But the length of the reservoir and its capacity may change the risk associated
in the case of failure.
There are no accurate records of the number of dams that have failed

throughout the history of their construction. However, ruins of dams built
through a long span of history in both ancient and more recent times indicates
that the number must be high, probably in the thousands, if dams of all
heights are included in the count. The magnitude of floods generated by
dam failure or by collapse of the walls of a reservoir are not related to the
height of a dam. More pertinent is the volume of water stored in the reservoir
behind the dam, and the configuration of the valley below it, wether the dam
is low or high.
The cost in human life, goods, and property damage of a flood generated

by breaching of a dam or collapse of reservoir wall depends to a large extent
on the magnitude of flood and what lies in the pathway of the flood. With
an expanding population in many part of the world and an increasing occu-
pation of floodplains by dwellings, commercials and industrial facilities , and
highways, dam built long ago and dam built in recent times present a grow-
ing potential for massive destruction of life and property. the cause of floods
associated with failure of dams and reservoir are numerous. In embankment
dams a common cause of breaching is overtopping of existing spillways or
waterlevel control facilities, although some failures have been attributed to
slope failure, foundation subsidence, or earthquake damage. Failure of con-
crete dams usually is attribute to imperfect design or construction, to use of
inferior materials in the dam, or to failure of foundation and/or abutment
rocks. Construction of a dam and reservoir imposes new loads on foundation
materials. Initial adjustment in the dam and foundation occurs as the dam is
being built and as the load on the foundation is increased to a final load equal
to the weight of the dam. Filling of the reservoir impose additional loads not
only on the floor and wall of the reservoir but also on the upstream face of the
dam. As the reservoir level is decreased and increased these loads fluctuate ,
and a cycle dynamic system of changing loads is superimposed on the static
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load of the dam on its foundation. Seepage of water through or beneath the
dam may produce slow deterioration that may promote eventual failure. The
responsibility for the safety of dams and reservoirs no longer belongs only to
the designer and builder but must be shared by those who have knowledge
and understanding, however imperfect they may be, of the expected behav-
ior of natural materials under the condition superimposed by the loads of
dams and reservoirs. Modern technology and social responsibility require
that safe construction and maintenance of dams and reservoir shall be the
shared responsibility of engineers, geologists, and rock mechanical expert.
Recognition of the need for worldwide surveillance of dams and reservoirs

with emphasis on their safety has resulted in the formation of the Inter-
national Commission on Large Dams (lCOLD) a unit of the World Power
Conference within individual countries increasing efforts are being made to
regulate and maintain continued safety of dams and reservoirs through the
close cooperation of engineering organizations and government agencies. In
spite of these good works, dams continue to fail, and intensification of efforts
to assure the safety of existing dams and reservoirs and those that will be in
the future is an increasingly urgent necessity.

1.4 HOW DAMS ARE BUILT

The methods of building dams can be envisioned by following the construc-
tion of Hoover Dam, built between 1930 and 1935. The engineers constructed
a concrete arch-gravity dam at an approved cost of $174,000,000. It is as tall
as a 60-story skyscraper. Its crest is 45 feet (14 meters) thick and its base,
660 feet (201 meters). It stores the entire flow of the Colorado River for two
years. Much preliminary work had to be done. The engineers made geologic
and topographic surveys to select the site. They made maps of 70 locations,
bored holes to test the rock for a sound foundation, and studied the river’s
speed, high water level, and silting. Once the location was chosen, designers
made their plans. They then made models to test their design. Where once
had been burning desert, engineers built Boulder City to house about 5,000
workers. Construction gangs built railroads and highways for transporting
great quantities of equipment and materials. Workmen strung cables across
the canyon from pairs of towers, which travel on tracks along opposite sides
of the site. Each of the five cableways could carry 25 tons (22,680 kilograms).
Two of them had spans of nearly half a mile. Construction crews also built
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a great gravel screening plant and two huge concrete mixing plants.
On each side of the river two tunnels, each 50 feet (15 meters) in di-

ameter, were drilled and blasted from the rock of the canyon walls. These
tunnels were used to divert the river around the site. When construction
was completed the tunnels served as spillway outlets and penstocks for the
power plant. Next, cofferdams of earth and rock were built upstream and
downstream from the dam site to block the river. ”High scalers” stripped
tons of loose and projecting rock from canyon walls. The overburden, or
loose rock and muck, was dug out to expose the bedrock. Grout, a thin mor-
tar of cement and water, was next forced into the foundation to fill seams
and holes. Forms were made. These would be used for building the dam in
enormous blocks. Concrete was poured into the forms from eight-cubic-yard
buckets traveling on the cableways. As each block of concrete dried, grout
was pumped between the blocks, making the dam into one solid piece. Al-
lowing so gigantic a structure to cool naturally would have taken a century
because of the heat given off by the setting cement. In addition the concrete
would have shrunk and cracked. Cold water circulating through 528 miles
(850 kilometers) of one-inch (25-mm) pipes embedded in the concrete carried
off the heat. Refrigerating pipes were also used to freeze landslides of wet
earth at Grand Coulee Dam. Another problem was the freezing of control
gates in winter. A huge electrical heating apparatus was installed in the
spillway and gates.

1.5 FAMOUS DAMS OF THE WORLD

Rogun and Nurek, in Tajikistan, are among the world’s highest dams. They
rise to a height of more than 1,000 feet (300 meters) each. Some of the
world’s other major dams are Grande Dixence andMauvoisin, in Switzerland;
Chicoasen, in Mexico; Inguri, in Georgia; Sayano-Shushensk, in Russia; Mica,
in Canada; and Guavio, in Colombia. Three of the foreign dams that are
constructed of the largest volume of materials are Tarbela, in Pakistan; Lower
Usuma, in Nigeria; and Guri, in Venezuela. Dams that form the largest
reservoirs in capacity are Owen Falls (Lake Victoria), in Uganda; Bratsk, in
Russia; Kariba Gorge, bordering Zambia and Zimbabwe; and Aswan High, in
Egypt. One of the oldest great dams is Egypt’s Aswan for irrigation on the
Nile, finished in 1902. The Dnepr, completed in 1932, was one of the earliest
major Soviet dams. Another historical dam is Mettur, on the Cauvery River
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in India. The world’s first dam to furnish hydroelectric power from ocean
tides was completed in 1966. It is located on the Rance River, near St-Malo,
in France.

The following tables show some of the famous dams of the world with their
specifications. In the tables the followings notation was used for simplicity.

H-Height (ft);

L-Length (ft);

M-material in dam (cu yd);

RC-Reservoir Capacity (billions of gal)

A—Arch;

B—Slab and buttress;

C—Concrete;

E—Rolled earth fill;

G—Gravity;

H—Hydraulic earth fill;

M—Multiple arch;

R—Rock fill;

S—Stone masonry;

FC—Flood control;

I—Irrigation;

M—Mining;

N—Navigation; P—Power;

RP—Recreation purposes;

RR—River regulation;

WS—Water supply;

UC—Under construction.
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Table 1.1 Highest dams of the world

Name Location Typ e Purp ose Year H L M R

Rogun Ta jik istan E P-I 1987 1,066 2,506 81,096,000 3,091

Nurek Turkmenistan E P-I 1980 1,040 2,390 75,864,000 2,745

Grande D ixence Sw itzerland C-G P 1962 935 2,280 7,792,000 106

Inguri Russia A P-I-FC 1980 892 2,513 4,967,000 261

Vaiont Ita ly A - 1961 858 624 460,000 -

Tehri Ind ia E-R - UC 856 - - 935,271

Guavio Colombia E-R - 1989 807 1,280 23,223,000 269

M ica Canada E-R P-FC 1974 794 2,600 42,000,000 6,517

Sayano-Shushenshaya Russia A P-N 1980 794 3,504 11,916,000 8,261

Chicoasen M exico E-R P 1981 787 1,568 15,700,000 439

Chivor Colombia E-R P 1977 778 919 14,126,000 215

Mauvoisin Sw itzerland C-A P 1957 777 1,706 2,655,000 48

Oroville Californ ia E P-I-FC -WS 1968 770 6,920 78,008,000 1,153

Chirkeyskaya Russia A P-I-FC -WS 1975 764 1,109 1,602,000 734

Bhakra Ind ia C-G P-I 1963 742 1,700 5,400,000 2,607

Hoover USA C-A-G P-I-FC -RR 1936 726 1,244 4,400,000 9,696

Contra Sw itzerland A P 1965 722 1,246 861,000 23

Mratinje Yugoslavia A P 1975 722 879 971,000 232

Dworshak Idaho G P-FC-RP 1972 717 3,287 6,500,000 1,125

G len canyon USA C-A-G P 1964 710 1,560 4,901,000 8,798

Toktogu l Kyrgyzstan A P-I 1977 705 1,476 4,186,000 5,148

Daniel Johnson Canada C-M P 1968 703 4,311 2,950,000 37,473

Luzzone Sw itzerland C-A P 1963 682 1,738 1,739,000 23

Keban Turkey E-R -G P 1974 679 3,881 20,900,000 8,182

Dez Iran C-A P-I 1963 666 696 647,000 882

A lmendra Spain A-G P 1970 662 1,860 2,188,000 700

Kolnbrein Austria A P 1978 656 2,054 1,995,000 53

Karun Iran A P-I 1975 656 1,247 1,570,000 766

New Bullard ’s Bar USA A P-I-FC -RP 1970 637 2,200 2,700,000 557

New Melones USA E-R P-I-FC -RP 1975 625 1,600 15,970,000 782
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Table 1.2 L arg est dams of the world

Name Lo cation Typ e Purp ose Year H L M R.

New Cornelia Tailings USA E M 1973 98 36,500 274,026,000 6

Tarb elaName Pakistan E-R P-I 1976 470 9,000 159,200,000 3,617

Fort Peck USA H P-I-FC -N 1940 250 21,026 125,612,000 6,234

Lower Usuma N igeria E - 1990 528 14,531 121,640,000 26

Ataturk Turkey E-R - 1990 604 5,971 110,522,000 -

Guri Venezuela E-R -G P 1986 531 30,853 101,819,000 36,720

Yacyreta-Apip e Argentina-Paraguay E-G P-I-W S-RP UC 108 164,000 95,063,000 4,464

Oahe USA E P-I-FC -N 1963 245 9,300 92,008,000 7,687

Mangla Pakistan E P-I 1967 380 11,000 85,872,000 1,678

Gard iner Canada E P-I-W S 1968 223 16,700 85,743,000 2,607

A fslu itd ijk The Netherland E FC-WS 1932 62 10,500 82,927,000 1,585

Rogun Ta jik istan E P-I 1987 1,066 2,506 81,096,000 3,091

Orov ille USA E P-I-FC -WS 1968 770 6,920 78,008,000 1,153

San Luis USA E P-I 1967 382 18,600 77,666,000 664

Nurek Turkmenistan E P-I 1980 1,040 2,390 75,864,000 2,745

Garrison USA E P-I-FC -N 1956 203 11,300 66,506,000 7,925

Oosterschelde The Netherland E-G FC-WS 1986 164 29,528 65,397,000 -

Co chiti USA E FC-RP 1957 253 26,891 64,631,000 167

Tabka Syria E P-I-FC 1975 197 14,764 60,168,000 3,698

K iev Ukraine E-G P-N 1964 72 177,448 57,552,000 984

Aswan H igh Egypt E-R P-I-RP 1970 364 12,565 57,203,000 44,642

Bennett Canada E P 1967 600 6,700 57,203,000 18,575

Tucurui B razil E -G P-N -WS 1984 282 13,779 56,244,000 8,982

M ission Trailing #2 USA E - 1973 128 - 52,435 15

Fort Randall USA E P-I-FC -N 1956 165 10,700 50,205,000 1,858

Kanev Ukraine E P 1974 82 52,950 49,520,000 692

Itumbiara Brazil E -G - 1980 328 21,981 47,088,000 4,499
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Table 1.3 Dams with greatest reservoir

Name Location Type Purp ose Year H L M R

Owen Falls Uganda C -G P-I 1954 100 2,725 - 54,091

Bratsk Russia E -C -G P-N -WS 1964 410 16,864 18,283,000 44,713

Aswan H igh Egypt E -R P-I-RP 1970 364 12,565 57,203,000 44,642

Kariba Gorge Zambia-Z imbabwe C -A P 1959 420 2,025 1,350,000 42,361

Akosombo Ghana R P 1965 463 2,100 10,400,000 39,102

Daniel Johnson Canada C -M P 1968 703 4,311 2,950,000 37,473

Guri Venezuela E—RG P 1986 531 30,853 101,819,000 36,720

Krasnoyarsk Russia C -G P-FC -N 1972 407 3,493 5,685,000 19,364

Bennet Canada E P 1967 600 6,700 57,203,000 18,575

Zeyskaya Russia B P-I-FC 1975 369 2,343 3,139,000 18,069

1.6 POWER GENERATOR, FLOOD CON-
TROL AND IRRIGATION DAMS

1.6.1 Power Generator Dams

Most electric power is generated in large plants that use coal, gas, oil, or
nuclear energy. Electric energy may also be obtained from waterpower. The
roar of a waterfall suggests the power of water. Rampaging floodwaters can
uproot strong trees and twist railroad tracks. When the power of water is
harnessed, however, it can do useful work for man. Since ancient times man
has put to work the energy in the flow of water. He first made water work
for him with the waterwheel—a wheel with paddles around its rim. Flowing
water rotated the waterwheel, which in turn ran machinery that was linked to
it. Today, new kinds of waterwheels spin generators that produce electricity.
Electricity from water-turned generators is called hydroelectric power.
Waterpower produces about 8 percent of the electricity used in the United

States. It accounts, however, for only a fraction of the total energy used
for mechanical power, heat, light, and refrigeration. Coal, petroleum, and
natural gas supply most of the rest. Among water’s virtues as a source of
power is the fact that it can be used again after it supplies energy, while other
energy sources are destroyed when they are used. Hydroelectric installations
also supply added benefits to a region. For example, a dam built to provide
a head for water turbines usually creates a reservoir that can supply water
for irrigation and drinking. Water passes downward through a hydraulic
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turbine that is connected to a generator. Large plants, which depend on
large volumes of water dammed upstream, can generate more than 2,000
MW. There are many small plants on rivers, some generating only a few
hundred kilowatts. Among the largest plants in the United States are Hoover
Dam and the Grand Coulee Dam. Hoover Dam has an installed capacity of
1,244 MW. Grand Coulee has an installed capacity of 2,025 MW. It is part
of the Columbia River Basin project, which has a planned capacity of 9,770
MW.
The power produced by water depends upon the water’s weight and head

(height of fall). Each cubic meter of water weighs 1000 kilograms. For
example, a column of water that is one meter square and one meter high
would contain one cubic meter of water. It would press upon each square
meter of turbine blade with a force of 1000 (1 x 1000) kilograms. Engineers
measure waterpower in terms of watts (kilowatts or megawatts). One watt is
the force it takes to raise one kilogram one meter in one second. The power
potential of a waterfall is found by multiplying its flow, measured in cubic
meter per second, by its height, measured in meter. Then the product is
multiplied by 980, which is 1000 (the number of kilogram in a cubic meter
of water) multiplied by 9.81(gravitational acceleration). For example, a 100-
meter high waterfall with a flow of 10 cubic meter per second would develop
100 x 10 x 980, or 980,000, watts. The output of a hydroelectric plant is
usually measured in kilowatts or megawatts of electricity.

1.6.2 Flood Control Dams

One way to avoid floods is to take the obvious precaution of living where
there is no danger of high waters. It has always been convenient and often
necessary to build homes and factories on the floodplains along rivers and
streams and on the seacoasts. American pioneer settlers depended upon the
streams for drinking water, transportation, and power to run their mills and
factories. Floodplains, deep with the silt laid down by overflowing rivers, are
fertile farmlands. The earliest towns and farms, therefore, were established
along the riverfronts, and large portions of them were built on land that was
subject to periodic flooding. While the communities were small, the damages
suffered from floods were limited. With the great population and industrial
growth of the cities, flood damage has become a serious national problem.
One of the basic approaches to flood control is to minimize the extent of
flooding by building dams, reservoirs, levees, and other engineering works.
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Engineers in ancient times built earthen mounds to keep back floodwater.
Such artificial embankments, called levees, held Chinese rivers in check for
centuries. This method was followed in colonial America.
Because a levee at one point confines the water there and raises the peak

of flood waters upstream and downstream, levees once started usually have
to be built at all the low points of a river system. Furthermore, a system of
levees is only as strong as its weakest spot. Thus uniform height and strength
are required. Only a government which controls the river from end to end
can safely supervise levee building. Floodways and spillways divert excess
water from the main river channel and carry it off by a different route.
Dams and the reservoirs behind them help control floods. By emptying a

dam before a flood is expected, storage space is obtained in which the flood
waters can be impounded for gradual release later. Even if the reservoir is
nearly full, it acts like a safety valve. The amount of water which would add
3 meter to the height of a river 30 meter wide would add only one meter
to a reservoir or lake 90 meter wide. Moreover, evaporation from the broad
surface of a reservoir or lake is far greater than evaporation from the narrow
surface of a river. Thus less water flows on to swell floods downstream.
Flood-control dams are built to create big storage capacity and are planned
for rapid filling and emptying. During excessive rains, water collects in the
storage reservoirs and is released in controlled amounts to the channel below
the dams. The water carries with it large quantities of the richest topsoil,
which muddies the rivers and is ultimately lost in the ocean. American
rivers, for example, carry off an estimated 280 million cubic meters of solid
matter each year. Agricultural experts propose to return the steepest hills
along the headwaters of American rivers to forest. By means of terracing,
contour plowing, and a wise choice of plants, runoff and erosion are checked
on gentler slopes. By damming gullies, runoff is slowed, and silt from above
slowly rebuilds the eroded spots. Thus flood prevention and erosion control
go hand in hand. Preventing soil erosion also aids flood control by slowing
the rate at which silt fills the reservoirs behind flood-control dams. Steps to
lessen the effects of drought also aid in flood control. Some lakes, swamps,
and marshes that were once drained to make farm lands are being restored
to preserve the level of underground water in time of drought. This program
also reduces floods by increasing evaporation and by the safety-valve action
of wide lakes or swamps on narrow rivers. Thus the prevention and control of
floods are tied with drought measures as well as with waterpower, navigation,
soil conservation, and land use.



28 CHAPTER 1. INTRODUCTION

1.6.3 Irrigation Dams

Irrigation is the artificial supply of water to agricultural land. It is practiced
by more than half the farmers in the world because they need more water
for their crops than is available from rainfall. Irrigation projects must also
allow for removal of excess water.
Generally the need for irrigation water is highest in the dry season when

river flows are lowest. To ensure continuous supply, water must be stored
on a seasonal and sometimes annual basis. By erecting a dam, an artificial
lake, or reservoir, is created from which water can be released as required.
Some reservoirs are capable of storing billions of gallons of water. Large dams
and the associated reservoirs are often built for multipurpose use—irrigation,
flood control, hydroelectric power generation, municipal and industrial water
supply, and recreation. Systems of dams and reservoirs along a river and its
tributaries are developed with the purpose of providing comprehensive and
integrated water resources management in an entire basin.

1.7 INSTRUMENTATIONSANDSURVEIL-
LANCE OF DAMS

1.7.1 Surveillance

External and internal examination of dams are required during their life time.
Long term surveillance program can ensure dams owner of their safe opera-
tion. Long term surveillance requires instrument installation and monitoring
to assess the performance of structures with respect to design parameters.
Design of monitoring installations is to measure displacement, settlement,
strain, stress, piezometric pressures, seepage, uplift, flow velocity and water
levels, and alarm systems as required for a particular impoundment. Com-
pilation of results on a computerized data base is done and results are inter-
preted and reported in the form of recommendations outlining appropriate
action need to be taken, when it is necessary.

1.7.2 Instrumentation

Instruments are used to characterize dam site condition as well as dam struc-
ture conditions. Instruments can be used for verifying design verification,
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safety assessment, performance assessment.
Design Verification Instruments are used to verify design assumptions and

to check that performance is as predicted. Instrument data from the initial
phase of a project may reveal the need (or the opportunity) to modify the
design in later phases.
Safety Instruments can provide early warning of impending failures, al-

lowing time for safe evacuation of the area and time to implement remedial
action. Safety monitoring requires quick retrieval, processing, and presenta-
tion of data, so that decisions can be made promptly.
Performance Instruments are used to monitor the in-service performance

of a structure. For example, monitoring parameters such as leakage, pore
water pressure, and deformation can provide an indication of the performance
of a dam.
The Choice of Instruments depends on critical parameters of each project.

The designer must identify those parameters and then select instruments to
measure them. What information is required for the initial design? What
information is required for evaluating performance during and after construc-
tion? When the parameters are identified, the specification for instruments
should include the required range, resolution, and precision of measurements.
In some cases It may be necessary to have complementary parameters

and redundant measurements. In some cases, it may be sufficient to monitor
only one parameters but when the problem is more complex, it is useful to
measure a number of parameters and to look for correlation between the mea-
surements. Thus it is common practice to choose instruments that provide
complementary measurements. For example, inclinometer data indicating
increased rate of movement may be correlated with piezometer data that
shows increased pore pressures. Another benefit of selecting instruments to
monitor complementary parameters is that at least some data will always be
available, even if one instrument fails.
Instrument performance is specified by range, resolution, accuracy, and

precision. The economical designer will specify minimum performance re-
quirements, since the cost of an instrument increases with resolution, accu-
racy, and precision. Range is defined by the highest and lowest readings
the instrument is expected to produce. The designer typically specifies the
highest values required. Resolution is the smallest change that can be dis-
played on a readout device. Resolution typically decreases as range increases.
Sometimes the term accuracy is mistakenly substituted for resolution. Res-
olution is usually many times better than accuracy and is never expressed
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as a ± value. Accuracy is the degree to which readings match an absolute
value. Accuracy is expressed as a ± value, such as ±1mm, ±1% of reading,
or ±1% of full scale. Precision or repeatability is often more important than
accuracy, since what is usually of interest is a change rather than an absolute
value. Every time a reading is repeated, the value returned by the instru-
ment is slightly different. Precision is expressed as a ± value representing
how close repeated readings approach a mean reading. The difference in cost
between a high-quality instrument and a lesser-quality instrument is gener-
ally insignificant when compared to the total cost of installing and monitoring
an instrument. For example, the cost of drilling and backfilling a borehole
is typically 10 to 20 times greater than the cost of the piezometer that goes
in it. It is false economy to install a cheaper, less reliable instrument. It
is expensive and sometimes impossible to replace a failed instrument. Even
when it is possible to replace the instrument, the original baseline data is
no longer useful. Some instruments are excellent for short-term applications,
but may exhibit excessive drift over the long term. Temperature and humid-
ity also affect instrument choice. Instruments such as hydraulic piezometers
and liquid settlement gauges have limited use in freezing weather. In tropi-
cal heat and humidity, simple mechanical devices may be more reliable than
electrical instruments.
Consider the personnel and resources at the site when choosing instru-

ments. Do technicians have the skills required to install and read a particular
type of instrument? Are adequate support facilities available for maintenance
and calibration of the instrument?
An automatic data acquisition system may be required when:
(1) there is a need for real-time monitoring and automatic alarms;
(2) sensors are located at a remote site or in a location that prevents easy

access;
(3) there are too many sensors for timely manual readings; or
(4) qualified technicians are not available.
If a data acquisition system is required, the choice of instruments should

be narrowed to those that can be connected to the system easily and inex-
pensively.

1.7.3 Instruments

In the following section, Some instruments used in monitoring of dams are
briefly described.
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Piezometersmeasure pore-water pressure and ground water levels. Piezome-
ter measurements help engineers to Monitor water levels, Predict slope sta-
bility, Design and build for lateral earth pressures, Design and build for uplift
pressures and buoyancy, Monitor seepage and verify models of flow.
Inclinometers may be installed to check that actual movements of a

structure correlate to those predicted during the design phase. Inclinometers
are installed to monitor the magnitude, direction, and Corrective Measures
rate of movement. This information helps engineers determine the need for
corrective measures. Inclinometers are installed for long term monitoring
to detect Long-Term Performance changes in ground conditions or in the
structure itself. Inclinometers, particularly in-place inclinometers that are
monitored continuously, can provide early warning of catastrophic failure.
Horizontal inclinometers are used to monitor settlement in foundations and
embankments. Inclinometers monitor movement, a direct measure of stabil-
ity, so they are often used in site investigations. Installed at the proposed
site for a dam, an inclinometer might detect movement at a sub-surface shear
plane. The shear plane could cause problems later when the reservoir behind
the dam is filled and pore-water pressure along the shear plane increases.
Beam sensors are used for monitoring settlement, heave, lateral defor-

mation, or convergence. Two version of beam sensors are horizontal version
for monitoring settlement and heave and vertical version for monitoring lat-
eral displacement and convergence.
Tiltmeter is used for monitoring changes in inclination. It is used for

monitoring the rotation of concrete dams.
Beam sensors differ from tiltmeters in two important respects: First,

the beam sensor has a defined gauge length, typically 1 to 3 meters, so
changes in tilt can be converted simply and accurately to millimeters of
movement (settlement, heave, convergence, or lateral displacement). Second,
beam sensors can be linked end-to- end to monitor differential movements
and provide absolute displacement and settlement profiles.
Tiltmeters typically have a more limited function, that of monitoring

rotation. A tiltmeter can be used with a large number of tilt plates to
detect differential movement in a structure, but the resulting data cannot
provide absolute displacement and settlement profiles. In general, however,
both types of sensors can be used to evaluate the performance of dams under
load. They Provide early warning of threatening deformations, allowing time
for corrective action to be taken or, if necessary, for safe evacuation of the
area.
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Borehole Extensometers are used to monitor settlement, heave, con-
vergence, and lateral deformation in soil and rock. Typical applications in-
clude monitoring settlement or heave in excavations, foundations, and em-
bankments. Data from the extensometer indicate the depths at which settle-
ment has occurred as well as total amount of settlement.
Pneumatic settlement cells provide a single-point measurement of

settlement. They can be read from a central location and are particularly
useful where access is difficult. They are used to monitor consolidation in
the foundation during construction and monitor long-term settlement in the
foundation and fill.
Surface Extensometers (Tape Extensometer) is used to determine

changes in the distance between reference points anchored in walls or struc-
tures of an excavation, precision measure of convergence.
Load cells are used to proof-test and measure loads in tie- backs, rock

bolts, ground anchors, and struts. They are also used for monitoring the
performance of anchor systems.

Total Pressure Cells measure the combined pressure of effective stress
and pore-water pressure. In general, they are used to verify design assump-
tions and to warn of soil pressures in excess of those a structure is designed
to withstand. Total pressure cells are installed within fills to determine the
distribution , magnitude and directions of total stresses. They can also be
installed with one surface against a structure to measure total stresses acting
on upstream face of the dam, retaining walls, against piles, and pipes. In Em-
bankment Dam Total pressure cells used to confirm design assumptions and
An array of cells provides data to determine distribution, size, and direction
of total stresses within the clay core.
Soil strainmeters are used for monitoring horizontal strain in embank-

ments and monitoring tension cracks in earth structures.
Embeded jointmeters are used for monitoring movement at joints in

mass concrete structures. It is used in mass concrete structures such as dams,
abutments, foundations to monitor movement at joints.
Surface-mount jointmeters are used to monitor movement at joints

and cracks in concrete structures under harsh environments and submersion.
Typical application include monitoring movement at submerged construction
joints in concrete dams and monitoring joints or cracks in tunnels and tanks.
Strain gauge is used for monitoring strain in steel structural members,

reinforced and mass concrete.
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1.8 ECOLOGICAL/ENVIRONMENTALCON-
SIDERATION OF DAM OPERATION

The following observations are generalized from the literature at large. Whether
any particular concern applies to any particular dam is a function of a suite of
factors that might include the dam’s type (e.g. concrete or earth), its purpose
(e.g. hydrologic regulation, hydroelectric generation, tailings impoundment),
its size, location and operating protocol (e.g. timing of drawdowns, epilim-
netic versus hypolimnetic draw, peaking versus base load generation, etc.).
Finally, The observations are derived from an ecocentric rather than any
anthropocentric ethical premise, that is a rather uncompromising ecological
view of the relationship between nature and humans.
The ecosystem approach can work for dam owners/operators to a greater

extent than they may perceive it to be working against them. Here, the
Physicochemical effects (physical or chemical factors) have separated from
biological effects. Generally changes in the biological community are driven
by changes in the physical or chemical (physicochemical) dimensions of the
habitat (niche).
Impacts are also organized spatially as those that occur: (a) downstream

of the dam,(b)within the water column of the reservoir/impoundment, (c)
at the sediment/water interface (which may or may not feed into the wa-
ter column) and (d) a category for impacts that act outside the immediate
dam/reservoir system. These latter impacts might be viewed as externalities
with less relevance for operators. In any event, the evidence for external
impacts is substantially weaker than that for a-c.
Downstream impacts could include changes inPhysicochemical factors

and Community structure. The physicochemical factors are: temper-
ature, oxygen content, water chemistry, particulate loading, transparency,
discharge patterns, flow rates/shear and channel simplification. The com-
munity structures are: environmental conditions exceed tolerance limits of
original community members, species richness, genetic diversity, productivity
and feedback.
Water column impacts could include changes in Physicochemical parame-

ters and Community structure. The Physicochemical parameters consists of
temperature, oxygen content, water chemistry, transparency, morphometry,
internal seiches and altered currents. The community structures are longer
migration times, environmental conditions exceed tolerance limits of original
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community members, productivity, diversity and feedback.

Sediment impacts could include changes in Physicochemical parameters
and Community structure. The first one consists of temperature, oxygen
content, light, remineralization, compression and sedimentation. The second
one consists of environmental conditions exceed tolerance limits of original
community members, species richness, productivity and feedback

Externalities could occur at a variety of scales and might include Local,
Regional or Global externalities. The local externalities can cause riparian
losses, hydrologic budget, habitat fragmentation. The regional externalities
can cause climate change while the global externalities can cause climate
change and orbit dynamics. These externalities could lead to loss of biodi-
versity and decreasing ecological integrity.

Dams can be operated in ways that decrease their environmental impacts.
Recent examples include the installation of a selective water withdrawal sys-
tem on the Hungry Horse Dam and the (initially seredipitous) drawdown at
Glen Canyon. Doing so requires increased communication and trust among
engineers, ecologists and other professionals in order to properly bound the
problem. Engineers need to evaluate the extent to which regard for the en-
vironment is codified as good practice. There will have to be a willingness
to experiment (e.g. demonstration projects) with a commitment to redefin-
ing operational technical directives as new knowledge emerges ( e.g. optimal
performance standards might equate ecological integrity with revenue gener-
ation).

Ecological integrity (the genetic diversity, species diversity and ecological
diversity that maintains the flows of energy and materials through ecosys-
tems) is the key mechanism for adapting to changes in environmental con-
ditions through evolutionary change. Protecting diversity means protecting
habitat, not only against loss but against fragmentation.

1.9 THE HISTORY OF DAMS DESIGN

Throughout the history, dams have been designed to fulfill a specific purpose
to civilizations. The following historical outline illustrate the main dam
purposes and the development of their design.
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1.9.1 Irrigation Dams

A steady supply of water for irrigation is extremely important for any civi-
lization to thrive. Heavy flooding in the wet season and long droughts in the
dry season makes farming very difficult. However, if the water is contained
during the wet season and released periodically through the dry season, a
constant water supply will be present.

Ancient Dams

The first dam designed for irrigation purposes was the Marib dam in Yemen
Capital City of Saba. The Marib was an embankment dam constructed
about 510 BC. It reached a height of 20m and was about 700m long. The
embankment slopes on each side were 1:1.8 with no road crest along the top.
The most interesting aspect of this dam is that the fill was placed in layers
parallel to the slopes, instead of the typical horizontal layer configuration.
This dam also did not have any type of impermeable element in its design. On
each end of the dam an outlet structure was built of excellent aslar masonry.
The sills of both outlets were almost located at the same height from the
riverbed. A 50m long spillway, with a sill height was also included in the
dam design located in the northern section of the dam. the capacity of the
Marib dam was 30 milliom m3, about 15% of the average annual rainfall for
the area. the final failure came about 1,300 years after the completion of the
dam. It was not repaired and lead to immigration of about 50,000 people
that depended on the water supply. Recently, a modern embankment dam
with a capacity of 400 million m3 was built in 1986, 3 km upstream of the
ancient dam site.
The Kirsi dam of Iraq was built under the Assyrian king of Sennacherib

about 355 km north of Baghdad. This dam was also a diversion dam, used
to direct the river flow into a 15 km long canal for irrigation purposes. It was
designed as a gravity dam constructed rubble masonry weirs. The upstream
face was vertical with a board overflow crest and a stepped downstream face.

Romans

The Romans were highly advanced in hydraulic engineering from their many
engineering feast such as aqueducts. However, they did not attempt dam con-
struction until around 150 BC when they annexed Greece. One advantage
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the Romans had, was that they already possessed fully developed construc-
tion technique based on traditional tools such as levers, picks and shovels.
The Romans also used pulleys in multiple configurations to lift heavy ob-
jects vertically and horizontally. Some of the Romans advance tools included
rules, squares, plumblines, and spirit levels. Traditional building materials
were used in their design however, the Romans also added concrete to their
dams. This allowed them to develop new shapes using formwork and con-
crete. They added volcanic ash or ground brick into the concrete mix to
ensure that it would harden, even when submersed under water.

Medieval and Postmedieval Europe

Damming for irrigation purposes was practiced throughout this era. Irriga-
tion was used throughout Europe, however, it was essential in the southern
countries of Europe like Italy and Spain and required storage reservoirs. The
dams in these southern countries were mostly of masonry, which contrast to
dams built in northern Europe that were built mainly of soil embankments.
The reason for dams built in Italy and Spain being masonry is most likely an
inheritance from Roman civilizations who used embankments primarily for
supporting elements.
The first true arch dam built in Europe since the Roman time, was built

in 1632-1640 near Elche. The arch stretched across the main section of the
gorge and butted into wing walls directed upstream on either side of the
gorge. The arch thrust was directed downwards, since it did not have much
support at the crest level. The main arch was 75m long and 9m wide at the
crest and had a curve radius of 62m and a curve angle of 70◦. The design of
this dam was later tested using the crown-cantilever computer analysis that
determined it to be satisfactory.

1.9.2 Dams Designed for Water Supply

It is impossible for a civilization to survive without a constant fresh water
supply, since it is a basic need of all humans. In many parts of the world, the
freshwater supply fluctuates from enormous amounts during the rainy season
to long droughts during the dry season. for this reason dams were invented
to store large amounts of water from the end of the rainy season until the
end of the dry season, to ensure a constant supply of water.
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Ancient Dams

The oldest dam in the world is the Jawa dam found 100 km northeast of Jor-
dan capital Amman. This dam was built around 3,000 B.C. and was designed
as a gravity dam. The design of this dam was quite complex considering that
it was first dam to be built. It consisted of two dry masonry walls, with an
earth core that acted as the water-retaining element. An impervious blanket
was also provided in front of the upstream heel. A downstream embankment
provided stability of the structure. The dam was later raised by 1m, using
similar design methods as the original dam.

Romans

The Romans were the first civilization to use an arch dam. It is remarkable
that the Roman did not use the arch dam earlier, since they had already be-
come masters at employing it into their bridges and buildings. The first arch
dam was constructed at Barcinas on Cubillas river 2km north of Granada,
in southeast Spain. the arch design for this dam was not actually used to
increase stability, but to lengthen the dam crest for easier passage of flood-
water.
the first true arch dam was built by the Romans in the Vallon de Baume

4km south of Saint-Remy de Province in southeastern France. This dam was
12 high and 18m long, with a radius about 14m and a 73◦ central angle.
It consisted of 1.3m upstream wall and a 1m downstream wall made out of
masonry. The earth core between the two walls was about 1.6m wide, which
means that the downstream wall was subjected to the entire load.

Medieval and Postmedieval Europe

The Roman standard of public fresh water supply continued throughout this
period. the water supply for Istanbul in Turkey, during the beginning of
the ear, was dealt with by many underground cisterns within the city. It
was not until after the conquest of Istanbul in 1453 that the Ottoman Turks
reconstructed some of the old Roman aqueducts. The first storage dam was
built in 1560 on the remains of the Roman Belgrade dam. It was massive
gravity dam, with a height of 15m and a base width of 56% of its height.
The length of the dam was about 85m and had a 1.3 million m3 reservoir
capacity. This dam also included a couple of unnecessary buttresses to add
stability to the structure.
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1.9.3 Flood Control Dams

Since large number of natural fatalities, injuries and damage are caused by
rapid flooding it is important to have flood control methods. Dams have
been used for flood control since the first civilizations were formed.

Ancient dams

The Sadd-elKafara dam of Egypt was built around 2600 BC, about the same
time as the beginning of the Pyramids. It stands 14m high and has a 113m
crest. the lack of knowledge in hydrology and soil mechanics lead to the dam
being over, designed. It had three distinct sections; the downstream shell
made of rock, the upstream shell also made of rock and a centre core made
out of fine silty sand and gravel. 17,000 blocks weighting 300kg each were
carefully placement over the upstream and downstream walls to protect the
dam against erosion. Construction problems were most likely encountered
since it took longer than one dry season to built, and no evidence of any type
of diversion could be found.

Romans

the Romans built the Cavdarhisar dam near Kutahya in western Turkey to
protect against raging floodwater. It was designed as a gravity structure
with height of 7m, wide of 8m and a length of 80m. It also contained a large
bottom outlet with a clear section about 11m2 that shows this dam was not
designed to be a reservoir, not a flood control measure.

Medieval and Postmedieval Europe

Throughout the period few dams were actually built to for flood protection,
however, many dams were built to cause flooding. Controlled flooding was
used for transporting wood by fluming. Originally, the dams built for flum-
ing were made from timber, however, few of these dams have any remains.
from around the end of the 17th century the timber dam were replaced with
masonry fluming dams. An example of a fluming dam is the Belcna dam in
western Slovenia built in 1769. It was 18m high with a length of 35m, a crest
width of 6.8m and a 12.4m base width. It was built of solid masonry and
contained two outlets 5.1m in height and a width of 3.7m which allowed a
large amount of water to rush out in a short time.
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1.9.4 Power Dams

Waterpower was a technology that did not really take off until after the 11th

century. The invention of the dam was an essential development in the rise
of waterpower because it diversified the applications of both the vertical and
horizontal water wheels.

Romans

The Romans were the first civilization to harness the power of water however;
they were limited to mostly grinding cereals. One of the most sophisticated
dams built by the Romans was the Monte Novo dam located 15km east of
Evora in southeast Portugal. It was a 5.7m high, 52m long arch dam with a
radius of 19m and a central angle of 90◦. The dam was built using blocks of
shist laid horizontally in a lime mortar. the dam’s reinforcement consisted of
the fact that the curved central part at each end was embedded into the wing
walls without any abutment blocks to absorb the horizontal arch thrust. The
designers of this dam must have been unsure of their sophisticated design,
because they also included two buttresses to increase the stability. It is
thought that the water from two outlets was used to drive waterwheels further
down the river, The outlets were 1.2m and 1.4m wide, with a height of 1m
through the dam’s base.

Medieval and Postmedieval Europe

It took several centuries for Europe to recover from impacts of Christian-
ization and Germanization. By the end of the 8th century, about 300 years
after the disintegration of the western half of the roman empire technology
had gain sprouted new wings. Dams were built in order to remove the water-
wheels from rivers where debris, ice jams and floods played havoc with the
waterwheels and their structures.
One of the interesting dam built in this period for waterpower was the

Castellar dam and millhouse in southwestern Spain. The dam’s reservoir
capacity is very small(0.3 milliom m3), however, the height of the dam was
19m high. This large height gave a very high potential head of the water
in the reservoir, which could be transferred into waterwheel power. The
millhouse was located at one end of the weir and supplied directly with water
from the reservoir, a method of design that is used in modern low-head dam
power plants. Another equally modern design characteristic was the location
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of the millhouse, which was near the toe of the 19m high reservoir. An equal
number of vertical shafts lead the water to the horizontal water wheels. The
sturdy end and intermediate walls of the mill house act as buttress because
the width of the dam was only 36% of its height. Many of the concepts built
into this dam have direct links to modern methods, although it was built
around 1500 AD.

1.9.5 The Moslem World

Arabia

Arabs quickly developed their country within one century after the impact
of new Islamic religious founded by prophet Mohammed. Several irrigation
dams around the new power centres of Mecca and Madina, were built. The
following is a summary of 7th and 8thcentury dams in central Arabia.
Table 1.4 Summary of 7th and 8th century dams in central Arabia
Nearest City Name Height (m) Length (m)
Mecca Agrab 4.0 113
- Ardab 5.5 315
- Darwaish 10.0 150
- Sammallaagi 11.0 225
Medina Hashquq 2.0 130
- Qusaybah 30.0 205
All of these dams were of the gravity type. They all have two outer walls

of dry masonry and an earth or rubble core in between. The walls of some
of these dams were vertical. Whereas, the other had inclined walls as much
as 60%. Strong inclinations were applied to dams with relatively wide base,
like Darwaish.
Although, most of these dams are already destroyed, one third of them

like Saammallagi, are operative and more or less in their original shape.

South Western Asia

The Moslems conquered southwestern Asia in Seventh and Eighth centuries
as far as the Indus river and Uzbakistan. During this time, Adhaim dam was
built on the Adhaim river. This dam was located 150 km north of Baghdad.
The dam was 130 meters long and 12 meters high. Adhaim Dam had an
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equal width all along its length. Upstream face was vertical and downstream
one was stepped to 43% average inclination.

In the 10th century, a whole series of irrigation and power dams were built
on Kur river, east of Shiraz in southern of Iran. Table 1.5 shows , dimensions
and the name of the dams on the Kur river.

The Amir dam is a large power dam including 30 water wheel being
driven by a retained water. This dam has a trapezoidal cross section with
a relatively steep down stream face and a base width of more than twice its
height.

Table 1.5 Dimensions and name of the dams on the Kur river

Name Height (m) Length (m)
Amir 9 103
Feizband 7 222
Tilkan 6 162
Mawan 6 66
Djahanabad 5 50

Towards the end of the 10th century, several large gravity dams were
built under Ghaznavid rule. These dams were built in countries such as Iran,
Afghanistan and Uzbakestan. Table 1.6 contains some information about
Ghaznavid gravity dams. Khan dam was built of granite ashlar masonry
and was barely stable.

Table 1.6 Ghaznavid Gravity Dams

Name Nearest city Height (m) Length (m)
Gishtbank Samarkand 8 25
Khan Saamarkand 15.2 52
Sheshtaraz Mashhad 25 35
Soltan Mahmud Kabul 32 220

Genghis khan from Mongolia started to conquer the world in 1205. Mon-
golians initiated the construction of several dams in Iran. Table 1.7 shows
the summary of the data.

Table 1.7 Mongolians Dams
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Year of completion Name Nearest city Type Height (m) Length (m)
1285 Saveh Tehran Gravity 25 65
~1300 Kebar - Arch 26 55
~1350 Kalat Mashhad Gravity 26 74
1400 Abbas Tabas Arch 20 ?
~1450 Golestan Mashhad Gravity 16 -
The Saveh dam was the first structure built during this time. It was a

gravity dam. The design of this dam was not successful. The river crushed
the dam after the first impoundment.
In 16th and 17th century, the construction of arch dams discontinued and

only gravity dams were built. Most of the well known dams during this time,
were located in northeastern Iran and Uzbakistan.
Abdullahkan dam was built in the beginning of the 16th century. This

dam is 150 km northwest of samarkand. The height of this dam is 15 meters
and it has a length of 85 meters. Its downstream face was stepped to an
average inclination of 69%. Khajoo dam is one of the most beautiful dams
not only in the Moslem, but in the entire world which is located in Isfahan
of Iran.

1.9.6 Development of the Modern Dams

Unlike past periods in history, the modern dam is designed using specific
principles. The largest change in the design of a modern dam compared
to the earlier dams, has been the formation of engineering schools. This
changed the individualistic craftsmanship of engineering into a profession
based on scientific principles. Engineers were subdivided into specific disci-
plines, increasing the advancements of both dam principles and construction
methods.
The modern embankment dam has improved greatly with the increase in

research on hydrology and soil mechanics. Henri Gautier was one of the first
to study slope stability of different soils. His experiments determined the
natural slope response of soils. As time went on, engineers were then able
to choose different soils based on their internal angle of friction, to increase
the height of embankment dam designs. Studies were conducted on how
soil permeability changed for different soils. In 1186 Philipp Forchheimer,
professor of hydraulics in Austria, developed a graphical method of Pierre
S. deLaplace’s formula of how water flows in a soil. This graphical method
is commonly known as a flownet. The single most important theoretical



1.9. THE HISTORY OF DAMS DESIGN 43

development of soil mechanics was published in 1925 by Karl von Terzaghi.
He found the explanation for why clays consolidate, by determining that the
consolidation was caused by the dissipation of the water pressure in the soil
pores. This finding led Terzaghi to the concept of effective stress, that is
equal to the total stress minus the pore water pressure. This concept is still
considered the single most important concept of modern soil mechanics. In
1980, the Nurek earth filled embankment dam in Tajikistan was completed.
It stretched to a record height of 300m and had an embankment volume of
59 million m3.
The analysis of stress in structures in their elastic condition, the concepts

of the modulus of elasticity, and safety stresses was introduced in 1819 by
Louis M. H. Navier. These concepts were the beginning of understanding
how the force in gravity dam designs acted and helped to increase the height,
without increasing the amount of materials used.
Breakthrough advancements in arch dam design came in 1880’s when

Hubert Visher and Luther Wagnore developed a new method of arch dam
design. This new method did not merely design the arch dams as astach
of individual arches but as an interdependent system of arches. It also con-
sidered the median vertical section of the dam to be a cantilever fixed at
the base. The distribution of the loads resulted in a considerable relief for
the lower arches, and the upper ones had to partially support the cantilever.
Throughout this period, the arch dam took on many new shapes.
With the modern ear, improved mechanical construction method have

caused the greatest impact on all types of modern dam designs. Scraper,
bulldozers and vibrators all grew in size, resulting in the modern dams being
completed in record time. New techniques for placing concrete, have played
a roll in the construction and design methods for gravity dams. Roller com-
pacted concrete is among the newest techniques implements in gravity dam
construction. In the early 1950’s Switzerland introduced bulldozers to spread
concrete, and vibrators were attached to caterpillar tractors. In the late
1970’s early 1980’s vibrations rollers replaced the tractor mounted immersed
vibrating system. These new construction techniques have spread through-
out the world at a rapid pace, increasing both the dimensions of dams and
the speed of completion.
The number of new dams being built has decreased considerably. This

trend will not be able to continue as the world population continues to in-
crease and fresh water, irrigation and flood control needs increase as well.
Engineers need to constantly search for a better solution, taking all aspects
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of design and the repercussions of that design into account. The past is a col-
lection of design ideas, both good and bad, that should never be overlooked
when faced with a new design challenge.
As time progress onwards, dams continue to grow in height and capacity.

As they become larger, their impacts on society and the environments also
increases. It is important that proper monitoring programs are setup to
ensure that failure do not occur, because their effects will be devastating,
One method of monitoring is a system of alarms downstream of the dam to
warn of potential failures. the environment is an aspect that needs to be
carefully controlled. With the growing size and capacity of modern dams,
the environmental impact and awareness therefore increases as well.

1.10 BEAVERS

A mammal belonging to the order of rodents, or gnawing animals, the beaver
has been recognized as a master engineer. By using teeth and paws, beavers
construct dams, lodges, storehouses, and canals. The animal is also known
for its aquatic life-style as well as for its beautiful fur.
The beaver has a thick body covered with a coat of long, reddish-brown

outer hairs and soft, dense, brown underfur. This warm, waterproof coat
allows the beaver to swim in icy water in the wintertime without discomfort.
Most of the beaver’s physical characteristics of the fur, toes, tail, ears, nose,
and lips are so constructed that the animal is well equipped for life in the
water as well as on land. The toes on the beaver’s large hind feet are webbed
for swimming. The second toe on each hind foot ends in a double claw with
which the animal combs its fur. The front feet are small and handlike and
are used for picking up and carrying various objects. The tail is shaped like
a paddle, broad and flat, and is covered with scaly skin. The tail serves as a
prop when the beaver sits upright and as a rudder and scull when it swims.
As a danger signal to other beavers, the normally placid animal makes a
loud noise by slapping its tail on the water’s surface. The beaver’s facial
features also allow for its aquatic life-style. The short, thick head has small
rounded ears and a nose which are equipped with valves that close when
the animal swims underwater. A beaver may remain submerged for up to
15 minutes. The animal carries objects underwater in its mouth by closing
loose lips behind prominent front teeth, thus keeping water out of its mouth.
Like other rodents, the beaver has well-developed front teeth. These teeth
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have a very hard layer on the front surface and a softer backing. Since this
softer part wears away quickly, it leaves the thin chisel edge of the front layer
exposed. The animal’s teeth are always growing to make up for wear. The
beaver has a total of 20 teeth.
Beavers are social animals; they live in colonies and work together. The

life span of the animal may be as long as 19 years. A beaver begins its life in
a litter of from two to eight young, or kits. Four is the usual number. They
are born in the spring, about four months after conception. A mother will
sometimes raise not only her own offspring, but also the young of another
female that has died. Newborn kits weigh from 8 to 24 ounces (225 to
680 grams) and are about 15 inches (38 centimeters) long, with tails that
measure 3 1/2 inches (9 centimeters). Their eyes are open at birth. They are
out learning to swim when they are only a month old, and they are weaned
by six months. A family usually consists of a mature pair of beavers and two
sets of offspring. A female first breeds when it is by their third summer the
young beavers are mature and ready to mate. They usually mate for life.
A mated pair locates a fairly deep, slow-moving stream. They dig a burrow
into the bank, starting below the surface of the water and slanting upward to
a small room above the high-water mark. This is only a temporary residence
in which the first litter will be born in the spring. Not until the following
autumn does the couple set about building their permanent home—the lodge.
Beavers live most of their lives in or near water. They settle along banks of
streams, rivers, and lakes bordered by timberland. Large beaver populations
have been credited with reducing flooding because of the dams they build
across streams. On the other hand, they may also cause the flooding of roads
and woodlands because of the reservoirs of water that build up behind the
dams. Constant flooding can also damage valuable timber and block routes
of migrating salmon. The reservoirs created by the dams are places where the
beavers feel secure. It is in these artificially created ponds that beavers build
their lodges and storehouses. The adult beavers select a narrow, shallow site
in the water as a place to build a dam. They gnaw down a number of aspen,
birch, or willow saplings. These they drag to the site and bury in mud with
the butt ends pointing upstream. Into this foundation the beavers fit and pile
more saplings, adding mud and stones until a strong barrier is completed.
This structure allows enough seepage or overflow to keep the water in the
reservoir fresh. Beaver dams come in all shapes and sizes. Normally a family
of beavers can build a dam 35 feet (10 meters) long in about a week. Some
dams more than 1,000 feet (300 meters) long have been found, but these are
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the work of generations of beavers.
Beavers live in a structure called a lodge. The lodge is built in the river-

bank or in the pond created by the dam. From a distance, the lodge resembles
a heap of tree branches and mud. It consists of a platform of carefully in-
terlaced branches held together by clay and dead leaves. When the platform
has been built up a few inches above the water, the beavers fashion a dome-
shaped roof over it. Before the coming of winter, the entire structure, which
may enclose a room more than 5 feet (1.5 meters) high, must be plastered
with mud. Entrances to the beaver lodge often open underwater, so that
the animals may pass in and out below the winter ice. There are at least
two, and up to five, such entrances. A steep and narrow entrance is used
by the beavers for entry and exit. Another entrance is used for the trans-
portation of wood for winter food. These underwater entrances help protect
the beavers from attacks by predators which include, in North America, the
wolverine, the lynx, and the wolf. Beavers move awkwardly on land; they
prefer to swim. When they live in flat areas they sometimes build canals.
These canals allow the beavers to more easily transport the logs that are too
heavy to drag overland. A canal may measure more than 1,000 feet (300
meters) in length and from 2 to 3 feet (60 to 90 centimeters) in width.
When construction on dams, lodges, and canals is finished, the beavers

gnaw whole groves of trees and sink the wood in the pond near their lodge.
This collection forms the underwater winter ”storehouse.” Their diet consists
primarily of fresh green bark and wood such as poplar, willow, and birch.
In the summer they also eat water plants, berries, swampwood, and fruit.
Beavers do most of their building and food gathering at night. After an
autumn of toil, beavers spend the winter resting. They swim out of their
warm, dry lodges only to pluck a twig or branch from the storehouse. Because
the water in the pond is a meter deep or more, it does not freeze to the bottom
and the beaver can swim under the ice in winter time to get sticks from the
food pile accumulated the previous fall, return to the feeding chamber of the
lodge and leisurely eat the food, all in a perfect safety from predators.
Beavers’ dam is usually a high flat dam and having unwittingly created

the lake which affords them safety and food. The dam is quite steep on
the downstream side but slopes gently into the pond on the upstrean side.
This result is obtained because the beaver adds material to the dam from
the upstream side and, by doing so, unintentionally achieves a dam with the
strongest possible configuration and therefore provides maximum security for
the colony.
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Although once plentiful throughout the wooded parts of the Northern
Hemisphere, beavers had become an endangered species by the mid-19th
century. They have been hunted for their fur, their tails, and their musk
glands. Both sexes possess scent glands at the rear of the body that produce
a liquid called castoreum, which is used in perfumes. It was also a popular
medicine in the Middle Ages, apparently used to heal ailments ranging from
headaches to dropsy. The healing ability of castoreum comes from its salicylic
acid—a basic ingredient of aspirin—which the beaver acquires by eating willow
bark. The beaver has in the past been hunted for its scaly tail, which was
considered a culinary delicacy. Beaver flesh in general was highly esteemed
during the Middle Ages. It is the quest for the beautiful pelt that has most
drastically reduced the beaver population. The soft, thick underfur of the
beaver, which is at its best in late winter and spring, has long been highly
valued. During the 17th, 18th, and early 19th centuries, beaver skins, made
into caps and capes, were a staple of the world’s fur trade. In fact, much of the
exploration of North America, beginning early in the 1600s and continuing
through the early 19th century, was prompted by the search for beaver fur. At
one time beaver pelts were a medium of exchange. Beaver populations have
been diminishing for centuries, possibly because of various natural causes as
well as trapping. Almost too late, conservation laws were passed throughout
the world, and the beaver was saved and was resettled in some areas where
it had once been common. The beaver population in Russia and in North
America has recovered to the extent that bans on hunting imposed earlier in
the 20th century have been slightly modified.
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Chapter 2

RESERVOIR

2.1 INTRODUCTION

The first dams built by early man were low earth or rock structures designed
to impound and divert water for agricultural use. Today’s dams are a critical
part of the nations infrastructure. They are vital for hydropower generation,
drinking water, irrigation, navigation, recreation and flood control. Dams
differ from other structure because of their size and their containment of
water. Special attention must be taken to understand their behaviors.. The
reservoir provides an extra effect of dynamic action into the dam response.

The ultimate fate of all dams and reservoirs, is deterioration and failure or
filling by sedimentation. Every reservoir that impounds water behind a dam
is a real or potential threat to those who live and work at the downstream
side of the dam. In some locations, the effects of a sever earthquake may be
dangerous to the integrity of the dam-reservoir structure and may tend to
the destruction of the system. Modern technology combining the knowledge
of construction and accurate design to reduce the risk that is inherent in dam
and reservoir system. The capacity of the reservoir may vary depends on the
shape of the valley and topography of the dam site. The more capacity of
the reservoir, the more threat to the area in case of a failure.

In this chapter, we will establish reservoir’s governing equation of the
motion and associated boundary conditions of the dam-reservoir system.

49
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2.2 GENERAL FORMOFRESERVOIR’S EQUA-
TION OF MOTION

Fluids are composed of molecules in constant motion and collisions. A fluid
has no structure. They are not distinguished by their microscopic (molecular)
structure. To take account of each molecule in a flow, may be difficult for
engineering purposes. Instead we are interested in average measuring of the
molecule manifestations such as density, pressure and temperature which are
their macroscopic structure. The continuum concept offers a great deal of
simplification in analysis.
A fluid point (particle) represent a spatial average over some small volume

V . Consider some variable as a = 1
V

R
a0dV , in which a0 has a random

characteristic(figure 2.1). The variable a can be density, ρ, velocity v, etc..
There must be a volume V such that a range of V value exist over which a
is constant. Therefore for a big V we get different values of a for a range
of V . However if we make V successfully smaller we get same value of a.
We want δ ¿ V

1
3 ¿ L, in which δ is the largest length scale of the fluid

structure (say mean free path) and L is the length scale of the domain of the
problem. The restriction V

1
3 ¿ L is for a to be measurable at a point while

the criteria δ ¿ V
1
3 is for a to be statistically significant and deterministic

(always get same answer if we start from same initial condition and boundary
conditions).

2.2.1 Velocity Field

In a deformable system there are an infinite number of particles. In order to
define the velocity of a particle we must define the position of the particles,
spatial coordinates, at the specific time. Using this, the velocity of all parti-
cles can be as v(x, y, z, t) which is consisted of three components of velocity
vx, vy, vz in x, y and z direction of coordinates, respectively. v is called
field velocity vector. For steady flow, the value of the velocity at a position
remains invariant with time, v = v(x, y, z).

LAGRANGIAN AND EULERIAN VIEWPOINTS

In investigation of the fluid motion, two procedures may be used to study
fluid particles. We can stipulate fix coordinates x1, y1 and z1in the velocity
field functions and letting time pass. we can express velocity of function
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Figure 2.1: Fluid point

at any time passing this position as v(x1, y1, z1, t). Using this approach we
study the motion of a continuous string of particles which pass the fixed
point. This viewpoint is called the Eulerian viewpoint.
On the other hand, we can study the motion of a single particle in the

flow by following the particle in its path. This approach means continuous
variation of the x, y and z to locate the particle. This approach is called the
Lagrangian viewpoint where v = v(x, y, z). The x, y and z can be expressed
as a function of time x = x(t), y = y(t) and z = z(t) (figure 2.2).
The Lagrangian viewpoint is used mainly in particle mechanics. In contin-

uum mechanics this method requires the description of motion of an infinite
number of particles and thus becomes extremely cumbersome. The Eulerian
viewpoint is easier to use in continuum mechanics because it is concerned
with the description of motion at a fixed position.
In the partial time derivative, from the Eulerian point of view, suppose we

are standing on a bridge and note how the concentration of fish (c) just below
us changes with time. In this case, the position is fixed in space, therefore
by∂c

∂t
we mean partial of c with respect to t, holding x, y and z constant. We

can also assume ourselves on a boat and moving with around the river. The
change of fish concentration with respect to time reflects the motion of the
boat as well as time variation. This is called total time variation and can be
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written as:
Dc

Dt
=

∂c

∂t
+

∂c

∂x

dx

dt
+

∂c

∂y

dy

dt
+

∂c

∂z

dz

dt

in which dx
dt
, dy
dt
and dz

dt
are the components of the velocity of the boat. Now if

we turn off the engine of the boat and float along counting fish (the lagrangian
viewpoint), the velocity of the boat would be simply the velocity of the
streams. The change of fish concentration in this case is called substantial
time derivative and is written as follows:

Dc

Dt
=

∂c

∂t
+ vx

∂c

∂x
+ vy

∂c

∂y
+ vz

∂c

∂z

in which vx, vyand vz are the components of the local fluid velocity v.

Figure 2.2: a)Lagrangian viewpoint b)Eulerian viewpoint

2.2.2 System and Control Volume

An identified quantity of matter is called system. It may undergo shape
changes, position changes or temperature changes, but entailed the same
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matter. On the other hand, control volume is a definite volume in space and
its boundary called control surface. The amount of matter inside control
volume may change but its shape is fixed. the concept of system and control
volume are related to the Lagrangian and Eulerian viewpoints.

2.2.3 Reynold’s Transport Equation

Consider N as properties of a substance whose measure depends on the
amount of the substance presented in a system. An arbitrary flow field of
v = v(x,y, z, t)is observed from some reference xyz. We consider a system
of fluid with finite mass at time t and t +∆t (figure 2.3). The streamlines
correspond to those at time t. The control volume is considered with system
at time t and is fixed.
The distribution of N per unit mass will be given as η, such that N =RRR
ηρdV with dV representing an element of volume with mass density of

ρ. We are trying to establish a relation between the rate of change of N in
system with variation of this property inside the control volume.
The system at time t and t+∆t can be divided into three regions. Region

II is common to the system at both time t and t+∆t. Rate of change of N
with respect to time for the system can be written as:µ

dN

dt

¶
system

=
DN

Dt
=

lim
∆t→0

¡RRR
III

ηρdV +
RRR

II
ηρdV

¢
t+∆t
− ¡RRR

I
ηρdV +

RRR
II
ηρdV

¢
t

∆t

The above equation can be arranged as following:

DN

Dt
= lim

∆t→0

Ã¡RRR
II
ηρdV

¢
t+∆t
− ¡RRR

II
ηρdV

¢
t

∆t

!
+ (2.1)

lim
∆t→0

¡RRR
III

ηρdV
¢
t+∆t

∆t
− lim

∆t→0

¡RRR
I
ηρdV

¢
t

∆t

In the first term on the right hand side of equation. 2.1, we can say that,
as ∆t goes to zero the region II becomes that of control volume ,cv,. Then:



54 CHAPTER 2. RESERVOIR

Figure 2.3: Moving system
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lim
∆t→0

Ã¡RRR
II
ηρdV

¢
t+∆t
− ¡RRR

II
ηρdV

¢
t

∆t

!
=

∂

∂t

ZZZ
cv

ηρdV (2.2)

The second term in equation 2.1 shows the amount of the property N
that has crossed part of the control surface, cs, shown as ARB. Therefore,
the second term is the average of efflux of N across ARB during time interval
of ∆t. As ∆t goes to zero this becomes exact rate of efflux of N through the
cs. Similarly, the third term approximates the amount of N that has passed
into the cv during ∆t through remaining of the cs (influx). Thus, the lase
two integrals give the net rate of efflux of N from cv at time t as:

lim
∆t→0

¡RRR
III

ηρdV
¢
t+∆t

∆t
− lim

∆t→0

¡RRR
I
ηρdV

¢
t

∆t
= Net efflux rate of N from cs

(2.3)
In conclusion, the rate of change of N for system at time t are sum of

first, rate of change of N inside cv having the shape of the system at time t
(equation 2.2)and second, the net rate of efflux of N through the cs at time
t (equation 2.3).
In equation 2.3, the term dV can be written as:

dV = v.dAdt (2.4)

which is the volume of fluid that has crossed the cs in time dt. dA is the
normal outward vector on control surface. Multiplying (equation 2.4) by ρ
and dividing by dt then gives the instantaneous rate of mass flow of fluid
ρv.dA leaving the control volume through the indicated area dA. For the
fluid entering the control volume the expression dV = v.dAdt is negative
while for the fluid going out of the control volume the expression is positive.
Therefore equation 2.3 can be written as follows:

Efflux rate through cs ≈
ZZ

ARB

ηρv.dA

Influx rate through cs ≈ −
ZZ

ALB

ηρv.dA

Net efflux rate through cs ≈
ZZ

ARB

ηρv.dA+

ZZ
ALB

ηρv.dA
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In the limit as ∆t→ 0, the approximation becomes exact, so we can express
the right side of the above equation as

RR
cs
η(ρv.dA), where the integral is

the closed integral over the entire control surface.
Now the equation 2.1 can be written as:

DN

Dt
=

ZZ
cs

η(ρv.dA)+
∂

∂t

ZZZ
cv

ηρdV (2.5)

This is called the Reynold Transport equation and it is a change from system
approach to control volume approach. In the Reynole transport equation v is
measured relative to some reference xyz and the control volume was fixed in
this reference. Thus, v in the above equation is measured relative to control
volume. As a consequences, the time rate of change of N is in effect observed
from the control volume and velocities and time rates of changes are those
seen from control volume. Since we could use a reference xyz having an
arbitrary motion, it means that the control volume can have any motion.
Thus the Reynold transport equation will then instantaneously be correct if
we measure the time derivatives and velocities relative to the control volume,
no matter what the motion of the control volume may be.

2.2.4 Continuity Equation

A system always entails the same quantity of matter. Therefore, the mass
M would be constant. To go from system approach to control approach, we
use Reynold transport equation in which N is for our case M , the mass of a
fluid system and it is M =

RRR
ρdV . Therefore, η = 1. Thus for a constant

mass in a system at any time t, we can write the Reynold transport equation
as following:

DM

Dt
= 0 =

ZZ
cs

(ρv.dA)+
∂

∂t

ZZZ
cv

ρdV

The velocity v and the time derivative are measured relative to the control
volume. Above equation can be written in the following form:ZZ

cs

(ρv.dA) = − ∂

∂t

ZZZ
cv

ρdV (2.6)

Equation 2.6 which is the final form of the continuity equation expresses
that the net efflux rate of mass through the control surface equals the rate of
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decrease of mass inside the control volume. Two special cases of continuity
can be considered. The case of steady flow in which all fluid properties at any
fixed position in the reference must remain invariant, the continuity equation
can be written as: ZZ

cs

(ρv.dA) = 0

The other case is the case of incompressible fluid having constant ρ.The
continuity equation can be written as:ZZ

cs

v.dA = 0

A more detailed definition of compressibility is brought in the proceeding
sections.

2.2.5 Linear Momentum Equation

If we take linear momentum as parameters N which is used as a general term
(vector and scalar) in the Reynold transport equation, we haveN = P = mv.
The term η in this case would become momentum per unit mass, or simply v,
then, P =

RRR
v(ρdV ). Then the Reynold transport equation can be written

as followings:

DP

Dt
=

ZZ
cs

v(ρv.dA)+
∂

∂t

ZZZ
cv

vρdV (2.7)

The equation of linear momentum is a vector equation and can be divided
into its three components.
Newton’s second law states that:X

F =
d

dtsystem

·ZZZ
vdm

¸
=
dP

dt system

In above equation,
P
F if the resultant of the all external forces acting on

the system and v the time derivative are taken from the inertial references.
Since, the second law of Newton is based on the Eulerian viewpoint, we are
following a system. Thus, it can be written as:
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X
F =

D

Dt

·ZZZ
vdm

¸
=
DP

Dt

There are two types of the external forces. Surface forces, T(x, y, z, t) given
as forces per unit area on the boundary surface, bs. Force acting on the
material inside the boundary, ib are called body force, B(x, y, z, t) given as
force per unit mass. Thus, The above equation can be written as followings:ZZ

bs

TdA+

ZZZ
ib

BρdV =
DP

Dt
(2.8)

Equation 2.8 is the Newton’s second law for a finite system. Knowing
that the control volume and system are coincident at time t, if we fix the
control volume in inertial space, then the derivatives in the right hand side
is taken from a inertial references and we may use the Newton’s second law
(equation 2.8) to replace it in the Reynold equation and then we get:ZZ

cs

TdA+

ZZZ
cv

BρdV =

ZZ
cs

v(ρv.dA)+
∂

∂t

ZZZ
cv

vρdV (2.9)

Equation 2.9 means that: Sum of surface forces acting on the control
surface and body forces acting on the control volume are equal with the sum
of the rate of the efflux of the linear momentum across the control surface
and the rate of increase of linear momentum inside the control volume.
Equation 9 is a vector equation and can be written for each components.

For example in x direction we can write it as follows:

ZZ
cs

TxdA+

ZZZ
cv

BxρdV =

ZZ
cs

vx(ρv.dA)+
∂

∂t

ZZZ
cv

vxρdV (2.10)

In this book for simplicity, the positive direction of the reference axis xyz
are the same as the positive direction of the velocity components as well as
the surface and body force components. Sign of v.dA is independent of the
sign consideration.
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2.2.6 The Equation of the Motion

The continuity equation and the linear momentum equation was developed
for finite systems and their were related to control volume. The equations
give an average values of quantities or only components of resultant forces.
They don’t give any detail information of the flow everywhere inside the
control volume. Here, we are trying to find out differential equations valid
at any point of fluid.
Writing continuity equation in the form of differential equation, we con-

sider an infinitesimal control volume in the shape of a rectangular paral-
lelepiped fixed in xyz for a general flow v(x, y, z) measured relative to xyz.

Figure 2.4: Volume element

The net efflux rate along the plane of control volume that are perpendicu-
lar to the x axis (x planes of the element) is, ρvx |x+∆x ∆y∆z− ρvx |x ∆y∆z
(figure 2.4) If we write the similar equation for the axis in y and z direction
and add them up we get the net efflux rate as following:
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Net efflux rate = [ρvx |x+∆x ∆y∆z − ρvx |x ∆y∆z]
+ [ρvy |y+∆y ∆x∆z − ρvy |y ∆x∆z]
+ [ρvz |z+∆z ∆x∆y − ρvz |z ∆x∆y]

The rate of mass accumulation inside the control volume would be ∂ρ
∂t
∆x∆y∆z.

Equating the net efflux rate and the rate of decrease of mass inside the con-
trol volume and dividing all resulting equation by ∆x∆y∆z and taking the
limit as ∆x, ∆y and ∆z approach zero, we get:

∂(ρvx)

∂x
+

∂(ρvy)

∂y
+

∂(ρvz)

∂z
= −∂ρ

∂t
(2.11)

This is called differentia continuity equation and one special cases of it would
be case of steady flow which results in:

∂(ρvx)

∂x
+

∂(ρvy)

∂y
+

∂(ρvz)

∂z
= 0

The other case of incompressible flow would be as following:

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0

Introducing the divergence operator which for a vector field v can be
defined as:

∇.v = ∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

Then we can write the general form of the continuity equation 2.11 in the
following form:

∇.(ρv) = −∂ρ

∂t

Writing the linear momentum equation in the form of differential equa-
tion, we consider an infinitesimal system in the shape of a rectangular paral-
lelepiped fixed in xyz (figure 2.5 ). The linear momentum equation is a form
of Newton’s second law which has an Eulerian viewpoint. Consider a volume
element ∆x∆y∆z as shown in figure2.5. The surface stress on each side of
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Figure 2.5: Rectangular Parallelpiped element

a cubic element cab be written as Tij, i, j = x, y, z where i is an indication
of the side, plane, in which the stress is located on and j is the direction of
the stress. For example Txyis the components of the stress on a plane normal
to x axis and directed toward y axis. It can be shown that for equilibrium
we must have Tij = Tji. As it was already mentioned equation of linear
momentum is a vector equation (equation 2.9). Thus we can write for each
components of it. Here, we start by considering the x direction(equation
2.10). The first term on the left hand side of the equation 2.10 is all of
the surface forces acting on the element at the x direction. The resultant
forces acting on the x planes along the x directions is Txx |x+∆x ∆y∆z− Txx
|x ∆y∆z. The resultant of forces acting on the y plane along the x direction
is Tyx |y+∆y ∆x∆z − Tyx |y ∆x∆z. Similarly, for the forces on the z plane
along the x direction is Tzx |z+∆z ∆x∆z − Tzx |z ∆x∆y. If we add all of the
surface forces we will get:

[Txx |x+∆x ∆y∆z − Txx |x ∆y∆z] +
[Tyx |y+∆y ∆x∆z − Tyx |y ∆x∆z] +
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[Tzx |z+∆z ∆x∆z − Tzx |z ∆x∆y]

The second term on the left hand side of the equation 2.10 is the body
force and is:

ρgx∆x∆y∆z

where gx is the component of the gravitational force along the x axis.
The first term on the right hand side of equation 2.10 is the net rate of

efflux. the rate at which x component of momentum enters at x is vxρvx |x
∆y∆z and the rate at which it leaves at x +∆x is vxρvx |x+∆x ∆y∆z. The
same can be written for the y and z planes. Thus if we add them up we get:

[vxρvx |x+∆x −vxρvx |x]∆y∆z +
[vxρvy |y+∆y −vxρvy |y]∆x∆z +
[vxρvz |z+∆z −vxρvz |z]∆x∆y

The second term on the right hand side of the equation 2.10 is the accumu-
lation of the momentum inside the element and is:

∂(ρvx)

∂t
∆x∆y∆z

If we substitute all the terms into the equation 2.10 from the above equations
and dividing the entire resulting equation by ∆x∆y∆z and taking limit as
∆x, ∆y and ∆z approaches zero, we obtain the x-component of the equation
of the motion as:

∂Txx
∂x

+
∂Txy
∂y

+
∂Txz
∂z

+ρgx =
∂(vxρvx)

∂x
+
∂(vxρvy)

∂y
+
∂(vxρvz)

∂z
+
∂(ρvx)

∂t
(2.12)

Similarly, for the components in the xx and y direction it can be written as:

∂Txy
∂x

+
∂Tyy
∂y

+
∂Tzy
∂z

+ρgy =
∂(vyρvx)

∂x
+
∂(vyρvy)

∂y
+
∂(vyρvz)

∂z
+
∂(ρvy)

∂t
(2.13)

∂Txz
∂x

+
∂Tyz
∂y

+
∂Tzz
∂z

+ρgz =
∂(vzρvx)

∂x
+
∂(vzρvy)

∂y
+
∂(vzρvz)

∂z
+
∂(ρvz)

∂t
(2.14)
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The quantity ρvx, ρvy and ρvz are the components of the ρv ,mass veloc-
ity vector. The terms ρvxvx, ρvxvy, ρvxvz, ρvyvz, etc. are the nine com-
ponents(six components because of symmetry) of the momentum flux ρvv,
which is the dyadic product of ρv and v. Similarly, Txx, Txy, Txz, Tyx, etc.
are the nine components( six components because of symmetry) of the T,
known as the stress tensor. We can combine, the above three equations and
write them in a vector format as followings:

∇.T+ ρg =∇.ρvv + ∂ρv

∂t
(2.15)

There should be noticed that ∇.ρvv and ∇.T are not simple divergence
because of tensorial nature of the ∇.ρvv and ∇.T. The above equation is
the general form of the linear momentum equation.
If we use the equation of continuity to substitute it in the equation 2.12,

we will get:

∂Txx
∂x

+
∂Tyx
∂y

+
∂Tzx
∂z

+ ρgx = ρ
Dvx
Dt

The same can be written for y and z components. When three components
added together vectorially, we get:

ρ
Dv

Dt| {z }
mass per unit volume
time acceleration

= ∇.T|{z}
surface forces on element

per unit volume

+ ρg|{z}
body forces on element

per unit volume

(2.16)
This is an statement of the Newton’s second law which was developed for
a volume of fluid element moving with acceleration because of the forces
acting upon it. It can be seen that momentum balance is equivalent to New-
ton’s second law of motion. The above equation is valid for any continuous
medium. In equation 2.16 we can insert expressions for various stresses in
forms of velocity gradient and pressure. Therefore, we need to find a relation
between various stress and velocity gradient..
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2.3 VISCOSITY

A fluid with zero viscosity is called a nonviscous, or inviscid fluid. Lami-
nar flow can be described as a well-ordered pattern whereby fluid layers are
assumed to slide over one another. In this case while fluid has irregular
molecular motion, is macroscopically, well ordered flow. For a laminar flow,
whereby fluid particles move in straight, parallel lines, called Newtonian flu-
ids, the shear stress on an interface tangent to direction of flow is proportional
to the distance rate of change of velocity, wherein differential is taken in a
direction normal to the interface, Txy ∝ ∂vx

∂y
or Txy = µ∂vx

∂y
, Where µ is called

the coefficient of viscosity with the dimension of (F/L2)t (figure 2.6).

Figure 2.6: Well-ordered parallel flow

This unit in a system of centimeter (cm)-gram (g)-second(sec)is g −
cm−1 − sec−1and is called the poise. At room temperature, µ is about 1
centi-poise for water and about 0.002 centi-pois for air. This is well-known
Newton’s viscosity law. All gases and simple liquids are described by the
later formula. For gases at low density viscosity decrease as temperature
increases. Whereas for liquids the viscosity usually decreases with increasing
temperature. The reason may be that, in gases, molecules travel long dis-
tance between collisions and the momentum is transported by the molecules
in free flight, which as in liquids the molecules travel only very short dis-
tances between collisions, the principal mechanism for momentum transfer is
the actual colliding of the molecules.
In Newtonian law of viscosity for a given temperature and pressure µ is

constant. Experiments show that in some fluids, Txyis not proportional to
the change of rate of velocity in normal direction of it. These few industrial
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important materials, that are not described by the Newtonian law of viscosity
are referred to non-newtonian fluids. In this case µ may be described as a
function of ∂vx

∂y
or Txy.

In more general flows, there are more general relations between the stress
field and the velocity field( namely constitutive law). Here, we consider
Stoke’s viscosity law. This is based on assumption that each stress is lin-
early related through a set of constants to each of the six strains rates
(
.
²ij, i, j = x, y, z | .²ij= .

²ji). In addition each normal stress is directly related to
pressure p. The constants are called viscosity coefficients and fluids behaving
accordingly to this relation are called Newtonian fluid. The Stoke’s viscos-
ity law degenerates to Newton’s viscosity law for the special case of parallel
flow. Knowing that most Newtonian fluids have flow properties which are
independent of direction of coordinates and also considering that for most
fluid p = − σ= −1

3
(Txx + Tyy + Tzz), we reach the following relationships:

Txx = µ(2
∂vx
∂x
− 2
3
∇.v)− p

Tyy = µ(2
∂vy
∂y
− 2
3
∇.v)− p

Tzz = µ(2
∂vz
∂z
− 2
3
∇.v)− p

Txy = µ(
∂vx
∂y

+
∂vy
∂x
)

Txz = µ(
∂vx
∂z

+
∂vz
∂x
)

Tyz = µ(
∂vy
∂z

+
∂vz
∂y
)

This is a common form of Stoke’s viscosity law.

2.4 NAVIER-STOKESANDEULEREQUA-
TIONS

Substituting the Stoke’s viscosity law into the equations of the linear momen-
tum (equations 2.12, 2.13, 2.14) for a newtonian fluid with varying density
and viscosity, we get:
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ρ
Dvx
Dt

= (2.17)

−∂p

∂x
+

∂

∂x

·
2µ

∂vx
∂x
− 2
3
µ(∇.v)

¸
+

∂

∂y

·
µ(

∂vx
∂y

+
∂vy
∂x
)

¸
+

∂

∂z

·
µ(

∂vz
∂x

+
∂vx
∂z
)

¸
+Bx

ρ
Dvy
Dt

= (2.18)

−∂p

∂y
+

∂

∂x

·
µ(

∂vy
∂x

+
∂vx
∂y
)

¸
+

∂

∂y

·
2µ

∂vy
∂y
− 2
3
µ(∇.v)

¸
+

∂

∂z

·
µ(

∂vz
∂y

+
∂vy
∂z
)

¸
+By

ρ
Dvz
Dt

= (2.19)

−∂p

∂z
+

∂

∂x

·
µ(

∂vz
∂x

+
∂vx
∂z
)

¸
+

∂

∂y

·
µ(

∂vz
∂y

+
∂vx
∂z
)

¸
+

∂

∂z

·
2µ

∂vz
∂z
− 2
3
µ(∇.v)

¸
+Bz

These equations, along with the equation of continuity, the equation of
p = p(ρ), µ = µ(ρ), and the boundary and initial conditions determine com-
pletely the pressure, density and velocity component in a flowing isothermal
fluid.
For constant ρ and constant µ the equation may be simplified by using

the equation of continuity (∇.v = 0) to results in:

ρ
Dv

Dt
= −∇p+ µ∇2v +B

The operator ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is called the Laplacian operator. The

above equation is called ”Navier-Stokes equation which first developed by
Navier in France.
For inviscid fluids, the equations 2.17, 2.18 and 2.19 will result in:

ρ
Dv

Dt
= −∇p+B

This is Euler equation which is widely used for describing flow systems in
which viscous effects are relatively unimportant.



2.5. COMPRESSIBLE FLUID 67

2.5 COMPRESSIBLE FLUID

Despite the existence of large pressure, fluids undergo very little change in
density. Water needs a pressure change of 20, 000kPa to have 1 percent
change in its density. Fluids of constant density are termed incompressible
fluids and assumed during computation the density is constant. A flowing
fluid is said to be compressible when appreciable density changes are brought
about the motion. The variation of density is usually accompanied by tem-
perature changes as well as heat transfer. The variation of density means
that a group of fluid elements can spread out into a larger region of space
without requiring a simultaneous shift to be made of all fluid elements in the
fluid. In compressible media a small shift of fluid element will induce similar
small movements in adjacent elements and by this a disturbance called an
acoustic wave propagates at a relatively high speed through the medium. In
the incompressible flows, these propagation have infinite speed which adjust-
ment (disturbance) took place simultaneously through the entire flow and
there are now wave to be considered. Thus, compressibility means admission
of elastic waves having finite velocity.
Up to now, we needed four scalar equations (the equation of continuity

and three components of the equation of linear momentum) to describe fully
a flow field. For compressible flow, the density and pressure changes are also
accompanied by temperature changes. Thus we need equation of energy and
equation of state(ρ = ρ(p, T )). The general theory of compressible flow is
very complicated, not only because of large number of the equations involved,
but also because of the wave propagation phenomena that are predominant
at flow speed higher than the speed of sound.
The speed of sound is defined as the rate of propagation of an infinitesi-

mal pressure disturbance(wave) through a continuous medium. Sound is the
propagation of compressible an expansion wave of finite but small amplitude
such that the ear can detect them. Frequencies range from 20 to 20, 000
Hertz while the magnitude is typically less than 10 Pa.
Consider a long tube filled with motionless fluid and having a piston at

one end, as shown in figure 2.7. By tapping the piston we may cause a
pressure increase dp on the right of A−A. Now two things will happen. Due
to molecular action, the pressure will increase to the left of A− A and this
increase in pressure will move in the tube at high speed C. We thus have a
pressure wave of speed V moving to the left due to microscopic action. The
second effect is on the macroscopic level. According to Newton’s second law,
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the fluid just to the left of wavefront described above must accelerate as a
result of the pressure difference dp to a velocity dv. Once the pressure rise
dp has been established in the fluid, there is no further change in velocity,
so it remains at dv. Behind the wavefront, the fluid is thus moving to the
left at speed dv. During an interval of dt the wave has progressed a distance
Cdt and is shown at position B in figure 2.7. Meanwhile, fluid particle at A
move a distance dvdt to position A1. At an intermediate position, such as
halfway between A and B , shown in diagram as D, the fluid velocity dv has
persisted for a time interval dt

2
. Consequently, fluid initially at D has moved

a distance dvdt
2
to position D1.

Figure 2.7: Wave front movement and fluid movement

By tapping, as infinitesimal pressure disturbance which will move down
the tube at a constant speed, the fluid behind the wave is slightly compressed,
while the fluid ahead of the wave remains undisturbed. This is an unsteady
state problem. However, if we assume an infinitesimal control volume around
the wave, travelling with the wave velocity C, we can apply a steady state
analysis. The wave is thus stationary while the fluid flows with an approach
velocity C, as shown in figure 2.8. Neglecting friction effects, the velocity
profile can be assumed flat. The continuity equation may be written as:

ρAC = (ρ+ dρ)(C − dv)A

Neglecting infinitesimal quantities of higher order (dρdv) gives:

Cdρ− ρdv = 0 (2.20)
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Figure 2.8: Moving pressure disturbance in a motionless fluid and fixed wave
in a moving fluid
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Applying linear momentum balance to the control volume, we get:

0 = C(ρAC)− (C − dv)ρAC + pA− (p+ dp)A

Which further reduces to:
dp = ρCdv (2.21)

By combining equations 2.20 and 2.21 we get:

C2 =
dp

dρ
(2.22)

This expression gives the velocity of propagation of a compressible wave.
Since the propagation of infinitesimal expansion and compression waves is
called sound, C is then the speed of sound. the above equation is valid for
any continuum, be it a solid, a liquid, or a gas. Because of the high speed of
travel of the wave there is very little time for any significant heat transfer to
take place, so the process is very nearly adiabatic. It should be noted that C
is measured relative to the fluid in which the front is propagating. We also
assumed a constant value of C, that is we used an inertial control volume with
steady flow relative to this control volume. The wave involve infinitesimal
pressure variation. Wave with comparatively large pressure variation over a
very narrow front are called shock waves. these waves move relative to fluid
at speed in excess of the acoustic speed. Then we may consider acoustic
wave as limiting cases of shock waves where the change in pressure across
wave become infinitesimal. Therefore what we have developed is valid for
any weak spherical and cylindrical waves which moves caused by any small
disturbance of pressure.
If a continuum were incompressible, equation 2.22 would give an infinite

speed of sound. However, no actual liquid or solid can be perfectly incom-
pressible. All materials have a finite speed of sound. For example the speed
of sound in water, air, ice and steel at 15◦c and a pressure of 101.325 kPa
are 1490,340, 3200 and 5059 m/s, respectively.
For liquids and solids it is customary to define the bulk modulus as a

parameter relating the volume (or density) change to the applied pressure
change:

K = −∆p
∆V
V

=
∆p
∆ρ
ρ

= ρ
dp

dρ
(2.23)
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Water( at 20◦c and atmospheric pressure) has a bulk modulus of about 2.2×
106 Pa while steel about 200×106 Pa. The bulk modulus related to young’s
modulus of elasticity E by the expression:

K

E
= 3(1− 2ν)

Where ν is the Poisson’s ratio. For many common metals such as steel and
aluminum ν ≈ 1

3
and E = K.

By combining equations 2.22 and 2.23 we get:

C =

s
K

ρ

2.6 BOUNDARY-LAYER THEORY

For fluids with small viscosity such as air and water with a high degree of
accuracy, we can consider frictionless flow over entire fluid except for their
regions around the contact areas. Here, because of high velocity gradients, we
could not properly neglect frictions (Newton’s viscosity law) so we consider
these regions apart from the main flow, terming the boundary layers.
In 1904 Ludwing Prandti introduced the concept of boundary layer and

showed how Navier-Stokes equations could be simplified. This concept lit-
erally revolutionized the science of fluid mechanics. According to Prandti’s
boundary layer concept viscous effects at high Reynolds number (Re = ρvL

µ
=

Inertia Forces
V iscous Forces

= v2L
µv/ρL2

) are confined in thin layers adjacent to solid bound-
aries. Outside these solid boundary layers the flowmay be considered inviscid
(µ = 0) and can, thus be described by Euler equation. Within the boundary
layer the velocity component in the main flow direction (x) changes from
vx = 0 (at the solid boundary) to vx = v∞(the free stream velocity at the
edge of the boundary layer).
We consider qualitatively the boundary layer flow over a flat plate. As it

is shown in figure 2.9, a laminar region begins at the leading edge and grows
in thickness. A transition region is reached where the flow changes from
laminar to turbulent, with a consequent thickening of the boundary layer.
The transition depends partly on the Reynold number( ρv∞x

µ
) where x is the

distance downstream from the leading edge. Transition occurs in the range
Rex = 3× 105 to Rex = 106. In the turbulent region we find, that as we get
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Figure 2.9: Details of boundary layers

near the boundary the turbulence becomes suppressed to such a degree that
viscous effects predominate, leading us to formulate the concept of a viscous
sublayer shown darkened in the diagram.
There is actually a smooth variation from boundary layer region to the

region of constant velocity. The velocity profile merges smoothly into the
main-stream profile. There are several definitions of boundary-layer thick-
ness that are quite useful. One can consider that the thickness is the distance
δ from the wall out to where the fluid velocity is 99 percent of the mainstream
velocity. The experimental determination of the boundary layer thickness as
defined above is very difficult because the velocity approaches asymptoti-
cally the free stream value v∞. The edge of the boundary layer is poorly
defined. For this reason alternative thicknesses which can be measured more
accurately are often used. The displacement thickness δ∗ defined as distance
by which the boundary would have to be displaced if the entire flow were
imagined to be frictionless and the same mass flow maintains at any section
(figure 2.10). Thus, considering a unit width along the z across an infinite
flat plate at zero angle of attack for incompressible fluid:

∞Z
0

vxdy = q =

∞Z
δ∗

vmdy

Hence, changing the lower limit on the second integral and solving for δ∗ we
get:
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δ∗ =

∞Z
0

(1− vx
vm
)dy

Figure 2.10: Displacement thickness in boundary layer

The motivation for using displacement thickness is to permit the use of
a displaced body in place of the actual body, such that the frictionless mass
flow around the displaced body is the same as the actual mass flow around
the real body. Use is made of the displacement thickness in the design of
wind tunnels, air intakes for airplane jet engine.
As the boundary layer thickness growth, the fluid is pushed away from the

plate, which means that the velocity has also a component in the y direction
, vy. we would expect that vy ¿ vx because the boundary layer thickness
is small compared to any significant body dimension. The boundary layer
thickness, that is the value of y for which vx = 0.99v∞, can be obtained as
following:

δ ≈ 5.0
r
µx

ρvm
=

5x√
Rex

A rough comparison between the various thicknesses gives:

δ∗ =
δ

3

The effects of viscosity is influential as δ∗ increases. In the case of concrete
dams since δ∗/h ratio is very small, the viscous effect can be neglected,
specially for the sudden ground acceleration on the base of the reservoir.
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2.7 IRROTATIONAL FLOW

A fluid element can be subjected to three types of flow, namely: translation,
rotation and deformation. These types of elemental motions are depicted
in figure 2.11. The concept of translational motion is self-evident.. The
deformational motion will occur when relative orientation of the axis changes
as shown in figure 2.11. Deformational flow also exists if one or more axis
are stretched or compressed. Here we focus our attention on rotational flow,
which is depicted by the fluid element of figure 2.11 turning around.

Figure 2.11: Three types of fluid motion

Let us examine the flow in a fluid with circular streamlines as shown in
figure 2.12. The fluid rotates like a rigid body. each element turns around at
a certain angular velocity. The arrows shown rotate at the same rate. This
is unquestionably a case of rotational flow.
Now let us consider the flow between the two horizontal flat plates, where

the bottom plate is stationary while the top one moves at velocity v0 as shown
in figure 2.13. we note that the horizontal arrow is simply translated, while
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Figure 2.12: Fluid rotating like a rigid body

Figure 2.13: Shearing flow between two flat plates
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the vertical one turns. It is not clear wether this is a case of rotational flow
or not. To determine that we propose to use the average rate at rotation of
the two arrows as a measure. If the average rate of rotation is zero the flow
is said to be irrotational, if not the flow is rotational. For generality we refer
to figure 2.14.

Figure 2.14: Change of relative positions in an arbitrary flow field

We define the angular velocity ωz about the axis z as the average rate of
counterclockwise rotation of the two lines:

ωz =
1

2
(
dα

dt
− dβ
dt
)

In the limit of small angles we would have:

dα

dt
=
d(∆yα

∆x
)

dt
=
d(∆yα

∆t
)

dx
=

∂vy
∂x

dβ

dt
=
d(

∆xβ
∆y
)

dt
=
d(

∆xβ
∆t
)

dy
=

∂vx
∂y
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Thus,

ωz =
1

2
(
∂vy
∂x
− ∂vx

∂y
)

Similarly:

ωx =
1

2
(
∂vz
∂y
− ∂vy

∂z
)

ωy =
1

2
(
∂vx
∂z
− ∂vz

∂x
)

The vector ω is thus one-half of the vorticity vector:The vector ω is thus
one-half of the vorticity vector:

ω =
1

2
∇× v =1

2

 i j k
∂
∂x

∂
∂y

∂
∂z

vx vy vz


To avoid the factor 1

2
we define the vorticity ζ as equal to twice the

rotational vector ω, then:

ζ =2ω =∇× v

Referring back to simple flow configuration of figure 2.13 we note that
vy = vz = 0 and vx = v0y , then we have:

ωz =
1

2
(0− v0) = −1

2
v0

Thus, the flow is rotational. At this time we define irrotational flows
as those where ω = 0 at each point in the flow. Rotational flows are those
where ω 6= 0 at points in the flow.
The normal strain rates give the rate of stretching or shrinking of the two

lines shown in figure 2.14, while the shear strain rates give rate of change of
angularity of the two lines. What’s left of the relative motion must be rigid
body motion. Thus the expression 1

2
(∂vy
∂x
− ∂vx

∂y
) is actually more than just

average rotation of the line segments about the z axis. It represent the rigid
body angular velocity ωz of the line segments about the z axis.
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A development of rotation in a fluid particle in an initially irrotational
flow would require shear stress to be present on the particle surface. Thus
the shear stress(Newton’sss viscosity law) in such flows and in more general
flows will depend on the viscosity of the fluid and the rate of variation of
the velocity in region. For fluids with small viscosity such as water and air,
assumption of irrotational flow is valid for great part of the flow except region
with large velocity gradient. Thus the boundary layer regions are the places
that element of fluid rotates. Irrotational analysis may be carried out if the
boundary layer thickness is small in comparison with the scale of the fluid.

2.8 RESERVOIR’S EQUATIONOFMOTION

Based on the information presented in the previous sections, the Euler equa-
tion is valid for the case of dam’s reservoir. In the Euler equation, if we
divide the pressure into static and dynamic pressure we can write for static
pressure −∇ps + B =0, therefore for only hydrodynamic pressure we can
write the following:

ρ
Dv

Dt
= −∇p

The p is the dynamic pressure in excess of static pressure. The above equation
can be written as:

ρ(∇.v) v + ρ
∂v

∂t
= −∇p

For small amplitude motion the effect of convective term of the left hand side
of the above equation is negligible, thus we can write:

ρ
∂v

∂t
= −∇p (2.24)

For a linearly compressible fluid, we define the following:

p = −K(²xx + ²yy + ²zz) (2.25)

Derivating of whole equation with respect to time:

.
p= −K( .²xx + .

²yy +
.
²zz)

The
.
²xxcan be written as following:
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.
²xx=

∂

∂t
(²xx) =

∂

∂t

µ
∂ux
∂x

¶
=

∂

∂x

µ
∂ux
∂t

¶
=

∂vx
∂x

In which ux is the displacement in the x-direction. Thus we can write:

.
p= −K(∇.v) (2.26)

If we use equation 2.24 to take the divergence of the whole equation we get:

∇.(ρ∂v
∂t
) =∇.(−∇p)

Or we can write the following:

ρ
∂

∂t
(∇.v) = −∇2p (2.27)

Using equation 2.26 and substitute it in equation 2.27 we get:

ρ

K

∂2p

∂t2
=∇2p (2.28)

We define c =
p

ρ
K
, in which is the velocity of pressure wave in fluid. For

incompressible fluid (K =∞), therefore, C =∞and then we have:
∇2p = 0

The above equation is the Laplace equation of motion for incompressible
fluid.
The equation of motion for reservoir (equation 2.28) obtained based on

the following assumption:
a) inviscid fluid, µ = 0
b)small amplitude motion, convective terms are neglected
c)linear compressible fluid, equation 2.25

2.9 RESERVOIRBOUNDARYCONDITIONS

The formulation of the boundary conditions associated with the reservoir
boundaries is simply the expression in mathematical terms of the physi-
cal situations. There are an infinite number of solutions to the differential
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equation. The task is to find the solution that is relevant to the boundary
condition. It should be noted that in addition to the spatial (or geometric)
boundary conditions, there are temporal boundary conditions which specify
the state of the variable of the interest at some points at time. This temporal
condition is called an ”initial condition”.
In case of dam-reservoir we have four spatial (geometric) boundary condi-

tions namely, dam-reservoir, reservoir-foundation, free surface, and reservoir
far-end boundary conditions (figure 2.15).

Figure 2.15: Boundaries of the dam-reservoir system

2.9.1 Dam-Reservoir Boundary Condition

At the surface of fluid-structure, it is clear that there must be no flow across
the interface. This is based on the fact that face of the concrete dams are im-
permeable. This results into the condition that at the normal to the boundary
there is no relative velocity or another word we can write it mathematically:

vsn = vn

in which n is the unit normal vector to the boundary at the dam-reservoir
interface and vsn and vn are the velocity of the structure (dam) and fluid
along the n respectively (figure 2.16). The above equation can be rewritten
as following:

vsn = v.n
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Differentiating the above equation with respect to time will give:

∂vsn
∂t

=
∂v

∂t
.n

It must be noted that n is normal to the surface and it direction is constant
as well as its value at a point. From the Euler equation and knowing that
∂vsn
∂t
is normal acceleration of the dam at the interface we can write:

asn = −
1

ρ
∇p.n

or:

∂p

∂n
= −ρasn

Figure 2.16: Dam-reservoir interface

2.9.2 Reservoir-Foundation Boundary Condition

If there is no absorption or penetration of water into the reservoir bottom, the
same dam-reservoir boundary condition that was obtained previously, can be
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used for reservoir-foundation boundary. In case of reservoir with sediment at
the bottom, we can account it in a very simplified manner.
The boundary condition at the reservoir bottom relates the hydrodynamic

pressure to the sum of the normal acceleration and acceleration due to inter-
action between impounded water and the reservoir bottom material. Here,
we consider only interaction in the normal direction due to the assumption
that the hydrodynamic pressure waves incident on the reservoir bottom only
excite vertically propagating dilatational waves in the reservoir bottom ma-
terials. The hydrodynamic pressure p(n, t) in the water is governed by the
one-dimensional wave equation:

∂2p

∂n2
=
1

C2
∂2p

∂t2
n ≥ 0 (2.29)

Similarly, the interaction displacement κ(n, t) in the layer of reservoir
bottom materials is governed by:

∂2κ
∂n2

=
1

C2r

∂2κ
∂t2

n ≤ 0 (2.30)

WhereCr =
q

Er
ρr
, Er is the Young’s modulus of elasticity and ρris the density

of the reservoir bottom materials. At the reservoir bottom, the accelerative
boundary condition states that the normal pressure gradient is proportional
to the total acceleration:

∂p(0, t)

∂n
= −ρ £an(t)+ ..κ (0, t)

¤
(2.31)

Where
..κ (0, t) is the acceleration of the reservoir bottom due to interaction

between the impounded water and the reservoir bottom materials. Equilib-
rium at the surface of the reservoir bottom materials requires that:

p(0, t) = −Er ∂κ
∂y
(0, t) (2.32)

the D’alembert solution to equation 2.30 is κ = gr(n + Crt) where gr is
the wavefront of the refracted wave propagating vertically downward in the
reservoir bottom materials. An upward propagating wave does not exist
because of the radiation condition for the assumed infinitely thick layer of
reservoir bottom materials. Note that ∂κ

∂t
(0, t) = Cr g

0
r(Crt) and

..κ (0, t) =
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C2r g
00
r (Crt), where the prime indicates the derivative of gr with respect to

argument (n+ Crt). Differentiating equation 2.32 with respect to t gives:

∂p(0, t)

∂t
= ErCrg

00
r (Crt)

or:

∂p(0, t)

∂t
= −Er

Cr

..κ (0, t) (2.33)

The solution for
..κ (0, t) from equation 2.33, when substituted into equation

2.31 with the identity Cr
Er
= 1

ρrCr
, gives:

∂p(0, t)

∂n
− q∂p(0, t)

∂t
= −ρan(t) (2.34)

Where q = ρ
ρrCr

. For rigid reservoir bottom materials, Cr =∞ and q = 0, so
the second term on the right hand side of the above equation is zero giving the
boundary condition for a rigid reservoir bottom. The fundamental parameter
that characterizes the effects of absorption of hydrodynamic pressure waves
at the reservoir bottom is the admittance or damping coefficient q. The wave
reflection coefficient κ, which is the ratio of the amplitude of the reflected
hydrodynamic pressure wave to the amplitude of a vertically propagating
pressure wave incident on the reservoir bottom can be related to the damping
coefficient.
The wave reflection coefficient κ can be obtained by considering the re-

flection of a harmonic pressure wave in the impounded water impinging verti-
cally on the reservoir bottom. The downward vertically propagating incident
wave of unit amplitude is pi = exp

£
i ω
C
(n+ Ct)

¤
, while the resulting upward

propagating wave is pr = κ exp
£
i ω
C
(−n+ Ct)¤. Both pi and pr satisfy the

wave equation (equation 2.29) The substitution of the sum pi+pr of the two
hydrodynamic pressure waves into the boundary condition at the reservoir
bottom, equation 2.34, with no normal acceleration results in an equation
which can be solved to results in:

κ =
1− qC
1 + qC

The wave reflection coefficient is independent of excitation frequency ω. In
general, it depends on the angle of incident of the pressure wave at the reser-
voir bottom. The wave reflection coefficient may range within the limiting
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values of 1 and −1. For rigid reservoir bottom Cr =∞ and q = 0, resulting
in κ = 1. For very soft material, Cr approaches zero and q =∞, resulting in
κ = −1. The material properties of the reservoir bottom medium are highly
variable and depend upon many factors. It is believed the κ values from 1
to 0 would cover the wide range of materials encountered at the bottom of
actual reservoirs.

2.9.3 Free Surface Boundary Condition

The geometry of free surface boundary is not known a priori. This shape is
part of the solution, which means we have a very difficult boundary condition
to cope with. In the case of surface wave of negligible surface tension, we
call them gravity wave. The free surface of a wave can be described as:

F (x, y, z, t) = z − ϕ(x, y, z, t) = 0 (2.35)

where ϕ is the displacement of the free surface above the horizontal plane,

Figure 2.17: Free surface wave

say z = 0,. If the surface varies with time, as would the water surface, then
the total derivative of the surface with respect to time would be zero on the
surface. In other word, if we move with the surface, it does not changes.

DF (x, y, z, t)

Dt
= 0 =

∂ϕ

∂t
+vx

∂F

∂x
+vy

∂F

∂y
+vz

∂F

∂z
on F (x, y, z, t) = 0

Or:
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−∂F

∂t
= v.∇F = v.n |∇F |

Where the unit vector normal to the surface has been introduced as n = ∇F
|∇F | .

Rearranging the above equation, we get:

v.n =
−∂F

∂t

|∇F | on F (x, y, z, t) = 0

The boundary condition at the free surface using equation 2.35 is:

v.n =
∂F
∂tq¡

∂ϕ
∂x

¢2
+
¡
∂ϕ
∂z

¢2
+ 1

on z = ϕ(x, t)

Where:

n =
−∂ϕ

∂x
i−∂ϕ

∂y
j+ kq¡

∂ϕ
∂x

¢2
+
¡
∂ϕ
∂z

¢2
+ 1

Carrying out the dot product:

vz =
∂ϕ

∂t
+ vx

∂ϕ

∂x
+ vz

∂ϕ

∂z
on z = ϕ(x, t)

Neglecting the convection terms and approximating pressure we get:

p = ρgϕ at z = 0 (2.36)

vz =
∂ϕ

∂t
at z = 0 (2.37)

We also know:

∂vz
∂t

= −1
ρ

∂p

∂z
+ g (2.38)

Differentiating equation 2.36 with respect to t and cancelling ϕ with equation
2.37 gives:

1

ρg

∂p

∂t
= vz
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A second differentiation with respect to t and elimination of vz with equation
2.38 then substitution of ptotal = p + ρgϕ, in which p represent the excess
pressure due to motion and ρgϕstands for hydrostatic pressure, we get:

1

g

∂2p

∂t2
+

∂p

∂z
= 0 at z = 0

This is an approximate to the surface boundary condition.
The above boundary condition is usually replaced with the boundary

condition that:

p = 0 at z = 0

This assumption of no surface wave is common assumption in concrete dams
and is valid. It was shown that the surface waves are negligible.
The more complicated free surface boundary condition can be established

in which we can assume pressure distribution due to interaction of wind and
surface. These cases are above the scope of the book and can be found in
appropriate references of water wave mechanics.

2.10 SOLUTIONOFTHERESERVOIREQUA-
TION

Westergard’s classic work (1933) on the hydrodynamic water pressure on
dams during the earthquake started a new area for the researcher in this field.
Westergaard’s solution to wave equation for rigid dams during earthquakes
was obtained based on the assumptions of dam with rectangular reservoir
subjected to horizontal earthquake. In the solution, the reservoir extended
to infinity in the upstream direction and the effect of surface wave was ne-
glected. The system was subjected to the horizontal ground acceleration
which was perpendicular to the dam axis. The motion was assumed to be
small amplitude motion and water was taken inviscid fluid.
The pressure equation for the system shown in figure 2.18 is found under

the following boundary conditions:
p = 0 at y = h
uy = 0 at y = 0
..
ux= ag cos(

2πt
T
) at x = 0

p = 0when x→∞
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Figure 2.18: Rigid dam-infinite reservoir system

The hydrodynamic pressure for the above mentioned boundary conditions
is as follows:

p(x, y, t) =
8aρgh

π2
cos(

2πt

T
)

∞X
n=1,3,5,...

µ
1

n2cn
e−qn sin(

nπ(h− y)
2h

)

¶
(2.39)

in equation 2.39 qn and cnare defined as followings:

qn =
nπcnx

2h

cn =

r
1− 16ρh2

n2KT 2
=

r
1− 16h2

n2C2T 2

The maximum pressure at x = 0 occurs when t = 0, T, 2T, ... and can be
written as:

pmax(x, y, t) =
8aρgh

π2

∞X
n=1,3,5,...

µ
1

n2cn
sin(

nπ(h− y)
2h

)

¶
(2.40)

The maximum pressure at a given time on the upstream face (x = 0) happens
at the bottom of the reservoir. The shape of the pressure diagram is such
that the curve has a horizontal tangent at the top and a vertical tangent at
the bottom.
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In an approximation, the maximum pressure (equation 2.40 ) can be
replaced by a parabolic curve. The maximum hydrodynamic pressure to be
added to the hydrostatic pressure is as follows:

pmax(0, y, t) =
0.0255 ton− ft3 aph(h− y)q

1− 0.72( h sec
1000T ft

)

To further simplify the hydrodynamic pressure on the dam, one may
consider the hydrodynamic pressure as a certain body of water moves with
dam. This is called as added mass approach. This is possible because of the
fact that the hydrodynamic pressure obtained (equation 2.39) has same phase
compared to ground acceleration. Thus, we need to find the mass of water
that attached to the dam and moves with it. For water with unit weight of
0.03125ton− ft3 the width of water along the x-direction is as follows(figure
2.19):

b =
7

8

p
h(h− y)

The mass of water that moves with the dam body can be transferred in to
extra mass of concrete attached to the dam body. For a dam concrete with
the unit mass of 144lb.percu.ft the width of concrete would be:

b0 = 0.38
p
h(h− y)

As it was already mentioned the Westergaard approach gives a pressure
distribution which is in phase with ground acceleration. Also we imposed the
boundary condition at far-end of the reservoir that as x → ∞ then p → 0.
This boundary condition is an indication of energy dissipation at the far-end.
The Westergaard solution is valid if the value of cnis real. Another word, we
can write:

1− 16h2

n2C2T 2
≥ 0

This will result in:

T >
4h

nc
n = 2m− 1, m = 1, 2, 3, ...

The term, 4h
(2m−1)c is the m

thperiod of the reservoir, Tm,. Therefore, the
westergaard’s solution is valid if the period of loading, T , is greater than the
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Figure 2.19: Added mass approach
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first period of the reservoir, T1 = 4h
c
,. If T = Tm, then p = ∞ and we have

resonance.
The Westergaard pressure equation at the upstream face of the dam can

be written as followings:

p(0, y, t) =
4aρg

π

cosωt ∞X
m=1

(−1)m−1

(2m− 1)
q

λ2m − ω2

C2

cosλmy


in which ωm and Tn are the circular frequency and period of the mth mode
of the reservoir and ω is the circular frequency of the earthquake.. They can
be written as follows:

λm =
ωm
C

ω =
2π

T

ωm =
2π

Tm
=
(2m− 1)πC

2h
m = 1, 2, 3, ...

Another solution to the wave equation presented by Chopra. Chopra
(1967) presented a closed form solution for hydrodynamic pressure in the
case of rigid dam with the vertical up-stream face under the horizontal and
vertical ground motion. For the excitation frequency less than the fundamen-
tal frequency of the reservoir, both Westergaard and Chopra’s solution are
the same. The greater excitation frequency causes an out-of-phase pressure
compared to Westergard’s solution. In this case the hydrodynamic pressures
cannot be represented by inertia effect on an added mass moving with the
dam. Also it was found that the response to vertical ground motion is a real
valued function and there is no decay with time so that the system is truly
undamped in this case.
In his solution for the horizontal earthquake, the wave equation for a

rigid dam with rectangular reservoir (figure 2.18)presented subjected to the
following boundary conditions:
p = 0 at y = h
∂p
∂y
= 0 at y = 0

∂p
∂x
= −ρ ..

ug at x = 0
The hydrodynamic pressure for a harmonic ground excitation of

..
ug= e

iwt

would be:
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p(x, y, t) =
4ρ

π

∞X
m=1

(−1)m−1

(2m− 1)
q

λ2m − ω2

C2

exp

Ã
−x
r

λ2m −
ω2

C2

!
cosλmy eiwt

(2.41)
It can be seen that as x → ∞ the pressure does not approach zero if

λm <
ω
C
which was the fourth boundary condition imposed in Westergaard

solution. To compare the above solution with Westergaard’s solution, we
can consider the real part of the ground motion as well as coefficient ag
(
..
ug= ag cos(2πt

T
)).The Solution in this case consist of the real part of the

pressure solution (equation 2.41) and would be as:

p(0, y, t) =

4aρg

π
sinωt

m1−1X
m=1

(−1)m−1

(2m− 1)
q

ω2

C2
− λ2m

cosλmy +

4aρg

π
cosωt

∞X
m=m1

(−1)m−1

(2m− 1)
q

λ2m − ω2

C2

cosλmy

in which m1 is the minimum value of m such that λm > ω
C
. If m1 = 1 which

is an indication of λ1 > ω
C
or ω < ω1, then the term involving sinωt vanishes

and the solution of the wave equation is same as Westergaard’s solution.
Here, again it can be noticed that the Westergaard’s solution is valid if the
frequency of the excitation is less than the fundamental frequency of the
reservoir system. For ω > ω1 the term involving sinωt does not vanish and
represent existence of pressure at infinite distance up the reservoir. The
pressure response has two terms one is in phase with ground motion and the
other is in opposite phase of ground motion. Therefore, the hydrodynamic
pressure cannot be represented by added mass approach.
For m1 > 1 we have pressure at infinite distance. This means that for the

case of ωm < ω < ωm+1the pressure would be zero at x = ∞ for ωm+1and
higher modes. While for ωm and lower modes we expect to have pressure at
very far-end of the reservoir.
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The solution of wave equation subjected to the vertical ground motion
for a rigid dam with rectangular reservoir is investigated. The reservoir have
the following boundary conditions:

∂p
∂y
= −ρ ..

uy at y = 0
1
g
∂2p
∂t2
+ ∂p

∂y
= 0 at y = h

∂p
∂x
= 0 at x = 0

The pressure solution when the reservoir is subjected to the vertical
ground motion of

..
uy= ag cos(ωt) would be as follows:

p(x, y, t) =
agρC

ω

sin ω
C
(h− y)− g

ωC
cos ω

C
(h− y)

cos ω
C
h+ g

ωC
sin ω

C
h

cos(ωt)

The solution is independent of the x−coordinate.
If we ignore the free surface wave and change the second boundary con-

dition by:
p = 0 at y = h
then the solution would be:

p(x, y, t) =
agρC

ω

sin ω
C
(h− y)

cos ω
C
h

cos(ωt) (2.42)

The difference between the two solutions depends on the magnitude of the
quantity g

ωC
. Analysis of strong ground motions of the past earthquakes

seems to indicate that frequencies of most of the significant harmonic com-
ponents lie in the range 1 < ω < 120 rad/sec. Thus, the largest value of
g
ωC
may be taken as 6.82 × 10−3(ω = 1, C = 4720fps). However, such low

frequency harmonics contribute little to the response in the case of typical
reservoir depths encountered, because natural frequencies for the reservoir
are rather high: e.g. for a 300 ft deep reservoir ω1 = 24.72 radians per sec.
The magnitude of g

ωC
for harmonics of significance is therefore considerably

less than 6.82×10−3, and errors introduced by dropping terms involving g
ωC

will be small, except possibly near the free surface. Therefore, equation2.42
is sufficiently accurate.
Most investigator have ignored the waves that may be generated at the

free surface of water. For compressible fluid, and harmonic excitation it
was found that the error ,e , introduced by ignoring surface wave, varies as
follows:

e < 0.05 if
h

T
> 4.2

√
h
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0.05 < e < 0.20 if 2.6
√
h <

h

T
< 4.2

√
h

e < 0.20 if
h

T
< 2.6

√
h

Most of significant harmonic in typical strong ground motion have a pe-
riod below 3 sec. Thus for T = 3 sec, the error e < 0.05 if h > 158.5m.
For a reservoir depth 100 ft, e < 0.05 if T < 1.32 sec . Because the natural
periods of the system are very small (first natural period for 100 ft depth
of water is 0.085 sec), the contributions to the total response from harmonic
components of ground motion with the periods longer than 1.32 sec will be
small. This is particularly so because we are dealing with an fluid. Hence,
it may be concluded that errors introduced by neglecting surface wave is on
the order of 0.05. Similar conclusions can be derived for other depth between
100 ft and 520 ft. On this basis, it seems that the effect of surface waves can
be ignored with little loss of accuracy.

2.11 RESERVOIRFAR-ENDTRUNCATED
BOUNDARY CONDITION

The truncated boundary for the finite element and boundary element model-
ing of the infinite reservoir was worked by so many researchers. Sommerfeld
boundary condition is the most common one that is based on the assumption
that at long distance from the dam face, water wave can be considered as
plane wave. A plane wave can be represented by an equation of the form:

p = F (x− Ct)
This equation leads to the following condition:

∂p

∂x
=

∂p

∂n
= − 1

C

∂p

∂t
(2.43)

in which n is the normal at the truncation boundary. This represents well-
known Sommerfeld radiation condition. It introduces a damping in the sys-
tem andmodels the loss of energy in the outgoing waves. Under this condition
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for the far end reservoir, the classical solution for the hydrodynamic pressure
was obtained in which there are in-phase and out-of-phase pressures. As a
rule for the truncated boundary there is no reflection for the outgoing wave
and all of our effort is in modeling the energy loss in outgoing wave such
that all energy can be absorbed on the truncated boundaries. The solution
to the wave equation can be investigated for a rigid dam with rectangular
reservoir subjected to horizontal ground motion and the following boundary
conditions:
p = 0 at y = h
∂p
∂y
= 0 at y = 0

∂p
∂x
= −ρ ..

u at x = 0
∂p
∂x
= ∂p

∂n
= − 1

C
∂p
∂t
at x = L

The hydrodynamic pressure for a harmonic ground excitation of
..
ug= e

iwt

would be:

p(x, y, t) =
4ρ

π

∞X
m=1

(−1)m−1
(2m− 1)qm

eqm(L−x) + Zme−qm(L−x)

eqmL − Zme−qmL cosλmy eiwt (2.44)

Where:

qm =

r
λ2m −

ω2

C2
, Zm =

qm − i ωC
qm + i

ω
C

, i =
√−1 (2.45)

It was found that the Sommerfeld radiation damping condition does not
yield good approximation for the infinite reservoir for excitation frequencies
between the first and second natural frequencies of the reservoir. Within this
range of frequencies an increase in the length of reservoir does not lead to
any increase in the accuracy(Humar and Roufaiel, 1983).
Humar and Roufaiel (1983) used a radiation condition which adequately

models the loss over a wide range of excitation frequencies, also it was shown
that the conditions give much better results as compared to the plane wave
Sommerfeld condition. Their radiation condition derived only for the hori-
zontal ground motion in the case of dam with vertical up-stream face. The
Solution of the equation 2.41 when

..
ug= e

iωt can be represented as following:

p(x, y, t) =

m1−1X
m=m1

Am
qn
e−qnx cosλmy +

∞X
m=m1

Amq
λ2m − ω2

C2

cosλmy

 eiωt
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It was already shown that at large distance from the dam, the second term
in the equation vanishes, and the pressure is given as:

p(x, y, t) =
m1−1X
m=1

Ame
−
µq

λ2m− ω2

C2

¶
x
cosλmy e

iωt =
m1−1X
m=1

pm (2.46)

From the above equation we can write:

p
∂p

∂x
= − 1

ω

m1−1X
m=1

Ãr
ω2

C2
− λ2m

!
pm

∂p

∂t
(2.47)

For the case of m = 2 (when ω lies between ω1and ω2) equation 2.46 gives
p = p1 and equation 2.47 becomes:

∂p

∂x
= − 1

C

Ãr
1−

³ω1
ω

´2! ∂p

∂t

Therefore, it can be said that the following condition should be applied at
the truncated boundary:

∂p

∂n
= 0 ω < ω1 (2.48)

∂p

∂n
= − 1

C

Ãr
1−

³ω1
ω

´2! ∂p

∂t
ω > ω1 (2.49)

Apparently, the preceding condition is not exact when ω is greater than ω2.
For large value of ω equation 2.49 reduces to equation 2.43.
The hydrodynamic pressure obtained by applying the modified boundary

condition at x = L represented by equations 2.48 and 2.49 will be given by
an expression similar to equation 2.44, except that Zmwill now be as follows:

Zm = 1 ω < ω1

Zm =
qm − i ωC

q
1− ¡ω1

ω

¢2
qm + i

ω
C

q
1− ¡ω1

ω

¢2 ω > ω1
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The modified boundary condition at the far end was obtained with ig-
noring the second term in the pressure equation at the large distance from
the dam. It was found that the modified radiation boundary condition gives
much better results as compared to the Sommerfeld one for excitation fre-
quencies between 0.0 and 2.
Sharan (1984) showed that the condition of ∂p

∂n
= 0 for incompressible

fluid at the far end is the form of that for a rigid stationary boundary and
the behavior of the fluid motion at the truncated boundary is not truly
presented. A large extent of the fluid domain is required to be included in
the analysis. The above condition is same as Sommerfeld condition for the
incompressible fluid (C =∞). Under the assumption of incompressible fluid
in the rectangular reservoir and rigid dam, the governing equation of the
pressure would be the Laplace equation. Knowing the pressure equation, he
found that at large distance from upstream face condition would be:

∂p

∂n
= − π

2h
p

It can be observed that at very large distance away from the dam face p = 0.0
therefore ∂p

∂n
= 0 which is same condition at the infinity for the infinite

reservoir. He found that under the assumption of the rigid dam and rigid
rectangular reservoir bottom, for the horizontal vibration. the truncated
boundary can be located very close to the structure. It was found that
although the proposed boundary condition was derived for the dam with the
vertical upstream face, the results for an inclined face are relatively more
accurate than those for a vertical face.
Sharan (1985) used the radiation condition for the submerged structure

surrounded by unbounded extent of compressible fluid as following:

∂p

∂n
= −Ψp

Deferent geometry of the solid-fluid interface was used to find the accuracy
of the proposed radiation boundary condition.
Sharan (1987) proposed a damper radiation boundary condition for the

time domain analysis of the compressible fluid with small amplitude. The
structure submerged in unbounded fluid in the upstream direction. The
proposed radiation condition was:

∂p

∂n
= − π

2h
p− 1

C

∂p

∂t
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The above boundary condition was found to be very effective and efficient
for a wide range of the excitation frequency. For the finite value of c and h,
the effectiveness of the proposed damper depends on the period of excitation
T , (2π

ω
). If the value of T be near the natural period of vibration of the fluid

domain (TC
h
→ 4), the magnitude of pand ∂p

∂t
become infinitely large. In

this case approximated boundary condition for the truncated surface may be
written as ∂p

∂n
= 0 . Therefore for such a case, neither Sommerfeld damper nor

the proposed one would be effective. In the case of TC
h
¿ 4, the magnitude

of , pC
h
, becomes small compared to that of ∂p

∂t
. For the limiting case p → 0

when T → 0. On the other hand, for TC
h
À 4, ∂p

∂t
is much less than that

of pC
h
. For the limiting case ∂p

∂t
→ 0 when T → ∞. Thus in both case, one

of the terms on the right hand side of proposed equation of damping would
be small compare to the other. As a general, it was found that proposed
boundary condition at the truncated surface is more efficient and needs less
computational time. In the case of TC

h
= 1 (high excitation frequency) both

methods shows discrepancy with the case of L =∞. It is not an important
problem because in high frequency excitation the hydrodynamic forces are
not comparable so that its error in hydrodynamic pressure is not significant.
Sharan (1985) expressed the condition at the truncated face as:

∂p

∂x
= −α

C

∂p

∂t
+

βω

C
p

For (Ω = ωh
C
) less than 3π

2
which is for excitation frequency less than the

second natural frequency of the reservoir if x
h
is sufficiently large, then α = 0

and β = −p( π
2Ω
)2 − 1 and for π

2
< Ω < 3π

2
, β = 0 and α =

p
1− ( π

2Ω
)2.

For Ω < π
2
, ∂p
∂n
is function of p instead of ∂p

∂t
, therefore Sommerfeld radiation

boundary condition is not justified for Ω < π
2
. For these range of frequencies

values of p,∂p
∂t
,and ∂p

∂x
approach zeroes as the ratio x

h
is increases. This

explains why satisfactory results may be obtained even with use of improper
boundary condition such as ∂p

∂n
= 0 and ∂p

∂n
= − 1

C
∂p
∂t
by considering a very

large extent of the reservoir. For Ω > 3π
2
even for large value of x

h
, the

parameters α and β are sensitive to x and y coordinate point on the truncated
surface.
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Chapter 3

FINITE ELEMENT
MODELLING OF THE
DAM-RESERVOIR SYSTEM

The first step in dynamic analysis of a system is to properly model the actual
system. In mathematical modelling, we need to formulate the equation of the
motion. Having formulated the equation of the motion, we then procced to
solve the equation of the motion. In previous Chapter, reservoir’s equation of
the motion was formulated. Here we will find the structure’s equation of the
motion and its finite element equation in addition to reservoir finite element
equation.

3.1 FINITE ELEMENTMODELLINGOFTHE
STRUCTURE

3.1.1 Single-Degree-Of-Freedom Systems

A single-degree-of-freedom system (SDF) is defined as a system whose motion
can defined by a single parameter. Systems shown in figure 3.1 are systems
of SDF. As shown in the figure only one parameter (u, x or θ ) is required
to define the position of the particle at each second.
For a system shown in 3.1−a, if we try to apply a dynamic force f(t), the

equation of the motion can be written as:

99
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Figure 3.1: Systems of single degree of freedom

f(t) = FI + FD + FS

in which FI , FD and FS are inertial, damping and spring (stiffness) forces,
respectively. The inertial force is equivalent to the total acceleration of the
massM and can be written asM

..
u when there is no base motion. If there is

a base motion, the inertial force can be written as M(
..
u +

..
ug). As is shown

in figure3.2
..
u is the acceleration of the mass M relative to the base and

..
ugis

the ground acceleration.The spring force can be written as Ku, which is a
linear spring or linear stiffness. Other form of spring may be proposed which
result in nonlinear equation. The damping force is viscous damping force
and is given by FD = C

.
u which C is the damping coefficient. This is a

valid assumption when velocity is small. For high velocity, damping force is
proportional to the square of the velocity. Thus the equation of the motion
for a SDF system can be written as:

M(
..
u +

..
ug) + C

.
u +Ku = f(t)

This is a differential equation of second order. The equation can be
rewritten into the following form:

M
..
u +C

.
u +Ku = f(t)−M ..

ug
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Figure 3.2: Forces on a single degree of freedom

It can be seen that the base acceleration is equivallent of a force acting on
the mass in the opposite direction of its motion. In the other word, the base
motion can be interpreted as a force acting on the mass in opposite direction
of its motion.

3.1.2 Multi-Degree-Of-Freedom System

In a multi-degree-of-freedom (MDF) sytem, it is required to know the values
of the displacement in more than one point in order to define its motion at
any instant of time. Consider a system with n degrees of freedom which
accelerate in the y direction as shown in figure 3.3.

Figure 3.3: An example of multi-degree-of-freedom (MDF) sytem with de-
grees of freedom in y direction
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The inertial forces can be written as:

FI =



FI1
FI2
.
.

FI(n−1)
FIn


=


M1......................
....M2..................
...........................
...........................
...............MI(n−1)..
......................MIn





..
u1
..
u2
.
.

..
un−1
..
un


g

or it can be write as:

FI = [M ]{
..

U}t

The mass matrix [M ] is a diagonal matrix and in general it can be a non-
diagonal symmetric matrix.
The forces due to elasticity can be written as:

FS =



FS1
FS2
.
.
.
FSn


=


K11K12.................K1n

K21K21.................K2n

..................................

..................................
.................................
Kn1Kn2................Knn





u1
u2
.
.
.
un


or it can be written as:

FS = [K]{U}

where [K] is the stiffness matrix. A detailed description of the stiffness matrix
can be found in finite element books.
The damping matrix can be written as :

FD =



FD1
FD2
.
.
.
FDn


=


C11C12.................C1n
C21C21.................C2n
..................................
..................................
.................................
Cn1Cn2................Cnn





.
u1
.
u2
.
.
.
.
un


or it can be written as:
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FD = [C]{
.

U}

where [C] is the damping matrix.
Equating of the external forces and internal forces will results in:

[M ]{ ..U t}+ [C]{
.

U}+ [K]{U} = {f(t)}

which {f(t)} is the external forces act on the structures and can be written
as:

{f(t)} =



f1(t)
f2(t)
.
.
.

fn(t)


If there is a base displacement like ground acceleration along y direction

as shown in figure 3.3, the equation of motion for a multi-degree-of-freedom
system can be written as:

[M ]{ ..U t}+ [C]{
.

U}+ [K]{U} = {f(t)}

in which
..

{U t} = {
..

Ugy} +{
..

U}. The vector of ground acceleration can be
written as:

..

{Ug}=



..
ugy
..
ugy
.
.
..
ugy
..
ugy


=
..
ugy



1
1
.
.
1
1


=
..
ugy {I}

Where
..
ugyis the ground acceleration at the base along y direction. Thus, the

equation of motion can be written as:

[M ]{ ..U}+ [C]{
.

U}+ [K]{U} = {f(t)}− [M}{
..

Ugy}
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Figure 3.4: An example of MDF system with two degrees of freedom at each
mass

For a system of MDF system when subjected to ground acceleration in two
directions and there are two degree of freedoms for each mass,as shown in
figure 3.4,we can write the equation of motion based on the both degrees of
freedom at each mass.For this system, we can write the displacement vector
as:

{U} =



u1
v1
u2
v2
.
.
.
un
vn


The same can be written for { .

U} and {
..

U}. The equation of motion can be
written as following:

[M ]{ ..U}+ [C]{
.

U}+ [K]{U} = {f(t)}− [M ]{
..

Ug}

In which { ..Ug} can be written as:
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{ ..U g} = ..
ugx



1
0
1
0
.
.
1
0
1
0



+
..
ugy



0
1
0
1
.
.
0
1
0
1


When

..
ugxand

..
ugyare the ground acceleration along the x and y direction,

respectively. In the above equation of motion {f(t)} can be written as:

{f(t)} =



f1x(t)
f1y(t)
f2x(t)
f2y(t)
.
.
.

fnx(t)
fny(t)


Which fix(t) and fiy(t) are the forces acting on the ith mass along x and y
direction, respectively. In the case of concrete dams, {f(t)} can be seperated
into hydrodynamic pressure {f} and resultant of all the other forces, {f1},
that act on the structure. Thus, the final form of the equation of the motion
can be written as:

[M ]{ ..U}+ [C]{
.

U}+ [K]{U} = {f}+ {f1}− [M ]{
..

Ug}

In a MDF sytem, a system is discretized into its degrees of freedom. The
number of degrees of freedom depend on the number of elements and the
degree of freedom for each element. Usually in the case of concrete gravity
dams isoparametric plane stress or plane strain are used. These types of
elements are used for two dimensional problems. In some cases triangular
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elements may be used. In both plane stress or plane strain the displacement
field is given by the u and v in directions of cartisian x and y axis. In the case
of concrete gravity dam, assumption of 2-D analysis is a valid assumption.
In 3-D analysis the simplest case is the case of tetrahedron element. Based

on the nature of the problem each node may have 3 different components u, v
and w in the direction of X, Y and Z. For more complex type of element we
may add rotational degrees of freedom in to each node. Three dimensional
analysis of concrete gravity dams requires a large number of DOF.

3.2 COUPLING MATRIX OF THE DAM-
RESERVOIR

The coupling matrix relates the pressure of the reservoir and the forces on
the dam-reservoir interface as following:

[Q]{p} = {f}

where {f} is the force vector acting on the structure due to the hydrodynamic
pressure.
Figure ?? shows a line element on the interaction boundary of the dam-

reservoir. The work done by the hydrodynamic pressure on the interaction
surface of the structure must be equal to the work of the equivalent nodal
forces on the interface boundary of an element. Thus, for unit thickness
elements as shown in figure ??, the following expression can be written:

Z
se

pUnds = {f}eT {δ} =
©
fx1 fy1 fx2 fy2

ª
u1
v1
u2
v2

 (3.1)

where p and Un are the values of the hydrodynamic pressure and normal
displacement along the element interface, respectively. {δ} and {f}e are the
displacement and force vector of an interface element. ui and vi (fxi and fyi)
are the displacements (forces) at node i of the interface element along the
global X and Y coordinates, respectively. The integration is performed along
each element on the dam-reservoir interface. The superscript and subscript
’e’ refer to the element on the dam-reservoir interface. Writing u and v,
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displacements along the global X and Y coordinates of the interface element,
in terms of structure shape functions, then:

u = u1N1 + u2N2 v = v1N1 + v2N2

where Niis the structure shape function at nodei of the interface element.
For the normal displacement along the element surface, Un, we have:

Un = un + vn = ηu1N1 + ηu2N2 + βv1N1 + βv2N2 (3.2)

In equation 3.2, ηand βare the absolute values of the normal vector on the
boundary in the global directions of X and Y , respectively. Equation 3.2 can
be written in the following form:

Un =
©

ηN1 βN1 ηN2 βN2
ª {δ} = {Ns

n}T{δ} (3.3)

The hydrodynamic pressure can be expressed as shape function of the fluid
in the form:

p = {Nf}T{p}e = © Nf
1 Nf

2

ª {p}e (3.4)

where Nf
i is the fluid shape function at node iof the interface element. Com-

bining equations 3.1, 3.3 and 3.4, there is obtained:

{f}e =
Z
se

{Ns
n}{Nf}Tds {p}e = [Q]e{p}e (3.5)

where [Q]e and {p}e are the coupling matrix and hydrodynamic pressure
vector of an element on the dam-reservoir interface. The total coupling
matrix[Q] is obtained by assembling all element coupling matrices. From
equation 3.5, [Q]e is written as:

[Q]e =

Z
se

{Ns
n}{Nf}Tds

For an interface element as shown in figure 3.5, then:

[Q]e =

Z
se


ηN1N

f
1 ηN1N

f
2

βN1N
f
1 βN1N

f
2

ηN2N
f
1 ηN2N

f
2

βN2N
f
1 βN2N

f
2


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Figure 3.5: Interface element on the dam-reservoir interaction boundary

3.3 FINITE ELEMENTMODELLINGOFTHE
RESERVOIR

As it was discussed in previous Chapter, the hydrodynamic pressure distrib-
ution in the reservoir is governed by the pressure wave equation. Assuming
that water is linearly compressible and neglecting its viscosity, the small am-
plitude irrotational motion of water is governed by the two-dimensional wave
equation:

∇2p(x, y, t) = 1

C2
..
p (x, y, t) (3.6)

where p(x, y, t) is the hydrodynamic pressure in excess of hydrostatic pres-
sure, C is the velocity of pressure wave in water andxand y are the coordinate
axes.
The hydrodynamic pressure in the impounded water governed by equation

3.6, is due to the horizontal and the vertical accelerations of the upstream
face of the dam, the reservoir bottom as well as the far end of the reservoir in
the case of finite reservoir length. The motion of these boundaries is related
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to the hydrodynamic pressure by the boundary conditions.
For earthquake excitation, the condition at the boundaries of the dam-

reservoir, reservoir-foundation and the reservoir-far-end are governed by the
equation:

∂p(x, y, t)

∂n
= −ρan(x, y, t)

whereρ is density of water and an(x, y, t) is the component of acceleration on
the boundary along the direction of the inward normal n. No wave absorption
is considered at the boundaries of the reservoir.
Neglecting the free surface wave, the boundary condition at the free sur-

face is written as:

p(x, y, t) = 0

whereh is the height of the reservoir.
Using finite element discretization of the fluid domain and the discretized

formulation of equation 3.6, the wave equation can be written in the following
matrix form:

[G]{..p}+ [H]{p} = {F} (3.7)

where Gij =
P
Geij, Hij =

P
He
ij and F =

P
F ei . The coefficient G

e
ij,

He
ij and F

e
i for an individual element are determined using the following

expressions:

Geij =
1

C2

Z
Ae

NiNjdA

He
ij =

Z
Ae

(
∂Ni
∂x

∂Nj
∂x

+
∂Ni
∂y

∂Nj
∂y
)dA

F ei =

Z
se

Ni
∂p

∂n
ds

where Ni is the element shape function, Ae is the element area and se
is the prescribed length along the boundary of the elements. In the above
formulation, matrices [H] and [G] are constant during the analysis while
the force vector {F} and the pressure vector {p} and its derivatives are the
variable quantities in equation 3.7.
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3.3.1 Truncated Boundary of the Reservoir’s Far-End

The Sharan boundary condition, which was already described, at the far-end
truncated boundary can be written as:

∂p

∂n
= − π

2h
p− 1

C

.
p

Implementation of the truncated boundary condition in the finite element
model, can be done by separating the force vector {F} in equation 3.7 into
two components:

{F} = {FF1}+ {FF2} (3.8)

where {FF1} is the component of the force due to acceleration at the
boundaries of the dam-reservoir and reservoir-foundation while {FF2} is due
to truncation at the far boundary and can be written as:

{FF2} = − π

2h
[D]{p}− 1

C
[D]{ .p} (3.9)

where Dij = De
ij and D

e
ij is defined as:

De
ij =

Z
`eT

NiNjd`T (3.10)

In equation 3.10, `eT is the side of the element on the truncated boundary.
Substituting equations 3.8 and 3.9 into equation 3.7 results in:

[G]{..p}+ 1

C
[D]{ .p}+ ([H] + π

2h
[D]){p} = {FF1} (3.11)

In general form, we can write the finite element form of the equation of the
reservoir as:

[G]{..p}+ [C 0]{ .p}+ [K 0}{p} = {F}− ρ[Q]T ({ ..U}+ {
..

U g}) = {F2}− ρ[Q]T{ ..U}

Putting equation 3.11 in the format of the above equation, the following
relationships are obtained:

[C 0] =
1

C
[D]
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[K 0] = [H] +
π

2h
[D]

{F2}− ρ[Q]T{ ..U} = {FF1}

Where {F2} is forces due to ground acceleration on the dam-reservoir bound-
aries and total acceleration on the rest of the boundaries.

3.4 EQUATION OF THE COUPLED DAM-
RESERVOIR SYSTEM

As we discussed, it can be seen that the dam-reservoir interaction is a clas-
sic coupled problem which contains two differential equations of the second
order. The equations of the dam structure and the reservoir can be written
in the following form:

[M ]{ ..U}+ [C]{
.

U}+ [K]{U} = {f1}− [M ]{
..

U g}+ [Q]{p} = {F1}+ [Q]{p}

[G]{..p}+ [C 0]{ .p}+ [K 0}{p} = {F}− ρ[Q]T ({ ..U}+ {
..

U g}) = {F2}− ρ[Q]T{ ..U}

where[M ], [C] and [K] are mass, damping and stiffness matrices of the
structure and [G], [C 0] and [K 0]are matrices representing mass, damping and
stiffness of the reservoir, respectively. Detailed definitions of the[G],[C 0] and
[K 0]matrices and vector {F}, are presented in the previous sections.[Q] is the
coupling matrix; {f1} is the vector of body force and hydrostatic force; and
{p} and {U} are the vectors of hydrodynamic pressures and displacements.
{
..

Ug} is the ground acceleration and ρ is the density of the fluid. The dot
represents the time derivative.
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Chapter 4

DYNAMIC ANALYSIS OF
DAM-RESERVOIR SYSTEM

4.1 INTRODUCTION

The dam-reservoir system can be categorized as a coupled field system in
which two physical domains of fluid and structure interact only at their in-
terface. In such a problem, the presence of interaction implies that the time
response of both subsystems must be evaluated simultaneously. Different ap-
proaches to the solution of the coupled field problem exist. Field elimination,
simultaneous solution and partitioned solution are the three classes of solu-
tions for the coupled field system. The advantages and disadvantages of each
method were addressed by Felippa and Park (1980). The field elimination
approach is not feasible in the case of nonlinear problems. The reduced sys-
tem of equations has high order derivatives which cause some difficulties in
applying the initial conditions. The simultaneous solution is time consuming
and involves many operations, especially when a large number of elements
is used. This method contains matrices with a large bandwidth and con-
sequently requires a large amount of memory especially for the cases when
the existing matrices are not symmetric. In addition, the main disadvantage
of the first two classes of solution arises from the difficulties encountered in
using available software while the partitioned solution has the capability of
using existing software for each subsystem. Staggered solution was described
by Felippa and Park (1980) as a partitioned solution procedure that can be
organized in terms of sequential execution of single-field analyser.

113
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Most of the physical systems are made of subsystems which interact with
each other. These physical systems which are referred to as coupled sys-
tems, have been investigated by several researchers. Methods of solution
vary depending on the governing differential equations of the subystems and
may lead to different degrees of accuracy and stability of the solution (Park
1980). Coupled problems and their numerical solutions were addressed by
Felippa and Park (1980); Park and Felippa (1984). Zienkiewicz and Chan
(1989) proposed an unconditionally stable method for staggered solution of
soil-pore fluid interaction problem. Huang (1995) proposed two uncondition-
ally stable methods for the analysis of soil-pore fluid problem. The methods
were named pressure correction method and displacement correction method.
Zienkiewicz and Chan (1989) presented an unconditionally stable method
for staggered solution procedure for the fluid-structure interaction problem.
Their method was proved to be unconditionally stable when no damping term
was included in the equations of the fluid and the structure. However, when
the damping term is included in the equation of the subsystems, the pro-
posed method may not be unconditionally stable. The problem of solutions
instability when the damping term is included in the differential equation,
was recognized by researchers. Most of the staggered solution applications in
the field of fluid-structure interaction were conducted using a method which
is not unconditionally stable.
There are two method of solution for dynamic analysis of a system. Time

domain and frequency domain solutions are two methods of solutions and
have different application depending on the nature of the system. For a
linear system both method can be used while for a nonlinear system only
time domain solution can be used to evaluate the dynamic response of the
system.
The behaviour of a nonlinear system is different than the linear system.

Lack of superposition property, multiplicity of equilibria and domains of at-
traction, local and global stability, frequency dependence of amplitude of
free oscilation, the jump response, subharmonic and superharmonic genera-
tion are some of characteristics of a nonlinear system. In particular, when a
linear system is subjected to harmonic excitation, the steady state response
will be another harmonic with the same frequency and will be independent of
the initial conditions. A nonlinear system may behave in a different manner.
This character of nonlinear systems make them unable to be solved using
frequency domain method.
In this Chapter, two methods of staggered solution procedure are applied
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to the dam-reservoir interaction problem. Both methods are shown to be
unconditionally stable when the two differential equations of the fluid and
structure include damping terms. The accuracy of the solution using both
of the proposed methods, is investigated. Two different configurations of
concrete gravity dams are analysed to illustrate the application of the pro-
posed procedure and to compare the solution with available finite element
solutions.

4.2 THECOUPLEDDAM-RESERVOIRPROB-
LEM

As it was discussed in previous Chapter, The dam-reservoir interaction is
a classic coupled problem which contains two differential equations of the
second order. The equations of the dam structure and the reservoir can be
written in the following form:

[M ]{ ..U}+[C]{
.

U}+[K]{U} = {f1}−[M ]{
..

Ug}+[Q]{p} = {F1}+[Q]{p} (4.1)

[G]{..p}+ [C 0]{ .p}+ [K 0}{p} = {F}− ρ[Q]T ({ ..U}+ {
..

U g}) = {F2}− ρ[Q]T{ ..U}
(4.2)

where[M ], [C] and [K] are mass, damping and stiffness matrices of the struc-
ture and [G], [C 0] and [K 0]are matrices representing mass, damping and stiff-
ness of the reservoir, respectively. Detailed definitions of the[G],[C 0] and [K 0]
matrices and vector {F}, are presented in the following sections.[Q] is the
coupling matrix; {f1} is the vector of body force and hydrostatic force; and
{p} and {U} are the vectors of hydrodynamic pressures and displacements.
{
..

Ug} is the ground acceleration and ρ is the density of the fluid. The dot
represents the time derivative.

4.3 DIRECT INTEGRATIONOFTHEEQUA-
TION OF MOTION

In direct integration the equation of motion are integrated using a numerical
step-by-step procedure. The term direct means that no transformation of the
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equation of motion into the different form is carried out.The direct integration
of the equations of motion provides the response of the system at discrete
intervals of time which are usually spaced. In this procedure three basic
parameters of displacement, velocitiy aand acceleration are computed. The
integration algorithms are based on appropriately selected expressions that
relate the response parameters at a given interval of time to their values at
one or more previous time points. In general two independent expressions
of this nature must be specified. The equation of motion written for the
time interval under consideration provides the third expression necessary
to determine the three unknown parameters. If the equation of motion is
written at a time step which the three parameters are unknown(t+∆t), the
time integration scheme is called implicite integration method. In explicit
integration method, the equilibrium equation is written at the time step
which all the three basis parameters are known (t).

In time integration scheme, the basic parameters are known at the be-
gining of the integration or any points preceding the integration time. These
specified or computed values permit the marching scheme to be begun so
that response can be computed at as many subsequent points as desired.
The accuracy and stability of the scheme depend on the magnitude of the
time interval and marching algorithm.

There are several method of direct integration. Newmark method, Wil-
son, Houbolt are implicit integration methods while Central DifferenceMethod
is the explicit integration method.

The stability of each method depends on the time steps taken and some of
the methods are unconditionally stable. In an unconditionaly stable method,
solution does not blow up choosing a big time step. However, the accuracy
of the solution might be affected. To achieve an accurate solution a small
time step must be chosen based on the natural period of the system as well
as the characteristics of the exciting force.

All the above integration schemes are for the solution of a single equation
of motion. While, in the couples dam-reservoir equation we are dealing with
a couple of equilibrium equation. The stability of an integration scheme for a
single equation does not guarantee the stability of a coupled equation. There-
fore, It is needed to develope an approach for solution of coupled equation
using the above methods.
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4.4 USING NEWMARK-β METHOD FOR
THE COUPLED EQUATIONS

Direct integration scheme is used to find the displacement and hydrody-
namic pressure at the end of the time increment i+1 given the displacement
and hydrodynamic pressure at time i. The Newmark-β method is used for
discretization of both equations (implicit-implicit method). In this method
{ .

U}i+1, {U}i+1, {
.

P}i+1 and {P}i+1 can be written as follows:

{ .

U}i+1 = { .

U}pi+1 + γ∆t{ ..U}i+1 (4.3)

{ .

U}pi+1 = { .

U}i + (1− γ)∆t{ ..U}i

{U}i+1 = {U}pi+1 + β∆t2{ ..U}i+1 (4.4)

{U}pi+1 = {U}i +∆t{ .

U}i + (0.5− β)∆t2{ ..U}i

{ .p}i+1 = { .p}pi+1 + γ∆t{..p}i+1 (4.5)

{ .p}pi+1 = { .p}i + (1− γ)∆t{..p}i

{p}i+1 = {p}pi+1 + β∆t2{..p}i+1 (4.6)

{p}pi+1 = {p}i +∆t{ .p}i + (0.5− β)∆t2{..p}i
where γand β are the integration parameters.The governing field equations
at time i+ 1 can be written as follows:

[M ]{ ..U}i+1 + [C]{
.

U}i+1 + [K]{U}i+1 = {F1}i+1 + [Q]{p}i+1 (4.7)

[G]{..p}i+1 + [C 0]{
.
p}i+1 + [K 0]{p}i+1 = {F2}i+1 − ρ[Q]T{ ..U}i+1 (4.8)

The coupled field equations 4.7 and 4.8 can be solved using the stag-
gered solution scheme. The procedure can be started by guessing {P}i+1
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in equation 4.7 to solve for {U}i+1 and its derivatives. Then equation 4.8
can be solved to find {P}i+1. This method can not guarantee the uncondi-
tional stability of the solution. Similarly, guessing{ ..U}i+1 at first to calculate
{P}i+1 from equation 4.8 and then calculating {U}i+1from equation 4.7 can
not provide unconditionally stable procedure.
In the following sections, two methods of staggered solution are proposed

which are shown to be unconditionally stable.

4.5 STAGGEREDDISPLACEMENTMETHOD

In this method, equation 4.7 can be approximated as following:

[M ]{ ..U}∗i+1 = {F1}i+1 + [Q]{p}pi+1 − [C]{
.

U}pi+1 − [K]{U}pi+1 (4.9)

Combining equations 4.9 and 4.7 gives:

[M ]{ ..U}i+1 = [M ]{
..

U}∗i+1+β∆t2[Q]{..p}i+1− γ∆t[C]{ ..U}i+1−β∆t2[K]{ ..U}i+1
(4.10)

Taking advantage of the lumped mass which results in a diagonal mass
matrix, equation 4.10 can be modified as:

[M ]{ ..U}i+1 = [M ]{
..

U}∗i+1 + β∆t2[Q]{..p}i+1 (4.11)

Substituting equation 4.11 into equation 4.8, then:

([G]+ρβ∆t2[Q]T [M ]−1[Q]){..p}i+1+[C 0]{
.
p}i+1+[K 0]{p}i+1 = {F2}i+1−ρ[Q]T{

..

U}∗i+1
(4.12)

In equation 4.12, the right hand side terms are known, thus, {P}i+1
can be obtained. In order to correct the approximation made in equation
4.11, {P}i+1 can be substituted in equation 4.7 to calculate {U}i+1 and its
derivatives.
Therefore, the procedure of the staggered displacement method can be

summarized by the following steps:
1. Solving equation 4.9 to calculate { ..U}∗i+1.
2. Substituting { ..U}∗i+1in equation 4.12 to calculate {P}i+1.
3. Substituting {P}i+1 in equation 4.7 to calculate {U}i+1 and its deriv-

atives.
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4.5.1 Stability of the Staggered Displacement Method

In an unconditionally stable solution method, instability can be attributed
to that of structure. While in a conditionally stable method, the instabil-
ity may be due to numerical or structural instability. To show that the
described method of staggered displacement is unconditionally stable, con-
sider a modally decomposed system with scalar values. In such a system,
displacement and the pressure must not grow. Thus for|µ| < 1 we have:

{U}i+1 = µ{U}i { .

U}i+1 = µ{
.

U}i { ..U}i+1 = µ{
..

U}i (4.13)

{p}i+1 = µ{p}i { .p}i+1 = µ{
.
p}i {..p}i+1 = µ{

..
p}i (4.14)

Using z-transformation of µ = 1+z
1−z , the condition for stability requires

that the real part of z is negative (Re(z) ≤ 0 ) and that the Routh-Hurwitz
criterion is satisfied. For β = 0.25 and γ = 0.5, equations 4.3, 4.4, 4.5 and
4.6 become:

{ ..U}i+1 =
4z2

∆t2
{U}i+1 { .

U}i+1 = 2z

∆t
{U}i+1 (4.15)

{ .

U}pi+1 =
2z − z2
∆t

{U}i+1 {U}pi+1 = (1− z2){U}i+1

{..p}i+1 =
4z2

∆t2
{p}i+1 { .p}i+1 = 2z

∆t
{p}i+1 (4.16)

{ .p}pi+1 =
2z − z2
∆t

{p}i+1 {p}pi+1 = (1− z2){p}i+1
Rewriting equation 4.7 without the force term, then:

[M ]{ ..U}i+1 + [C]{
.

U}i+1 + [K]{U}i+1 − [Q]{p}i+1 = 0 (4.17)

Combining equations 4.10 and 4.12 and substituting them into equation
4.8 without the force term, gives:

[G]{..p}i+1+[C 0]{
.
p}i+1+[K 0]{p}i+1+ρ[Q]T [M ]−1([M ]+γ∆t[C]+β∆t2[K]){

..

U}i+1 = 0
(4.18)
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The modally decomposed system is represented by a single degree of
freedom equation. The single degree of freedom equivalent of equations 4.17
and 4.18 will be obtained by substituting the mass, damping and stiffness
values m, c and k instead of [M ], [C] and [K] in equation 4.17 and g, c

0

andk
0
instead of [G], [C

0
] and [K

0
] in equation 4.18. The coupling matrix

[Q] would be represented by scalar quantity q. The characteristic equation
of the coupled field can be written by substituting equations 4.15 and 4.16
into equations 4.17 and 4.18 as follows:¯̄̄̄

m 4z2

∆t2
+ c 2z

∆t
+ k −q

ρq
m
(m+ ∆t

2
c+ ∆t2

4
k) 4z2

∆t2
g 4z

2

∆t2
+ c0 2z

∆t
+ k0

¯̄̄̄
= 0 (4.19)

or

a0z
4 + a1z

3 + a2z
2 + a1z + a4 = 0 (4.20)

where:

a0 =
16mg

∆t2
a1 =

8mc0

∆t3
+
8gc

∆t3

a2 =
4mk0

∆t2
+
4cc0

∆t2
+
4gk

∆t2
+
4ρq2

∆t2
+
2ρq2c

m∆t
+

ρq2k

m

a3 =
2c0k
∆t

+
2ck0

∆t
a4 = kk

0

The Routh-Hurwitz conditions for stability are:

a0 > 0 a1, a2, a3, a4 ≥ 0
¯̄̄̄
a1 a3
a0 a2

¯̄̄̄
> 0

¯̄̄̄
¯̄ a1 a3 0
a0 a2 a4
0 a1 a3

¯̄̄̄
¯̄ > 0
(4.21)

For the structural system of dam and reservoir;m,c, k, g, c0 andk0 are
positive quantities. Therefore, a0, a1, a2,a3and a4 are always positive. The
values of the two determinants in equation 4.21 are given as:

a1a2 − a3a0 = (4.22)
32

∆t5
m2c0k0 +

32

∆t5
mc02c+

32ρ

∆t5
mc0q2 +

16ρ

∆t4
c0q2c

+
8ρ

∆t3
c0q2k +

32

∆t5
gc2c0 +

32

∆t5
g2ck
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+
32ρ

∆t5
gcq2 +

16ρ

∆t4
gc2q2 +

8ρ

∆t3
gcq2k

a1a2a3 − a21a4 − a23a0 = (4.23)
64

∆t6
(mk0
√
cc0 − gk

√
cc0)2 +

64

∆t6
mc03ck +

64

∆t6
mc02c2k0

+
64ρ

∆t6
mc02q2k +

64ρ

∆t6
mc0q2ck0 +

32ρ

∆t5
c02q2ck

+
32ρ

∆t5
c0q2c2k0 +

16ρ

∆t4
c02q2k2 +

16ρ

∆t4
c0q2kck0

+
64

∆t6
gc2c02k +

64

∆t6
gc3c0k0 +

64ρ

∆t6
gcq2c0k

+
64ρ

∆t6
gc2q2k0 +

32ρ

∆t5
gc2q2c0k +

32ρ

∆t5
gc3q2k0

+
16ρ

∆t4
gcq2k2c0 +

16ρ

∆t4
gc2q2kk0

All the terms in equation 4.22 and 4.23 are positive. Recalling the condi-
tion of stability (equation 4.21), then the method of staggered displacement
is unconditionally stable.

4.6 STAGGERED PRESSURE METHOD

In this method, the pressure can be approximated using equation 4.8 as
following:

[G]{..p}∗i+1 = {F2}i+1 − [C 0]{
.
p}pi+1 − [K 0]{p}pi+1 (4.24)

Substituting equation 4.24 into equation 4.8, there is obtained:

[G]{..p}i+1 = [G]{
..
p}∗i+1 − ρ[Q]T{ ..U}i+1 − γ∆t[C 0]{..p}i+1 − β∆t2[K 0]{..p}i+1

(4.25)
or:

([G] + β∆t2[K 0] + γ∆t[C 0]){..p}i+1 = [G]{
..
p}∗i+1 − ρ[Q]T{ ..U}i+1 (4.26)

Substituting equation 4.26 into equation 4.7 with [H] = [G]+β∆t2[K 0]+
γ∆t[C 0], gives:



122CHAPTER 4. DYNAMICANALYSIS OFDAM-RESERVOIR SYSTEM

([M ] + ρβ∆t2[Q][H]−1[Q]T ){ ..U}i+1 + [C]{
.

U}i+1 + [K]{U}i+1 = (4.27)

{F1}i+1 + [Q]({p}pi+1 + β∆t2[H]−1[G]{..p}∗i+1)
Using equation 4.27, the variable { ..U}i+1can be calculated. Substituting

{ ..U}i+1 into equation 4.7 gives {p}i+1 and its derivatives.
Therefore, the procedure of the staggered pressure method can be sum-

marized by the following steps:
1. Solving equation 4.24 to calculate {..p}∗i+1.
2. Substituting {..p}∗i+1in equation 4.27 to calculate {

..

U}i+1.
3. Substituting { ..U}i+1in equation 4.26 to calculate {p}i+1 and its deriv-

atives.

4.6.1 Stability of the Staggered Pressure Method

For stability check, similar procedure as that used in the displacement method
can be applied. Rewriting equations 4.7 and 4.8 without the force terms,
then:

[M ]{ ..U}i+1 + [C]{
.

U}i+1 + [K]{U}i+1 − [Q]{p}i+1 = 0 (4.28)

[G]{..p}i+1 + [C 0]{
.
p}i+1 + [K 0]{p}i+1 + ρ[Q]T{ ..U}i+1 = 0 (4.29)

The characteristic equation of the coupled field for a modally decomposed
system with scalar values, can be written by substituting equations 4.15 and
4.16 into equations 4.28 and 4.29:¯̄̄̄

m 4z2

∆t2
+ c 2z

∆t
+ k −q

ρq 4z
2

∆t2
g 4z

2

∆t2
+ c0 2z

∆t
+ k0

¯̄̄̄
= 0

or
a0z

4 + a1z
3 + a2z

2 + a1z + a4 = 0 (4.30)

where:

a0 =
16mg

∆t4
a1 =

8mc0

∆t3
+
8gc

∆t3

a2 =
4mk0

∆t2
+
4cc0

∆t2
+
4gk

∆t2
+
4ρq2

∆t2

a3 =
2c0k
∆t

+
2ck0

∆t
a4 = kk

0
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The coefficients of the polynomial are all positive. The determinants in
the Routh-Hurwitz conditions (equation 4.21), give:

a1a2 − a3a0 = (4.31)
32

∆t5
m2c0k0 +

32

∆t5
mc02c+

32ρ

∆t5
mc0q2

+
32

∆t5
gc2c0 +

32

∆t5
g2ck +

32ρ

∆t5
gcq2

a1a2a3 − a21a4 − a23a0 = (4.32)
64

∆t6
(mk0
√
cc0 − gk

√
cc0)2 +

64

∆t6
mc03ck +

64

∆t6
mc02c2k0

+
64ρ

∆t6
mc02q2k +

64ρ

∆t6
mc0q2ck0 +

64

∆t6
gc3c0k0 +

+
64ρ

∆t6
gc2c02k +

64ρ

∆t6
gc2q2k0 +

64ρ

∆t6
gcq2c0k (4.33)

These terms are all positive. Therefore, given the stability condition of
equation 4.21, the method of staggered pressure is unconditionally stable.

4.7 MODIFIED STAGGERED PRESSURE
METHOD

Most of the available nonlinear solutions assume a diagonal mass matrix for
the purpose of analysis. The staggered displacement method is the most
suitable coupled field problem solution procedure for the case of nonlinear
analysis. In the case of the staggered pressure method some difficulties may
arise due to added mass effect in equation 4.27 which changes the mass matrix
from diagonal to a full matrix. For this reason the staggered pressure method
was modified to apply to nonlinear analysis.
The staggered pressure method is modified by rewriting equation 4.27 in

the following approximate form:

[M ]{ ..U}i+1+[C]{
.

U}i+1+[K]{U}i+1 = {F1}i+1+[Q] ({p}pi+1+β∆t2[H]−1( [G]{
..
p}∗i+1−ρ[Q]T{

..

U}i) )
(4.34)

Therefore, the procedure of the modified staggered pressure method can
be summarized by the following steps:
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1. Solving equation 4.24 to calculate {..p}∗i+1.
2. Substituting {..p}∗i+1in equation 4.34 to calculate {

..

U}i+1.
3. Substituting { ..U}i+1 in equation 4.26 to calculate {p}i+1 and its deriv-

atives.
The modified staggered pressure method does not guarantee uncondi-

tional stability of the solution. In the following analysis, the modified stag-
gered pressure method is used instead of the staggered pressure method and
the results are compared with those obtained using the staggered displace-
ment analysis procedure.

4.8 USING α-METHODFORTHECOUPLED
EQUATIONS

In this method, { .

U}i+1, {U}i+1, {
.
p}i+1 and {p}i+1 can be written same as

Newmark-β method. The governing field equations at time i + 1 can be
written as follows:

[M ]{ ..U}i+1+[C]{
.

U}i+1+(1+α)[K]{U}i+1 = {F1}i+1+[Q]{p}i+1+α[K]{U}i
(4.35)

[G]{..p}i+1+[C 0]{
.
p}i+1+(1+α)[K 0]{p}i+1 = {F2}i+1−ρ[Q]T{

..

U}i+1+α[K 0]{p}i
(4.36)

where α is the integration parameter which is introduced in the coupled field
equation. The coupled field equations 4.35 and 4.36 can be solved using the
staggered displacement solution scheme.

4.8.1 Staggered Displacement Method

In this method, equation 4.35 can be approximated as following:

[M ]{ ..U}∗i+1 = {F1}i+1+[Q]{p}pi+1−[C]{
.

U}pi+1−(1+α)[K]{U}pi+1+α[K]{U}i
(4.37)

Combining equations 4.37 and 4.35 gives:

[M ]{ ..U}i+1 = [M ]{
..

U}∗i+1+β∆t2[Q]{
..
p}i+1−γ∆t[C]{

..

U}i+1−(1+α)β∆t2[K]{
..

U}i+1
(4.38)
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Taking advantage of the lumped mass which results in a diagonal mass
matrix, equation 4.38 can be modified as:

[M ]{ ..U}i+1 = [M ]{
..

U}∗i+1 + β∆t2[Q]{..p}i+1 (4.39)

Substituting equation 4.39 into equation 4.36, then:

([G] + ρβ∆t2[Q]T [M ]−1[Q]){..p}i+1 + [C 0]{
.
p}i+1 + (1 + α)[K 0]{p}i+1 =

{F2}i+1 − ρ[Q]T
..

U}∗i+1 + α[K 0]{p}i (4.40)

In equation 4.40, the right hand side terms are known, thus, {p}i+1 can
be obtained. In order to correct the approximation made in equation 4.39,
{p}i+1 can be substituted in equation 4.35 to calculate {U}i+1 and its deriv-
atives.
Therefore, the procedure of the staggered displacement method can be

summarized by the following steps:
1. Solving equation 4.37 to calculate { ..U}∗i+1.
2. Substituting { ..U}∗i+1in equation 4.40 to calculate {p}i+1.
3. Substituting {p}i+1 in equation 4.35 to calculate {U}i+1 and its deriv-

atives.
It can be shown that the method of staggered displacement is uncondi-

tionally stable for the linear coupled equations of the dam-reservoir system
with structural damping when α = 0. For the nonlinear equations, the
numerical solution is based on piece-wise linear solution. The solution sta-
bility depends on the length of the time steps and the introduced numerical
damping. The dam-reservoir interaction representation using the staggered
solution technique using α-method is suitable for nonlinear fracture analysis
of concrete dams.
The nonlinear seismic analysis of concrete gravity dams includes opening

and closing of the cracks due to the cyclic nature of the earthquake. When
the cracks are closed, cracked elements recover their strength and therefore
the structure gains stiffness. As the cracks open, the stiffness of the structure
reduces. The effect of opening and closing of cracks introduce high frequency
shock waves into the structure. The numerical difficulties due to opening
and closing of cracks can be overcome by using the α-method (Hilber et al.,
1977; Hilber and Hughes, 1978).
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The α-method of time integration algorithms introduces numerical damp-
ing to the system. It is an efficient method that is accurate in lower modes
and dissipate energy in the higher modes when compared with other time
integration techniques. Thus, using the α-method ensures that the response
of higher modes is damped out. Direct integration is used to determine the
displacement and hydrodynamic pressure at the time increment i + 1. The
α-method is used for discretization of both equations of the coupled field
problem (implicit-implicit method). The dam-reservoir interaction represen-
tation using the staggered solution technique is introduced to the nonlinear
fracture analysis of concrete dams.

4.9 SEISMIC ENERGY BALANCE

In the design of structure subjected to earthquake loading, the energy equa-
tion can be used to study the energy absorbtion of different components.
In a satisfactory design, the energy supply must be larger than the energy
demand. In this regard, two approaches can be considered for the energy
equation. Uang and Bertero (1990) used absolute and relative energy for-
mulations for a single degree of freedom system. They found that absolute
energy formulation is simple and more straightforward. Filiatrault et al.
(1994) used energy balance to study the nonlinear behaviour of different
structures under variable earthquake ground motion. Different time step-
ping algorithms were used to investigate the effect of numerical damping.
Without the numerical damping, exact energy balance can be achieved. The
two approaches to energy formulation were found to give different energy
responses.
The energy equation of the dam structure governed by equation (2.1),

can be written as:

1

2
{ .

U t}T [M ]{
.

U t}+
Z
{ .

U}T [C]{dU}+
Z
{r}T{dU} = (4.41)

Z
{f1}T{dU}+

Z
{ ..U t}T [M ]{dUg}+

Z
([Q]{p})T{dU}

or:

EK +ED +ER = EP + EQ+EH (4.42)
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In equations ?? and 4.42, {r} is the vector of the nonlinear restoring
force. The absolute kinetic energy is EK, the viscous damping energy is
ED, the nonlinear restoring work is ER, the work of preseismic applied
force is EP , the absolute seismic input energy is EQ and the work done by
the hydrodynamic pressure is EH. The relative displacement is {U} while
{Ut} is the total (absolute) displacement vector {Ut} = {U} + {Ug}. {Ug}
is the ground displacement vector. The restoring energy, ER contributes to
the stored elastic energy in a system EE, and the energy dissipated due to
fracture EF (EF = ER−EE), Thus:

EK +EE +ED +EF = EI

EK and EE contribute to the stored energy while ED and EF represent
the dissipated energy. The input energy EI, is the sum of the seismic input
energy due to the inertial force EQ, hydrodynamic force EH and work of
preseismic applied load EP .
The energy balance error is computed as:

Error =
(EP +EQ+EH)− (EK +ED +ER)

(EQ+EH)
× 100

When the dam-reservoir interaction effects are represented by addedmasses,
the hydrodynamic energy EH is excluded from the energy equation, EH = 0.
However, energy is added to the seismic input energy EQ and kinetic energy
EK through the mass added to the structural system. In the analysis, the re-
sults of the fracture response are presented for the time before the five percent
energy balance error is reached. The error in the energy balance represents
an excessive amount of damage when numerical damping is introduced.

4.10 ACCURACYOFTHE SOLUTION SCHEME

The accuracy of the staggered solution scheme can be improved by increasing
the number of iterations and/or by decreasing the time step. Increasing the
number of iterations of the staggering scheme is a time consuming process.
The accuracy of the proposed methods is based on the selection of the ap-
propriate time step. In all of the following analyses no iterations have been
made for the purpose of improving accuracy. The staggered displacement
method and the modified staggered pressure method are compared with the
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finite element solution of example problems for the purpose of evaluating the
accuracy of the analysis.



Chapter 5

NONLINEAR FRACTURE
MODELS OF CONCRETE
GRAVITY DAMS

5.1 INTRODUCTION

The cracking behaviour of concrete dams has been the subject of extensive
research during the past decade because few dams suffered severe cracking
during earthquakes. Rescher (1990) indicated that most concrete gravity
dams will experience cracking even under operational loading conditions and
moderate earthquake ground motions. Therefore, the assumption of linear
behavior may not be appropriate in the analysis of the seismic response of
concrete gravity dams.
Concrete dams are distinguished from other structures because of their

size and their interactions with the reservoir and foundation. The results ob-
tained from the nonlinear analysis of concrete dams are strongly dependent
on the approach to modelling of these interactions. It is a difficult task to
develop a comprehensive analytical model to include both nonlinearity and
interaction effects. The size effect can also influence the properties of the dam
concrete. The fracture properties of normal concrete can be determined using
laboratory tests. However, the dam concrete differs from the normal weight
concrete because of aggregate size and its poor strength. Little information is
available on the fracture properties of the dam concrete. The fracture surface
of the dam concrete specimens is characterized by mainly aggregate failure.

129
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Saouma et al. (1991) attempted to measure fracture toughness of a concrete
specimen in the laboratory which was considered to be similar to dam con-
crete. They concluded that a definitive decision cannot be made concerning
the results and their accuracy. Bruhwiler and Wittmann (1990) carried out a
dynamic test to determine the material properties of the dam concrete under
high rate of loading and an initially applied compression load. They found
that the fracture energy of dam concrete is 2 to 3 times higher than that of
ordinary concrete. The reason is related to the tensile strength characteristic
of dam concrete. The tensile behavior of concrete can be divided into two
stages. In the first stage, the behavior is linear until the tensile strength is
reached. In the second stage, strain softening behavior is observed. Fracture
energy is sensitive to the tensile stress. In addition, increasing the preloading
decreases the fracture energy.
To understand the nonlinear behaviour of concrete dams, modelling of

the cracking and damage process is needed. Bazant and Oh (1983) proposed
a fracture mechanics approach as a blunt smeared crack band. The proposed
approach represented a significant advance in comparison to the linear frac-
ture theory. The strain softening of the material was considered based on the
fracture parameters, fracture energy, uniaxial tensile strength and crack band
width. Fracture energy can be determined from the complete stress-strain
curve. Formulas were derived to give the fracture parameters.
Two classes of solutions can be found in the nonlinear study of concrete

gravity dams. Discrete crack approach is the first class of solutions which is
based on the variable mesh approach. Two methods of linear elastic fracture
mechanics LEFM, and nonlinear fracture mechanics NLFM, can be used
in this approach. The second class of solutions is the continuum model
in which a fixed finite element mesh is used. Smeared crack model and
damage mechanics are the two methods of solution in this class. These two
families of fracture model have been investigated in parallel. They also called
global approach and local approach. In the global approach, the cracks are
simulated by discontinuity in the continuum and the stresses are obtained
using linear elastic fracture mechanics(LEFM). This method is coupled to
a numerical technique such as finite elements or boundary elements. On
the other hand, the local approach of fracture is based on changes in the
constitutive law governing the behaviour of concrete. The integrity of the
structure is not required during the solution process.
Bhattacharjee and Léger (1994) applied NLFM to predict the response of

concrete gravity dams. The experimental work done on a model of a concrete
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gravity dam and a small beam specimen confirmed the applicability of the
proposed NLFM approach. The coaxial rotation crack model gives a better
response than the fixed crack model. Léger and Leclerc (1996) studied the
nonlinear response of concrete gravity dams subjected to different earthquake
ground motions. They found that the response is sensitive to time variation
of the input motion. Most of the time, cracking response showed that the
crack starts from the downstream side and moves toward the upstream side.
This form of cracking does not promote dam instability. The cracks are either
horizontal or they sloped downward. They found that the vertical ground
motion acceleration component is not critical in seismic cracking response of
dams.
The nonlinear response of a concrete gravity dam with an initial distrib-

ution of temperature gradient when subjected to the earthquake was studied
by Léger and Bhattacharjee (1995). They used frequency-independent added
mass matrix as a representative of dam-reservoir-foundation interaction. The
reservoir and foundation were modelled as a series of dampers and springs
such that the same response can be obtained for the linear response of the
crest when compared with the case of actual interaction. Under earthquake
excitation, when a rigid foundation is assumed with no reservoir bottom ab-
sorption, no crack was observed at the top part of the dam. A crack was
formed at the foundation level.
Bhattacharjee and Léger (1993); Léger and Bhattacharjee (1994) studied

the energy response of concrete gravity dams. They used a stiffness pro-
portional damping with -method of integration. Newton-Raphson iteration
technique was used to remove the unbalanced load. An energy balance error
approach is used as a measure of damage. The seismic analysis of Koyna dam
under both horizontal and vertical components of the earthquake was con-
ducted. Without introducing the numerical damping, the analysis stopped
after the first few seconds because of energy balance error due to spurious de-
formation of some elements. No discrepancies were found in the results of the
analysis before the occurrence of instability, when compared with the case of
= -0.2 in which the analysis was successfully completed. Dissipated fracture
energy is negligible in comparison to other sources of energy dissipation. The
reservoir effect was represented by added mass technique.
The effect of hydrodynamic pressure inside the crack in the seismic analy-

sis of concrete gravity dams was investigated by Tinawi and Guizani (1994).
The pressure inside the crack does not change the response of the dam sig-
nificantly. It was found that under high frequency content earthquakes, the
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hydrodynamic pressure inside the crack may increase when higher modes are
significant. At the base of the dam, the hydrodynamic pressure may be 50%
higher than the hydrostatic pressure.
The nonlinear response of the Pine Flat dam was studied using the dis-

crete approach (Wepf et al. 1993). A fictitious crack approach was used to
model the crack tip. Reservoir interaction was modelled using a boundary
element. Linear response of the dam was compared with EAGD-84 code
analysis and good agreement was found. The nonlinear response of the dam
including reservoir interaction was strongly affected in comparison with the
added mass approach. The slope of the reservoir bottom strongly influenced
the nonlinear response. The aggregate interlock effect was found to be im-
portant in the final cracking configuration of the dam.
The cracking response of a concrete gravity dam when subjected to earth-

quake loading can be different if nonuniform damping or uniform damping
including the damping due to cracking is considered (Barrett et al., 1991). In
the analysis, the dam was represented by a small number of elements. When
the bottom few elements were cracked, a noticeable change in the response
was observed.
Using different computer codes, Singhal (1991) found that the Wester-

gaard’s added mass approach yields higher values for crest displacement and
stress than that obtained using other approaches. The reservoir bottom ab-
sorbtion and water compressibility did not change the response significantly.
Pekau et al. (1991, 1995) and Pekau and Batta (1991) presented a method

to study the cracking of concrete gravity dams using the principle of Linear
Elastic Fracture Mechanics (LEFM) and boundary element mode superpo-
sition analysis. The model was checked by a shake table test of cantilever
beam made of gypsum. The impact of cracking surface was modeled as a
load pulse.
Ayari and Saouma (1990) proposed a model for simulation of discrete

crack closure. The model was applied in the dynamic analysis of the Koyna
dam (India) under both horizontal and vertical components of the earth-
quake. The results were obtained for 5 seconds only of the earthquake in
which the numerical damping was less than 10%.
Nonlinear seismic response of concrete gravity dams was studied by Skrikerud

and Bachmann (1986). Fracture mechanics analysis using discrete crack ap-
proach was applied. The model was capable of initiation, opening, closing
and reopening of discrete cracks. Special treatment was used to model ag-
gregate interlock effect. The model was applied to a dam of rigid foundation
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with empty reservoir. The crack pattern was found to be very sensitive to the
parameters chosen for the analysis. The first four seconds of an artificially
generated time history was used for the purpose of analysis. The analysis
stopped due to excessive damage. Nonlinear response of concrete gravity
dams was also studied by Feltrin et al. (1990). A rigid foundation was as-
sumed for Pine Flat dam and the reservoir interaction was included. The
nonlinearity in concrete behaviour included the strain softening and aggre-
gate interlock. Response of the linear model with and without the reservoir
interaction was determined. Nonlinear response of the empty reservoir was
studied by scaling the ground motion until cracking occurred. The cracks
started at the top part from down stream face of the dam near the slope dis-
continuity and moved horizontally. A different response was observed under
the effect of reservoir interaction. The first crack started at the foundation
level and then it followed by a crack at the top part of the dam at the same lo-
cation of the crack of empty reservoir case. The crest displacement was found
to be higher than that of the empty reservoir. They concluded that the effect
of dam-reservoir interaction must be included in the nonlinear analysis.
El-Aidi and Hall (1989 a,b) investigated the nonlinear response of concrete

gravity dams. The water cavitation in addition to cracking of concrete was
considered. Despite the difficulties involved, the nonlinear model was applied
for the case of preformed base crack, top crack and homogeneous damwithout
any cracks. In the case of homogeneous dam, the top crack initiated at
t = 1.95 sec. Soon after initiation of the top crack, it went through the dam
body and almost separated the top part from the rest of the dam. During
the rest of the analysis, no other cracks were observed and only rocking and
opening and closing of the crack were observed.
Fenves and Vargas-Loli (1988) proposed a method for dam-reservoir in-

teraction which resulted in a symmetric matrix representation of the total
equation of the system. The nonlinearity of the reservoir was introduced into
the proposed method to investigate the reservoir interaction effect. They
found that the effect of cavitation is not significant in the response of the
structure.
Mlakar (1987) studied the nonlinear dynamic behaviour of concrete grav-

ity dams using the ADINA code. It was found that the crack first started
at the base. Then cracking initiated at the top part near slope discontinu-
ity. The cracks near the slope discontinuity propagated instantaneously and
passed through the cross section.
In this chapter the nonlinear fracture response of concrete gravity dams
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due to seismic loading is investigated. The dam-reservoir interaction is in-
cluded in the time domain analysis using the method of staggered displace-
ment. Smeard crack approach based on a nonlinear fracture mechanics crack
propagation criterion is used to study the cracking and response of concrete
gravity dams.

5.2 ABRIEF STUDYOFNONLINEARPA-
RAMETERS

Modelling the constitutive behaviour of concrete is the most important part
of nonlinear seismic response study of the dams. Analytical models for two-
dimensional fracture propagation studies are well developed now, but the con-
stitutive behaviour of concrete is the most important part of nonlinear seismic
response study of the dams. Analytical models for two-dimensional fracture
propagation studies are well developed now, but the three-dimensional appli-
cation of the fracture models is still in its infancy. Unlike the circumstance
in arch dams, where the nonlinear joint behaviour in the arch direction could
be a decisive factor in the stability of the structure , the structural response
of gravity dams is mainly determined by gravity action. The concrete gravity
dammonoliths, usually unkeyed or lightly grouted, are expected to vibrate in-
dependently under severe ground excitations. Hence, two-dimensional plane-
stress idealizations seem to be appropriate for nonlinear seismic response
study of concrete gravity dams.
A state-of-the-art review on the constitutive models for two-dimensional

finite element crack propagation analysis of concrete gravity is presented in
this part. Special emphasis is put on the applications of the models in seismic
analyses of the dams and the limitations of past investigations are examined.

5.2.1 Finite element models of crack propagation

Two approaches have generally been followed for the spatial representation of
tensile crack propagation in finite element analysis of concrete structures: the
discrete crack model and the continuum crack model. Both models have been
used over the decades because of the advantages and inconveniences that they
bring to the constitutive models for finite element crack propagation analysis
of concrete structures.
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5.2.2 Discrete crack propagation model ,DCPM,( vari-
able mesh)

In the DCPM, global approach, a crack is represented as a discrete gap
along the inter-element boundary. The growth of the crack is determined by
strength or fracture mechanics based constitutive models. The progressive
physical discontinuity in the system is reflected instantaneously in the finite
element model by modifying the mesh during the analysis. It is generally
argued that the nonlinear response of concrete dams is dominated by a few
discrete long cracks. From this consideration, the discrete crack model may
be a sensible choice for dam fracture analysis.. The specific advantages of
the DCPM are the abilities to consider explicitly the water penetration and
uplift pressure on the crack-open surfaces, the aggregate interlock in the
rough cracks, and the direct estimation of crack-opening displacement (COD)
profile. The principal disadvantages in applying this model are the difficulty
and high computational cost due to continuous change of the finite element
topology during the analysis, and the unobjective effects of finite element
mesh and crack length increment. A special case of discrete crack modelling
is the application of special elements to represent the a priori weak joints in
the system, such as the dam-foundation interface and construction joints.

5.2.3 Continuum crack propagation models (CCPM)

The continuum crack can be divided into Smeared crack propagation model
(SCPM) and Damage mechanics crack propagation model. In these models
the fracture is idealized to propagate as a blunt front smeared over an en-
tire element or a certain band width of the element. After initiation of the
fracture process, determined by a suitable constitutive model, the pre-crack
material stress- strain relationship is replaced by an orthotropic relationship
with material reference axis system aligned with the fracture direction. The
tension stiffness across the crack plane is either eliminated suddenly or a
gradual stress-release criterion is applied. Thus, only the constitutive rela-
tionship is updated with propagation of cracks and the finite element mesh is
kept unchanged. The advantage of the models lies in its simplicity and cost
effectiveness, although the physical nature of crack representation is ques-
tionable. The tendency of the model to cause diffused crack pattern and
the directional bias caused by slanted finite element mesh are still significant
computational difficulties. However, the model has been extensively used in
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the seismic response study of concrete gravity dams.

5.3 Constitutive models for crack propaga-
tion

To conduct a comprehensive fracture propagation analysis, the selected con-
stitutive model should describe the prefracture material stress-strain behav-
ior, the fracture initiation and propagation criteria, and the post-crack be-
haviour. It is a usual practice in concrete structure analysis to presume linear
elastic behaviour before the onset of tensile fracture process. The behaviour
of concrete under high compressive loading is predominantly nonlinear. Sev-
eral models based on the concepts of elastoplasticity and elasto-viscoplasticity
have been proposed, to study the nonlinear behaviour of concrete under
compression. However, the compressive stresses in concrete gravity dams
are expected to be low even under severe ground excitations. A reasonable
assumption of linear elastic behaviour under compressive loading has been
applied in almost all previous investigations. It is almost universal in the con-
stitutive models of fracture analysis to assume the initiation of new cracks
in a homogenous structure when the principal tensile stress reaches the ten-
sile strength of concrete. Diversity in various models lies in the definition of
the fracture propagation criteria after the crack has been introduced in the
structure. Major developments in the realms of crack propagation analysis
and their relative merits are presented in the following sections.

5.3.1 Strength-based criteria

The early investigations on cracking of concrete have mostly applied sim-
ple criteria based on the concepts of strength of material (SOM). A crack
is assumed to propagate when the predicted stress or strain at the crack-tip
exceeds the critical value representative of the strength of the material. The
crack propagation criterion, in this approach, is identical to the new crack
initiation criterion. A sudden release of stress on the fracture plane is com-
monly assumed upon reaching the material tensile strength. The gradual
release of stress with increasing strain has also been used, mainly for numer-
ical stability reasons, in finite element analyses of cracking problems. The
SOM criterion of crack propagation has been used in discrete and smeared
crack propagation finite element models. Comparison of computed tensile



5.3. CONSTITUTIVE MODELS FOR CRACK PROPAGATION 137

stress with the strength of the material is not rational for a cracked structure
because spurious results may be obtained depending on the size of the finite
element ahead of the propagating crack. The lack of finite element mesh
objectivity of the SOM criterion was reported.

5.3.2 Fracture mechanics criteria

Fracture mechanics is the theory dealing with propagation of cracks, based
on the concept of energy dissipation by the structure undergoing fracturing
process. It has been recognized only recently that the failure mechanism in
concrete structures is different from the usual strength based concept, due
to the progressive growth of a fracture process. The fracture mechanics of
concrete has drawn significant attention of the research community over the
last decade; as a consequence, the literature on the subject is voluminous.
Here, only the principal developments in fracture mechanics, relevant to the
seismic analysis of concrete dams, are reviewed.

Figure 5.1: Modes of failure: (a) mode I - Tensile fracture; (b) mode II -
planar shear fracture; (c) mode III - tearing fracture

Three elementary modes of failure are recognized in the fracture theory
(Figure 5.1). For two- dimensional idealizations, modes I and II (the opening
mode and the planar shear mode) are usually considered. The third one,
the tearing mode (mode III), is considered for three- dimensional fracture
propagation studies. Fracture mechanics crack propagation models can be
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broadly classified into two categories the linear elastic fracture mechanics
(LEFM) models and the nonlinear fracture mechanics (NLFM) models.
According to LEFM, the fracture process occurs right at the crack-tip and

the entire volume of the material remains elastic (Figure5.2-a). The stress
field around the tip of a sharp crack is characterized by the stress intensity
factors, Ki, determined from linear elastic solutions: KI

KII

KIII

 = lim
r→0,θ→0

√
2πt

 σ22
σ12
σ23


where σij are the near crack-tip stresses, r and θ are polar coordinates, and
Ki are associated with three fundamental fracture modes. Once the stress
intensity factors, Ki, have been numerically (or analytically) computed and
the material fracture toughness (sometimes named critical stress intensity
factor), K1c, experimentally determined, a suitable functional relationship is
applied for propagation of an existing crack:

f(KI ,KII ,KIII ,K1c) = 0 (5.1)

Several functional forms of equation 5.1 have been proposed in the liter-
ature. In LEFM models, a sudden release of stress on the surface is assumed
with the extension of the crack. Most investigators adopt the discrete crack
propagation finite element model (DCPM) with the LEFM constitutive mod-
els. Techniques to apply the LEFM criteria in smeared crack propagation
finite element model have also been reported in the literature. Pekau et al.
(1991) have proposed a numerical procedure to apply the linear elastic frac-
ture mechanics criterion in discrete crack propagation analysis with boundary
element model for the dams.
The question of whether the fracture process in concrete can take place at

a localized point has been a subject of intense debate for quite long time. In
reality, the fracture process zone (FPZ) must have some finite size (Figure5.2-
b). It is argued that the LEFM could be applied if the FPZ is much smaller
than the dimension of the structure under consideration. Very large concrete
structures like dams are usually cited as the possible candidates for appli-
cation of LEFM models. However, no rational experimental evidence has
ever been put forward appraising the extent of FPZ in dam concrete. The
disregard of nonlinear behaviour in the FPZ is an assumption of unknown
consequences in influencing the global response of the structure. It seems
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Figure 5.2: Fracture process zone (FPZ); (a) LEFM; (b) NLFM
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appropriate to consider the nonlinear behaviour in the FPZ if the localiza-
tion of the crack profile is a primary objective of the finite element analysis.
In a gravity dam, a relatively stiff structure, crack opening displacements
may be very small, which means that a long fracture process zone may exist
(Dungar et al. 1991). Hence the argument of small fracture process zone in
comparison to the thickness of the structure, usually cited to apply LEFM
models, may not be true even for concrete gravity dams. The choice between
LEFM and NLFM models could also be influenced by the strain rate under
consideration.
The primary characteristic of nonlinear fracture mechanics (NLFM) is

the recognition of the strain softening behaviour of concrete in the FPZ.
Two apparently different models have been proposed in the literature con-
sidering only the model I nonlinear fracture propagation in concrete. The
most referenced work is due to Hillerborg et al. (1976). They characterized
the existence of FPZ as a fictitious crack lying ahead of the real crack tip
(figure5.3-a). The behaviour of concrete in the FPZ was represented by a
diminishing stress, σ, versus crack opening displacement (COD), δ, relation-
ship; the tensile resistance being ceased at a critical COD value, δ, (Figure
5.3-b). The area under the σ− δ curve represents the energy, Gf , dissipated
during fracture Process on unit area:

Gf =

Z δf

0

σ(δ)dδ

Gf is a material property and often referred to as fracture energy or specific
fracture energy. The special feature of the Hillerborg’s fictitious crack model
is the dissipation of energy over a discrete line crack. The basic nature
of the model has made its extensive applications possible in discrete crack
propagation analysis.
The LEFMmodels, in the context of discrete crack propagation, have also

been modified to take account of the FPZ through an effective crack length
calculated as the true crack length plus a portion of the fictitious crack. In
some recent studies the key assumption of Hillerborg’s model, that the tensile
stress at the tip of fictitious crack is equal to the tensile strength of concrete
has been modified using the concept of singular stress distribution at the
fictitious crack tip.
Bazant and Oh (1983) came forward with the argument that the energy

dissipation cannot take place in a diminishing volume, it must involve a finite



5.3. CONSTITUTIVE MODELS FOR CRACK PROPAGATION 141

Figure 5.3: Nonlinear fracture mechanics models: (a,b) fictitious crack
model,(c,d) crack band model
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volume of the material. The fracture process is thus assumed to propagate
as a blunt front (Figure5.3-c). The width of the blunt crack (or the band
of micro-cracks), wc, is assumed to be a material property in this model.
The strain softening behaviour of concrete in the FPZ is represented by a
stress-strain relationship (Figure5.3-d) and the fracture energy, Gf , is given
by

Gf = wc

Z εf

0

σ(ε)dε

The inherent characteristic of the proposed crack band model is the
smeared nature of crack distribution over a band width, wc, The crack band
width, wc, however, has not been determined by any direct experimental in-
vestigation. Bazant and Oh (1983), in the original presentation, attempted
to establish the value of wc by fitting their proposed model in a series of
stress-strain and fracture energy data collected from the literature. The val-
ues of wc in the range of single aggregate dimension to six times that size
gave equally good results. The assumption of fracture energy dissipation over
a certain band area of material characteristic dimension, thus, seems to be a
numerical speculation.
An important aspect of the nonlinear fracture mechanics models is the

shape of the softening branch. Various proposals have been made in the
literature about the form of σ− δ and σ− ε softening relationships. A bilin-
ear relationship is usually applied to interpret the experimental observations
(Briihwiler 1990; Nomura et al. 1991). The precise shape of the softening
diagram has been reported to have considerable influence on the numerical
results (ACI 1991). There has been an unrelenting debate as to which soft-
ening model, the fictitious crack model or the crack band model, should be
used. The smeared nature of the crack band model is a tempting feature for
application in finite element analysis when the direction and location of crack
propagation are not known a priori. Application of the crack band model, in
its original form, to smeared fracture propagation analysis requires the size
of finite elements to be limited to wc. The very small value of wc, according
to the definition presented by Bazant and Oh (1983), renders any practical
finite element analysis of large concrete gravity dams too expensive.
Special finite element techniques have been proposed to ease this limit

on element size, where the fracture process effects are smeared over a zone
of the finite element and the average stress-strain relationship is adjusted to
conserve the fracture energy. A linear strain softening relationship has been
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Figure 5.4: (a) average stress-strain curve for smeared crack element; (b)
characteristic dimension, lc = l1, l2; (c) characteristic dimension. lc=

√
l0l00
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assumed in most of these models. The area under the average stress-strain
curve for a finite element undergoing fracture process is adjusted such that
the dissipated fracture energy,Gf , for unit area of crack extension remains
independent of the element characteristic dimension, lc, (Figure5.4-a) . A
favored approach in the nonlinear smeared fracture models (NSFM) is to
adjust the slope of the softening branch, assuming that the softening process
initiates when the tensile stress reaches the material tensile strength. The
strain-softening modulus, Et, in figure5.4-a can be derived as:

Et =
σ2tE

σ2t − 2EGf
lc

(5.2)

if the tensile strength, σt, the elastic modulus, E, and the strain fracture
energy, Gf , are known for the material, the strain softening modulus for
the particular element size, lc, can be determined from equation 5.2. For
a special case of , lc = wc (wc is the width of crack band), the nonlinear
smeared fracture model reduces to the crack band model of Bazant and Oh
(1983). Unlike the crack band width, wc, the characteristic dimension, lc, is
a geometric property of the element. For cracks parallel to a side of square
finite elements, as in Figure5.4-b, the characteristic dimension, lc, equals the
element dimension across the crack plane (lc =l1, l2,l3, etc.) For oblique crack
propagation, lc can be taken as the square root of the element area under
consideration (Figure5.4-c).
The softening modulus, Et, given by equation 5.2, becomes stiffer for

increasing value of lc up to a certain limit, beyond which an unrealistic snap-
back appears in the tensile stress strain relationship of concrete. In the limit
case, the softening constitutive model degenerates to the traditional elas-
tobrittle failure criterion, dissipating the stored elastic strain energy instantly
upon reaching the tensile strength of material. The maximum finite element
size, denoted by l0, that can be modelled with strain-softening behaviour is
determined from equation 5.2:

l0 ≤ 2EGf
σ2t

For typical dam concrete properties of E = 30 000 MPa, Gf = 0.2 N/mm,
and σt = 2.0MPa, the limiting value is l0 ≤ 3.0m. This limit on maximum
dimension, which is much higher than the material characteristic dimension,
wc, of Bazant and Oh (1983), also has often been considered stringent for
large scale finite element analysis at reasonable cost.
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Figure 5.5: Nonlinear fracture mechanics in smeared crack propagation model
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To circumvent this limit on the size of finite elements, and at the same
time respect the principle of conservation of energy, one proposition is to
reduce the fracture initiation stress, σ0, with increasing finite element size
and assume an elasto-brittle failure criterion for element sizes greater than
l0 (Figure5.5-a). This is the so-called size reduced strength (SRS) criterion
proposed by Bazant (1984) and Bazant and Cedolin (1979, 1983). This size
reduced strength criterion (or in other words the elastic fracture criterion)
can be criticized for two reasons: (i) the size independent critical COD value,
δf , of no tensile resistance, implied by the conservation of fracture energy in
the nonlinear fracture model, is violated (Figure5.5-b), and (ii) when applied
with a strength based crack initiation criterion, the principle of fracture en-
ergy conservation is likely to be violated in the interior element as well as in
the exterior element (figure5.5-c). An important numerical side effect of the
elasto-brittle SRS failure criterion is the generation of spurious shock waves
in the finite element model. El-Aidi and Hall (1989a) encountered such nu-
merical difficulties in the nonlinear seismic analysis of concrete gravity dams.
The alternate proposition of Bazant (1985) is to take the softening modu-
lus, Et, as a material property and reduce the fracture initiation stress with
increasing size of element (Figure5.5-d) for conserving the fracture energy.
This approach may allow numerically stable algorithm as opposed to the
elasto-brittle model, but it seems to be based on a weaker theoretical con-
sideration, and the questions raised for the elasto-brittle criterion are still
present. Moreover, taking Et, as a material property has not been justified
from experimental investigations. The limit on the maximum size of finite
elements thus appears to be a requirement to ensure a reliable application
of the nonlinear fracture mechanics criteria in smeared crack propagation
analysis.
Several other models with some variations of the crack band model have

also been proposed in the literature. Gajer and Dux (1990) decomposed the
finite element strain increment in the following form:

∆ε = ∆εe + α∆εcr (5.3)

where the incremental strains ∆εe and ∆εcr correspond to the uncracked
concrete and the crack band respectively, and α is the averaging factor defined
as the ratio between the crack band area and the gross element area. For
decomposition of strain in the fracturing direction, equation 5.3 essentially
represents the nonlinear smeared fracture model described earlier. Gajer



5.3. CONSTITUTIVE MODELS FOR CRACK PROPAGATION 147

and Dux (1990) apparently ignored the directional property of cracking by
applying the scalar factor, α, in the global finite element direction. An
enhanced form of the crack band model is the so-called nonlocal cracking
model (Bazant and Lin 1988). In that approach, the crack strain at an
integration point is smeared over the neighboring points of the finite element
mesh. A crude form of the nonlocal model can be considered to be the
nonlinear smeared fracture model, described earlier, where the crack strain
is averaged over a characteristic dimension of single element.

Figure 5.6: Closing and reopening of partially formed cracks

Application of nonlinear fracture mechanics models in dynamic analysis
requires the definition of unloading and reloading behaviours during the frac-
ture process. Very few studies have been reported in the literature in this
respect. Bazant and Gambarova (1984) proposed a hypothetical nonlinear
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stress-strain relationship for closing and reopening behaviours of partially
open cracks as depicted in Figure 5.6-a. Numerical simulation of such non-
linear model is very complex. de Borst and Nauta (1985) applied the linear
tangent softening modulus (line 1-2 in Figure5.6-b) to characterize the FPZ
behaviour of increasing strain with decreasing stress and a secant formula-
tion (line 2-0 in Figure5.6-b) to represent the closing of partially open cracks.
Gambarova and Valente (1990) have applied an assumption of sudden stress
release when the closing of partially open cracks is detected at any instant of
the fracture process (Figure5.6-c). Dahlblom and Ottosen (1990) proposed
the following relationship for closing and reopening behaviours of partially
fractured concrete:

ε = [λ+ (1− λ)
σ

σmax
]εmax (5.4)

where λ is the ratio between the residual strain upon closing of cracks
and the strain of open cracks (Figure5.6-d). It appears that the techniques
applied by de Borst and Nauta (1985) and Gambarova and Valente (1990)
are subsets of this generalized model with λ = 0.0 and 1.0 respectively. The
physical phenomenon of crack closing and reopening taking place before the
complete fracture of the material is, however, yet to be investigated rationally.

5.3.3 Shear resistance of fractured concrete

After the initiation of fracture process on a plane perpendicular to the direc-
tion of major principal tensile stress, it is not unlikely to expect the rotation
of principal stress directions under varying deformation modes. Hence, shear
deformation may take place on the partially formed rough fracture plane.
The definition of shear stress-strain behaviour of concrete during the fracture
process seems to be difficult. Bazant and Oh (1983) ignored the shear defor-
mation on the fracture plane, and the material stiffness matrix was derived
for normal strains only. This formulation is not compatible with the linear
isotropic stiffness matrix of initial state. In another proposition, Bazant and
Gambarova (1984) proposed a nonlinear mathematical model, named the
crack band microplane model, to account for shear in the partially formed
crack, propagating as a blunt front of micro-cracks. Gambarova and Va-
lente (1990) retained the initial shear modulus unchanged until the complete
fracture had taken place and then applied an aggregate interlock model. de
Borst and Nauta (1985) and Gajer and Dux (1990) applied the concept of
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simple shear retention factor, β, proposed by Suidan and Schnobrich (1973),
to derive the tangent shear modulus of the fracture plane. The simplified
approach of applying a shear retention factor ignores the shear dilation and
the dependence of crack shear stiffness on the crack opening displacement
(COD). Dahlblom and Ottosen (1990) assumed a linear relationship between
shear resistance and COD. The models proposed by Bazant and Gambarova
(1980), Chen and Schnobrich (1981) Reinhardt and Wairaven (1982), Riggs
and Powell (1986), and Wairaven (1981) represent the shear resistance and
dilation on crack open surfaces of concrete. The models are very often com-
putationally inconvenient because of the nonsymmetric stiffness matrix. A
comparative study on different rough crack models is available in Feenstra et
al. (1991a, 1991b). A special numerical problem associated with the shear
retention in smeared crack finite element model is the spurious tension stiff-
ness in the direction across the fracture plane (El-Aidi and Hall 1989a). This
happens due to the application of continuous shape functions in deriving the
finite element stiffness matrix. Discontinuous shape functions proposed by
Ortiz et al. (1986) for localized failure analysis may be a solution to this
problem.
Investigate on the Shear resistance of fractured concrete.

5.4 Post-fracture behaviour of concrete

The fracture direction is generally fixed based on the principal stress direction
that initiates the first crack. An additional crack plane is allowed to form
only when the stress reaches the tensile strength on the plane orthogonal to
the first fracture plane. This type of model is stated as fixed or stationary
crack model . In the ”rotating crack” model, proposed by Cope et al. (1980),
the orthotropic material reference axis system is rotated when the principal
stress direction deviates by a certain amount from the direction that initiated
the fracture process. The rotation of physical crack direction does not seem
to be acceptable from common perception. After early opposition to the
rotating crack model, Bazant et al. (Bazant 1983; Bazant and Lin 1988)
adopted the concept based on the argument that the cracks of one direction
may close and lock in shear while cracks of another direction may form.
A special numerical technique to represent non-orthogonal multiple crack
formation has been perfected by de Borst et al. (de Borst 1987; de Borst and
Nauta 1985).
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A very special post-fracture problem, associated with dynamic analysis,
is the modelling of contact-impact phenomenon occurring upon closing and
reopening of the cracks. Special numerical techniques to simulate the im-
pact behaviour in discrete crack models have been proposed in the literature
(Ayari and Saouma 199 1; Pekau et al. 199 1). El-Aidi and Hall (1989a) pre-
sented a discussion on numerical difficulties arising from high velocity closing
and reopening of cracks in smeared crack analysis No rigorous procedure has
been reported in the literature to deal with shock wave generated by the
sudden change in stiffness resulting from the closing and reopening of the
smeared cracks. And the consequences of the shock-wave phenomenon in
smeared crack analysis are not conclusively known yet.

5.5 Material parameters for fracture propa-
gation analysis

The present development of mathematical models is far ahead of the current
knowledge of material behaviour, specially under transient conditions. Mate-
rial parameter data determined from reliable experimental studies is limited
in the literature for dam concrete. Recent experimental investigations, such
as the one by Briihwiler (1990) and Briihwiler and Wittmann (1990) are
revealing significant differences in the mechanical properties of structural
concrete and mass concrete. Ideally, the selection of material properties for
safety analysis of concrete dams should be dealt with on a case-to-case basis,
because the material properties are widely varying from dam to dam. How-
ever, a review of literature is presented here to establish a reasonable limit
of parametric values.
Poisson’s ratio, ν, and elastic modulus, E, are applied to represent the

elastic behaviour of concrete in all analyses irrespective of constitutive mod-
els selected for propagation of cracks. Jansen (1988) suggested the Poisson’s
ratio for 1-year old dam concrete between 0.17 and 0.28. A value of 0.20
has been applied almost universally in the past studies. Briihwiler (1990)
observed the reduction of Poisson’s ratio with increasing compressive strain
rate applied to the concrete cylinder. However, the influences of rate sensi-
tive ν may be insignificant in comparison to the influences of other material
parameters. The static modulus for 1 -year old dam concrete was suggested
by Jansen (1988) in the range of 28000−48000 MPa. A significant feature of



5.5. MATERIALPARAMETERS FORFRACTUREPROPAGATIONANALYSIS151

concrete constitutive behaviour is the dynamic magnification of the elastic
modulus under rapidly varying loading condition. A review of this phenom-
enon along with the tensile strength property of concrete is presented in the
following section. Separate reviews are presented for commonly used material
parameters in three major crack propagation criteria strength of material, lin-
ear elastic fracture mechanics, and nonlinear fracture mechanics. The shear
resistance parameter of fractured concrete is also discussed.

5.5.1 Strength-of-material parameters

The governing material parameter in SOM-based fracture propagation mod-
els is either critical stress or strain. From a rigorous study with some 12 000
published test results, Raphael (1984) proposed the following relationship
between tensile and compressive strengths of concrete under static loading:

σ0t = 0.324f
02/3
c (5.5)

where f
0
c and σt are respectively static compression and tensile strengths of

concrete in MPa. In absence of experimentally determined values, the above
equation can be applied as an approximation to the expected static tensile
strength of concrete.
Tensile strength of concrete increases significantly with increasing rate of

applied loading, but the failure strain remains more or less unchanged under
varying load rate. In the limited dynamic tests performed on mass concrete,
the dynamic load rate effect has been observed to be higher than that in usual
structural concrete. The selection of dynamic magnification of the concrete
tensile strength is not very evident from the literature. Raphael (1984), from
his study with the published data, proposed a dynamic magnification factor
of 1.50 resulting in the dynamic tensile strength of concrete:

σt = 0.48f
02/3
c (5.6)

Briihwiler and Wittmann (1990) observed a dynamic magnification of up to
80% for the investigated strain rates between 10−5 and 10−2 per second, and
this magnification decreased significantly due to compression preloading on
the tested specimens. There is a controversy as to whether the static tensile
strength or the dynamic strength should be used in seismic response analy-
sis of concrete dams. Under alternating tensile and compressive loadings,
substantial micro- level damage may take place in the material, resulting in
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reduced dynamic tensile strength. Nevertheless, 50% dynamic magnification
proposed by Raphael (1984) seems to have received wide recognition (Chopra
1988; Kollgaard 1987; NRC 1990).

Figure 5.7: Strength-of-material-based failure criterion

A confusion, however, exists about the interpretation of tensile stresses
computed from finite element analysis. Since the pre-peak stress-strain rela-
tionship is assumed to be linear elastic in most analyses, some investigators
have suggested to compare the predicted tensile stresses with the appar-
ent strength of the material (Figure??-a). Experimental evidences seem to
support an apparent static tensile strength, σa, about 30% higher than the
value given by equation 5.5. Under dynamic loading, the near-peak stress-
strain nonlinearity decreases substantially (Briihwiler 1990; Hatano 1960).
Recognizing the fact that the initial tangent modulus does not increase at
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the same rate as the tensile strength under dynamic loading, the Canadian
Electrical Association (1990) report on safety assessment of concrete dams
recommended the following relationship between E0i and Ei, the dynamic and
static initial tangent moduli respectively:

E0i = 1.25Ei (5.7)

Assuming that the failure strain remains the same under static and dynamic
loadings, above relation gives the apparent dynamic tensile strength, σ0a, to
be 25% higher than the apparent static strength, σa. Thus,

σ0a = 1.25(1.3× 0.324)f
02/3
c = 0.526f

02/3
c (5.8)

Comparing equation 5.6 and equation 5.7, the apparent dynamic tensile
strength is only about 80% higher than the actual dynamic strength, instead
of 30% as proposed by Raphael (1984). Equation 5.8 respects the experimen-
tal evidences of rate insensitive failure strain, εt, and reduced near-peak σ−ε
nonlinearity under dynamic loading. The apparent tensile strength, however,
may have to be lowered by about 10%o− 20% due to the existence of rela-
tively weak construction lift joints in dams, if such joints are not modelled
explicitly (NRC 1990).
Apparently, no empirical formula is readily available in the literature for

dam concrete to select the initial static tangent modulus,Ei, from the static
compressive strength, f 0cof concrete. Many more experimental investigations
are required to establish an acceptable mathematical model for the effects of
pre-compression load and the fatigue behaviour under cyclic loading. In the
experimental study by Mlakar et al. (1985), the tensile strength of concrete
under tension- compression loading was observed to increase with increasing
rate of loading; the failure strain showed the general tendency of rate in-
sensitivity. The behaviour under biaxial loading can be expressed using the
standard failure envelopes in principal stress space (Figure??-b).

5.5.2 Linear elastic fracture mechanics parameters

The principal parameter applied in the linear elastic fracture mechanics crack
propagation models is the fracture toughness, K1c, of concrete. No definite
relationship is readily available in the literature of dam concrete to determine
the fracture toughness from standard material parameters such as strength,
elastic modulus, and aggregate size. And only a handful of experimentally
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determined results has been reported so far. Saouma et al. (1989) found aK1c

value of 1.1MPa-m1/2. Linsbauer (1990) reported K1c, values in the range of
2.0− 3.5 MPa-m1/2. The following guideline has been proposed by Saouma
et al. (1990) to select K1c: a zero value as a first approximation; should the
response be unacceptable, a value of K1c = 1.0 MPa - m 1/2 is used; and if
this value still results in unacceptable crack lengths, laboratory experiments
could be performed on recovered core specimens. Due to multiaxial confining
stresses in the field conditions, the in situ values for fracture toughness,
K1c, were determined as three times the unconfined laboratory test values
(Saouma et al. 1989, 1991b). The fracture toughness can also be estimated
from the following well-known relationship (Irwin 1957):

K1c =
p
GfE

where E is the elastic modulus and Gf the fracture energy. The strain rate
sensitivity of K1c for mass concrete is not well addressed in the literature.
In the seismic analysis of Koyna Dam (India), Ayari and Saouma (1990)
assumed an arbitrary dynamic magnification factor of 60 forK1c, which seems
too high for concrete. Briihwiler (1990) predicted the rate sensitivity of K1c

to be lower than that of concrete tensile strength.

5.5.3 Nonlinear fracture mechanics parameters

Fracture energy, Gf , is the key parameter that is combined with elastic mod-
ulus, E, and tensile strength, σt, to define the entire constitutive behaviour
of concrete in the nonlinear fracture mechanics models. Usually, the ten-
sile strength, σt, beyond which a strain softening process is assumed to take
place, is determined from uniaxial or split cylinder tests and the fracture en-
ergy, Gf , from wedge splitting tests (Briihwiler and Wittmann 1990). Values
for σt and E can be selected according to the guidelines used for strength-
of-material failure criterion. Empirical relationships have been proposed to
determine the fracture energy from standard material parameters (Bazant
and Oh 1983; Oh and Kim 1989). Those relationships were derived from
the results of laboratory experiments performed with small size aggregates
specific of structural concrete behaviour. Extrapolation of the test results
from structural concrete does not seem to be realistic to establish the behav-
iour of mass concrete that has distinct features of much larger and weaker
aggregates.
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Limited results have been reported from experimental investigations on
concrete collected from dam construction sites (Briihwiler 1990; Briihwiler
and Wittmann 1990). The Gf value under static loading condition was de-
termined to be in the range of 0.175and 0.310 N/mm; meaning that the Gf
of dam concrete is two to three times larger than that of structural con-
crete. Fracture energy values for the specimens subjected to compressive
pre-loading were found considerably low. The Gf parameter determined un-
der simulated seismic loading rates showed substantial strain rate sensitivity,
and a maximum of 80% dynamic magnification over the pseudo-static value
was observed. Briihwiler and Wittmann (1990) attributed the rate sensi-
tivity of Gf mainly to the rate sensitivity of σt. That means, the dynamic
magnification criterion selected for tensile strength can be applied to the
fracture energy of the nonlinear fracture mechanics model. More complex
relationships can also be established, including the rate sensitivity of critical
crack opening displacement, δf (Briihwiler 1990).
Experiments performed by Saouma et al. (1990, 1991a) have shown that

the fracture properties are not affected by the specimen or aggregate sizes
used. In contrary to this finding, a study performed by H.N. Linsbauer
(Dungar et al. 1991) reported larger Gf values for larger specimen sizes,
and another study by H. Mihashi (Dungar et al. 1991) reported the increase
of fracture energy with increasing aggregate size. The test results reported
in the literature are thus sketchy at the present time, and they are often in
contradiction to one another.
Laboratory tests performed at the University of Colorado (Briihwiler and

Saouma 1991) showed significant reduction of the fracture properties of con-
crete with increased water pressure along the crack. The effect of multiple
cracks on fracture energy dissipation phenomenon is not known precisely.
Biaxial and triaxial stress-strain effects on fracture energy dissipation char-
acteristic of concrete are also required to be investigated (Kreuzer et al. I 99
1).

5.5.4 Shear resistance of fractured concrete

The fractured concrete derives shear resistance from interlocking of aggre-
gates protruding out of the fracture plane. Numerous investigations have
been conducted to determine the phenomenon of aggregate interlock in struc-
tural concrete where the aggregates are usually very strong. The physical
characteristic of fractured dam concrete, where the aggregate strength is
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substantially low, is not known clearly. The recent fracture investigation of
dam concrete, performed by Briihwiler and Wittmann (1990), have shown
that the crack does not travel around the aggregates; it goes straight through
them. The roughness on resulting fracture plane, thus, would be mild with
low shear resistance. No specific information is currently available to es-
tablish a shear resistance model. Rigorous parametric analyses are required
to study the sensitivity of nonlinear seismic response of concrete dams to
the,selected shear resistance model.

5.6 NONLINEAR MODELLING OF CON-
CRETE DAMS USING DAMAGE ME-
CHANICS

Micro cracking in concrete is believed to occur at relatively low levels of
loading. Therefore, cracking progresses in a heterogeneous medium because
of an increase in micro cracking, and because of the linking of various micro
cracked zones. Experiments performed on cement paste as well as concrete
show that micro cracking has an arbitrary orientation. When the load is
increased, macroscopic cracks develop and the crack orientations follow the
principal stress directions in the material.
Proper understanding and mechanical modeling of the damage process of

concrete, brought about by the internal defects, is of vital importance in dis-
cussing the mechanical effects of the material deterioration on macroscopic
behavior. Modeling of this phenomenon has triggered intensive research ac-
tivities over the past 20 years or so.
The main concept of this theory is to represent the damage state of ma-

terial by an internal variable, which directly characterizes the distribution
of micro cracks formed during the loading process. Each damage model
established mechanical equations to describe the evolution of the internal
variables and the mechanical behavior of damaged material. The damage
mechanic model can be divided into isotropic and anisotropic damage mod-
els. The isotropic damage mechanics model uses a single scalar parameter
and is based on Lenlaitre’s hypothesis of strain equivalence. It was used with
some success to describe the damage of concrete. Yet, few practical applica-
tions to real structures were conducted using this approach. However, it was
experimentally observed that crack growth in concrete structures significantly
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depends on the direction of the applied stress and strain. Hence, the damage
process in concrete is essentially orthotropic, the isotropic description is a
mere simplification.
Compared with the fracture mechanics theory used in the context of dis-

crete cracks the continuum models with fixed mesh have the advantage of
avoiding remeshing when finite elements are adopted. However, when com-
pared with the smeared crack approach there seems to be a small advantage.
Researchers have proved that different mechanical phenomena can be for-
mulated within the same framework of damage mechanics. The swelling
problem is investigated in concrete dams using this concept. Finally, dam-
age mechanics permits the easy implementation of any initial damage due to
thermal stresses or any other phenomena, such as alkali-aggregate reactions,
acting on an existing dam.

5.6.1 NUMERICALPROBLEMSRELATEDTO STRAIN
SOFTENING

Damage process is associated with strain softening, which is usually accom-
panied by sudden transition from a smoothly varying deformation field into
a localized band. The treatment of strain softening and localization by finite
elements could lead to serious difficulties, as reported by Simo (1989), Bazant
and Belytschko (1985), and Wu and Freund (1984).
Some of these difficulties are:
(1) cracks tend to localize in a band that is generally the size of the

element used in the discretization;
(2) the fracture energy dissipated decreases as the mesh is refined, in the

limit it tends towards zero;
(3) the solution obtained is extremely dependent on mesh size and orien-

tation.
To overcome these difficulties, the following solutions were proposed:
1 . The strain softening is related to the element size (Pietruszczak and

Mroz 1981). which leads to the mesh-dependent hardening modulus tech-
nique (Bazant and Oh 1983. Pramono and Wiliam 1989; Simo 1989).
2. Nonlocal damage is formulated as proposed by Bazant and Pijaudier-

Cabot (1988), Mazars et at. (1991), Saouridis and Mazars (1992).
3. Introduction of viscoplasticity as suggested by Needleman (1988),

Loret and Prevost (1991), Sluys and de Borst (1992).
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4. The use of the second gradient theory in the definition of the strain
tensor (sluys et al. 1993).
5. Cosserat continuum approach (de Borst 1991; Vardoulakis 1989).
From a purely mathematical viewpoint Simo (1989) showed that the first

three solutions can be interpreted as regularization procedures of the dissipa-
tion function. Pijaudier-Cabot et al. (1988) performed a comparative study
of these techniques for the propagation of waves in a longitudinal bar.

5.6.2 FUNDAMENTAL EQUATIONS OF DAMAGE
MECHANICS

The concept of the damage mechanics model is based on the dissipation of
energy by means of cracking and loss of rigidity of the material. Any induced
plastic behavior is ignored.
Equilibrium of the system is defined by the thermodynamic potential,

which is considered here as the strain energyW (ε, d) and is a function of the
strain vector {ε} and the damage variable d. Thus, W (ε, d) can form the
basis to formulate the following expressions:

σi =
∂W

∂εi
and Y = −∂W

∂d

where σi is the component of the stress vector in engineering notation; and
Y is the thermodynamic force associated with d, interpreted as a damage
energy release rate. The time derivative of the specific energy yields

.

W= {σ}T{ .ε}− Y
.

d

The Clausius Duhem inequality gives a condition on the energy dissipated
Wd by the damage process, which can be written as:

.

Wd= Y
.

d= {σ}T{ .ε}−
.

W≥ 0 (5.9)

The formulation of a damage model first requires the definition of thresh-
old of damage. which is the conditions that initiates the propagation of
damage. Secondly, the evolution of the damage with loading must also be
defined, and it is a function of a measure of strains, stresses or energy.
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5.6.3 ISOTROPICDAMAGEMODEL FORCONCRETE

To establish the damage constitutive equation, it is necessary to relate the
damage variable d to the other internal variables by some physical hypothesis.
Here we try to briefly describe an isotropic damage mechanics model. The
hypothesis of strain equivalence of Lemaitre and Chaboche (1978) is empirical
in nature. It states that any constitutive equation for a damaged material
can be derived from the same potentials as that for a virgin material by for a
damaged material by replacing the stresses by effective stresses. The effective
stresses are defined as:

{−σ} = [M(d)]{σ} (5.10)

where[M(d)] is in general a symmetric matrix of rank four. For isotropic
damage model equation 5.10 is valid when the strains in the damaged mater-
ial are assumed to be equivalent to strains in the virgin material, but possess
a reduced modulus by a factor (1−d). Figure 5.8C;D shows the basis of this
assumption. In equation 5.10, [M ] is a diagonal matrix equal to 1

1−dI; and I
is identity matrix.[M ] represents the damage matrix. Thus, in the context
of strain equivalence, equation 5.10 reduces to:

{−σ} = 1

1− d{σ} (5.11)

The strain energy for a damaged material is W = 1/2{ε}T [C(d)]{ε},
where [C(d)] is a second order matrix of material properties. In such a case,
the evolution of damage decreases the material stiffness and the following
expression can be written

[C(d)] = (1− d)[C0] (5.12)

where [C0] is initial matrix of undamaged material properties. The stress
vector and the rate of energy dissipation can be easily obtained:

{σ} = (1− d)[C0]{ε}

and

Y =
1

2
{ε}T [C0]{ε} = −∂W

∂d
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Since Y is a quadratic function of strain, it is positive and, thus, d is
always increasing as shown in equation 5.9. This is a characterization of the
irreversibility of damage.
Different hypothesis have been proposed for isotropic damage model. The

basic assumption in behaviour of the damaged and equivalent undamaged
element will results in different model. Among several models, special at-
tention will be given to the two models. They are mainly based on two
concepts of the modelling. In the first model, Energy-Based Damage Model,
a single damage variable independent of directions of stresses describes the
behavior of concrete. The damage evolution is defined as a function of the
elastic strain energy of an undamaged equivalent material. To ensure mesh
objectivity of the finite- element solution, the softening parameters are made
mesh-dependent using the energy equivalence concept. This technique leads
to reasonable mesh size and the model is suitable for the analysis of large con-
crete structures. While in the second concept, Strain-Based Damage Model,
the damage is described by coupling the compression and tension effects to
define a single damage variable d. This variable is calculated based on a
certain measure of the material’s strain field. The objectivity of the finite-
element solution is ensured by introducing the nonlocal description of this
measure by averaging it within an influence area in the finite-element mesh.
The size of the influence area is of the order of three times the aggregate
size. In this case an extremely refined mesh is required. If the aggregate size
varies between 100 and 300 mm, it becomes impractical to model real dams
with a reasonable size mesh since at least three elements are required within
the influence area of about 300-900 mm.

5.6.4 ANISOTROPICDAMAGEMODEL FORCON-
CRETE

A Gf -type anisotropic damage model is described in this part for different
reasons: when roller compacted concrete is used in dams, the material itself
is initially orthotropic. Therefore, the development of an anisotropic damage
model is essential. In addition, orthotropic damage models allow the mod-
eling of joints in the dam and at the dam-foundation interface, even though
these problems are not addressed in this paper. It will be shown that by de-
veloping an orthotropic damage model, the isotropic model becomes a special
case (Chow and Wang 1987; Ju 1989; Chow and Lu 1991).
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Figure 5.8: Material model in the damage mechanics concept; A)effective ar-
eas for isotropic and anisotropic damages; B)characteristic length; C)strain
equivalence hypothesis; D)stress-strain curve for equivaalence hypothesis;
E)closing-opening criterion; F)initial damage formulation
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When isotropic damage is considered, the effective stress {−σ} (Lemaitre
and Chaboche 1978) and the elastic stress {σ} are related by 5.11. If damage
is no longer isotropic, because of cracking, material anisotropy introduces
different terms on the diagonal of [M(d)]. If the concept of net area is still
considered, the definition for di becomes:

di =
Ωi − Ω∗i

Ωi

where Ωi is tributary area of the surface in direction i; and Ω∗i is lost area
resulting from damage, as shown in Figure 5.8-A. The index i(1, 2, 3) corre-
sponds with the Cartesian axes x,y and z. In this case the ratio of the net
area over the geometrical area may be different for each direction.
The relation between the effective stresses { ∗σ} and the elastic equivalent

stresses {σ} becomes:
∗
σ1
∗
σ2
∗
σ12
∗
σ21

 =


1
1−d1 0 0

0 1
1−d2 0

0 0 1
1−d2

0 0 1
1−d1


 σ1

σ2
σ12


In this case the effective stress tensor is no longer symmetric and an

anisotropic damage model, based on equivalent strains, results in a nonsym-
metric effective stress vector. Various attempts to restore symmetry were
proposed by, Chow and Lu (1991) and Valliappan et al. (1990). They are
based on the principle of elastic energy equivalence. This principle postu-
lated that the elastic energy in the damaged material is equal to the energy
of an equivalent undamaged material except that the stresses are replaced
by effective stresses.
If the symmetrized effective stress vector is defined as:

{−σ} = {−σ1−σ2−σ12} = { ∗σ1 ∗σ2

s
∗
σ
2

12 +
∗
σ
2

21

2
}

It can be related to the real stresses by:


−
σ1
−
σ2
−
σ12

 =


1
1−d1 0 0

0 1
1−d2 0

0 0

r
1
2

³
1

(1−d1)2 +
1

(1−d2)2
´

 σ1

σ2
σ12

 (5.13)
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This equation can be written as {−σ} = [M ]{σ}. where[M ] is damage matrix.
The elastic strain energy stored in the damaged material is equal to:

W e
d =

1

2
{σ}T [Cd]−1{σ} (5.14)

The elastic strain energy for the equivalent undamaged material is given by:

(W e
0 )
equivalent =

1

2
{−σ}T [C0]−1{−σ} (5.15)

Equating equations 5.14 and 5.15 and substituting for {−σ} from equation
5.13 yields:

[Cd]
−1 = [M ]T [C0]−1[M ]

which results in the following expression for the effective plane stress material
matrix:

[Cd] =


E

1−ν2 (1− d1)2 Eν
1−ν2 (1− d1)(1− d2) 0

Eν
1−ν2 (1− d1)(1− d2) E

1−ν2 (1− d2)2 0

0 0 2G(1−d1)2(1−d2)2
(1−d1)2+(1−d2)2


(5.16)

The term Cd(3, 3) in equation 5.16 represents the shear resistance of the
damaged material. It can be written in a manner similar to that of the
smeared crack approach, i.e., Cd(3, 3) = βG in which β is the shear retention
factor that is given here as a function of damage scalars d1 and d2.

β =
2(1− d1)2(1− d2)2
(1− d1)2 + (1− d2)2

If d2 is neglected as it assumed in the smeared crack approach, β can be
expressed as a function of strain in the principal direction.
The constitutive law can be written as:

{σ} = [Cd]{ε}
where the principal directions of damage are assumed to coincide with the
principal stresses. Transforming to the global axes, the constitutive relation
can be written as:



164CHAPTER 5. NONLINEARFRACTUREMODELSOFCONCRETEGRAVITYDAMS

[Cd]G = [R]
T [Cd][R]

Where[Cd]G is material matrix in the global axes; and [R] is transformation
matrix defined by:

[R] =

 cos2 β sin2 β sinβcosβ
sin2 β cos2 β − sinβcosβ
−2 sinβcosβ 2 sinβcosβ cos2 β − sin2 β


and β is angle of principal strain direction. If d1 = d2 = d, the following
relation is obtained:

[Cd] = (1− d)2[C0]

which represents the damaged isotropic model. This model differs from equa-
tion 5.12 by a square factor because of the energy equivalence.

5.6.5 EVALUATION OF DAMAGE VARIABLE

Now we try to relate the damage variable to the state of an element using uni-
axial behaviour of a concrete specimen.. Consider the elastic brittle uniaxial
behavior as shown in Figure 5.9. If a point At on the stress strain curve (σ,
ε) moves to A2, because of damage, a certain amount of energy is dissipated
(dWd). Under conditions of infinitesimal deformation and negligible thermal
effects, the first law of thermodynamics requires:

dW = dWe + dWd

where dWe is elastic energy variation; and dWd is energy dissipated by dam-
age. It can be seen that after damage the strain will reach to its original
strain at zero. The total dissipated energy is calculated as:

Wd =

Z
dWd = Area(OA1A2O)

The upper bound of Wd is total available energy of the material gt given
by:
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Figure 5.9: Stress-strain curve for energy dissipation due to fracture
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gt =

Z x

0

σdε (5.17)

The fracture energy per unit surface Gf is defined by:

Gf = lchgt (5.18)

and lch characteristic length of the element of volume representing the mate-
rial’s average behavior.
For uniaxial loading, the relation between the strain energy stored in the

damaged material W e
d , and the elastic energy in the virgin material W

e
0 is:

W e
d = (1− d)2W e

0 = (W
e
0 )
equivalent (5.19)

Therefore, the effective material modulus is:

−
E= (1− d)2E0

5.6.6 Damage evolution for concrete subjected to ten-
sile strain

An element of volume of the material which can be representative of the
global behaviour is now considered. This volume will be characterized by
its length which provides a measure of the region over which the damage
is smeared so that the global response is reproduced by this volume. This
length, lch, is called characteristic length and it should be measured in the
direction normal to a potential crack plane ( Figure 5.8-B).
To define the damage evolution of concrete, The principal strains are

measured for an element to determine the state of the system. The initial
threshold is the strain beyond which damage can occur and is given by:

ε0 =
f
0
t

E0

Using equation 5.19, a possible expression for damage is:

d = 1−
s
W e
d

W e
0

(5.20)
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where W e
d is recoverable elastic energy of the damaged material. When the

deformations are less than the initial threshold (ε0) the material is elastic
and all the energy is recoverable, which implies thatW e

d =W
e
0 , and therefore

d = 0. In the limit of damage,W e
d → 0, which implies d = 1. A simple way to

evaluate d is to adopt a postpeak stress function. According to Rotls (1991),
the strain-softening curve of concrete must be concave. By considering an
exponential function as proposed by Lubliner et al. (1989):

σ(ε) = f
0
t [2 exp(−b(ε− ε0))− exp(−2b(ε− ε0))] (5.21)

The constant b can be evaluated using equations 5.17, 5.18, and 5.21, which
leads to:

b =
3

ε0(
2GfE

lchf
0
t

− 1) ≥ 0 (5.22)

Using 5.20 and 5.21, the evolutionary model for damage can be expressed
as:

d = 1−
r

ε0
ε
[2 exp(−b(ε− ε0))− exp(−2b(ε− ε0))] (5.23)

If a simple linear softening curve is assumed, Figure 5.8-D can show that:

d = 1−
s

ε0
ε
−
µ

ε− ε0
εf − ε0

¶³ε0
ε

´
The fundamental issue of this approach lies in the introduction of a geomet-
rical factor, lch, in the constitutive model. When the finite element method
is used, a so-called mesh-dependent hardening modulus is obtained. This
technique was proposed by Pietruszcak and Mroz and was employed by a
number of authors. Using equation 5.18 ensures conservation of the energy
dissipated by the material. Amongst many strategies used to ensure mesh
objectivity, the mesh-dependent hardening technique is the most practical
for mass structures such as dams. Condition in equation 5.22 should be
interpreted as a localization limiter on the characteristic length of the vol-
ume representing the global behaviour of the material. In other words, if
lch ≥ 2EGf

f 02t
, it is not possible to develop strain softening in the volume. For

mass concrete, using average values for E = 30000 MPa, Gf = 200 N/m and
f
0
t = 2MPa yields a limit for lch = 3 m. This leads therefore to a reasonable



168CHAPTER 5. NONLINEARFRACTUREMODELSOFCONCRETEGRAVITYDAMS

mesh size for dam models. The introduction of such parameter is not for nu-
merical convenience. The characteristic length can be related to the Fracture
Process Zone (FPZ) commonly used in fictitious crack model for concrete.

5.6.7 Opening and closing of the crack and initial dam-
age

When the strain is increasing, damage will also increase. During cyclic load-
ing the strains are reversed and unloading will occur. Experimental cyclic
loading of concrete in tension shows evidence of permanent strain after un-
loading. Under compression the material recovers its stiffness. The classical
split of the total strain in a recoverable elastic part εe and an inelastic strain
εin gives:

ε = εe + εin = εe + λεmax

where εmax is the maximum principal strain reached by the material and λ is
a calibration factor varying from 0 to1. Figure 5.8-E illustrates this criterion.
The value λ = 0.2 is selected; the unloading-reloading stiffness becomes :

Eunl = E0
(1− d)2
(1− λ)

(5.24)

When the principal strain is less than εin the crack is considered closed.
Alternatively, the crack will open when the principal strain is greater than
λεmax.
The damage model presented here is based on three parameters: the

elastic modulus E, the initial strain threshold ε0 and the fracture energyGf .
If the element of volume is initially damaged (d = do), the secant modulus
and the fracture energy are reduced by (1 − do) so the effective values are
(Figure 5.8-F):

E0 = (1− d0)E G0f = (1− d0)Gf

5.6.8 ANALYTICAL PROCEDURES IN A FINITE
ELEMENT MODEL

In a finite element model, the four-node isoparametric element is preferred in
the implementation of the local approach of fracture-based models and has
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been used for the implementation of the described constitutive model. The
standard local definition of damage is modified such that it refers to the status
of the complete element. The average of the strain at the four Gauss points
is obtained and the damage is evaluated from the corresponding principal
strains of the element. The constitutive matrix [Cd] is updated depending
on the opening/closing and the damage state of the element. The stresses
at each integration point are then computed using the matrix [Cd] and the
individual strains.
The characteristic length of the element is calculated approximately, us-

ing the square root of its total area. For an efficient control of the damage
propagation in the finite element mesh, some adjustments have to be consid-
ered. During the softening regime the stiffness is reduced as a consequence
of damage ,equation 5.23. At the unloading stage the secant modulus is cal-
culated using equation 5.24 until closing of the crack. When the crack closes
the material recovers its initial properties. In the reloading regime the last
damage calculated before unloading is used again.
Finite element implementation of the damage mechanics
1. Compute total displacement {u}i+1 = {u}i + {∆u}
2. Initialization Iselect = 0, Emax = 0
3. Loop over elements e = 1, nel

(a) Compute deformations for each Gauss point : {²}gpe = [B]gp{u}e
(b) If the element is already damaged call subroutine UPDATE
(c) If not: (selection of element with largest energy density)
Compute ε1, if ε1 ≤ ε0 go to (d)
Compute Ee = 1

2
{σ}e{ε}e

if Ee ≥ Emax then Emax = Ee, Iselect = e
(d) {σ}e = [Cd]{ε}e
(e) Compute the internal force vector re =

R
Ae
[B]T{σ}edA

f) Assemble the element contribution r← re
4. If (Iselect 6= 0), (New element damaged)

(a) Correction of stresses due to damage
(b) Update data base of damaged elements

Subroutine UPDATE (Stress and damage update)
1. Set damage parameter d = dold
2. Compute the average strains within the element and the corresponding

principal strains: ε1, ε2 set ε =Max(ε1, ε2)
3. Check for loading/unloading and closing/opening of crack:

(a) if (ε ≥ εmax) the element is in a loading state



170CHAPTER 5. NONLINEARFRACTUREMODELSOFCONCRETEGRAVITYDAMS

Calculate d from equation 5.23
update if ²in, εmax = ε
(b) else if ε ≥ εin )
d = dold
(c) else d = 0

4. Compute[Cd] using equation 5.16

5.7 CONSTITUTIVEMODEL FORSMEARED
FRACTURE ANALYSIS

The constitutive model defining (i) the pre-softening material behaviour, (ii)
the criterion for softening initiation, (iii) the fracture energy conservation,
and (iv) the softening, closing and reopening of cracks, and the finite element
implementation of the formulations are presented in the following sections.
A linear elastic relationship is assumed between compressive stresses and
strains. The tensile stresses and strains are referred to as positive quantities
in the presentation.

5.7.1 Pre-fracture behaviour

Stresses {σ} and strains {ε} in a linear elastic condition are related as:

{σ} = [D]{ε}
where [D] is the constitutive relation matrix defined for an isotropic plane

stress condition as:

[D] =
E

1− υ2

 1 ν 0
ν 1 0
0 0 1−ν

2


Here, E is the elastic modulus; and ν is the Poisson’s ratio.

5.7.2 Strain softening of concrete and the initiation
criterion

The stress-strain relationship for concrete becomes non-linear near the peak
strength [Figure 5.10-a]. In the post-peak strain softening phase, coalescence
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Figure 5.10: Constitutive modelling for smeared fracture analysis; a)softening
initiation criterion; b)fracture energy conservation; e)local axis system;
d)closing and re-opening of cracks

of the microcracks causes a gradual reduction of the stress resistance. The
area under the uniaxial stress-strain curve up to the peak is taken as the
index for softening initiation:

U0 =

Z ε1

0

σdε =
σiεi
2
=

σ2i
2E

=
Eε2i
2

σ1 > 0

where σi is the apparent tensile strength, that may be approximately taken
25-30% higher than the true static strength, σt. It is calibrated in such a way
that a linear elastic uniaxial stress-strain relationship up to σi will preserve
the value U0[Figure 5.10-a].
In finite element analyses, a linear elastic relationship is assumed until

the tensile strain energy density, 1
2
σ1ε1 (σ1, and ε1 are the major principal
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stress and strain, respectively), becomes equal to the material parameter, U0
:

U0 =
1

2
σ1ε1 =

σ2i
2E

σ1 > 0 (5.25)

Taking the square roots of both sides, the biaxial effect in the proposed strain
softening initiation criterion is expressed as:

σ1
σi
=

r
σ1
Eε1

The above equation is a representative of a biaxial failure envelope. The
principal stress σ1, and the principal strain, ε1, at the instance of softening
initiation, are designated by σ0, and ε0, respectively [Figure 5.10-a].
Under dynamic loads, the pre-peak non-linearity decreases with increas-

ing values for both σt and εt [Figure 5.10-b]. The strain-rate effect on the
material parameter U0 is considered through a dynamic magnification factor,
DMFe, as follows:

U 00 =
σ02i
2E

= (DMFe)
2 U0

where the primed quantities correspond to the dynamic constitutive parame-
ters. The increased material resistance due to inertia and viscous effects un-
der dynamically applied loads has been explicitly considered in the dynamic
equilibrium equations. Reviewing the literature on the dynamic fracture
behaviour of concrete, a 20 percent dynamic magnification of the apparent
tensile strength is considered adequate for seismic analyses of concrete dams.
Under dynamic loading, the material parameter U0 in equation 5.25 is re-
placed by the corresponding dynamic value, U 00. At the instant of softening
initiation under a dynamically applied load, the principal stress, σ1, and the
principal strain, ε1, are designated by σ00 and ε00, respectively, as shown in
Figure 5.10-b.

5.7.3 Fracture energy conservation

The tensile resistance of the material is assumed to decrease linearly from the
presoftening undamaged state to the fully damaged state of zero tensile resis-
tance [Figure 5.10-b]. The slope of the softening curve is adjusted such that



5.7. CONSTITUTIVEMODELFOR SMEAREDFRACTUREANALYSIS173

the energy dissipation for a unit area of crack plane propagation, Gf , is con-
served. The strain-rate sensitivity of fracture energy is considered through a
dynamic magnification factor, DMFf , applied to magnify the static fracture
energy:

G0f = DMFfGf

The strain-rate sensitivity of fracture energy can mainly be attributed to that
of tensile strength. DMFf can therefore be assumed to be equal to DMFe.
In finite element analyses, the final strains of no tensile resistance for static
and dynamic loading are defined as:

εf =
2Gf
σ0lc

ε0f =
2G0f
σ00lc

where lc is the characteristic dimension defined in the previous section.

5.7.4 Constitutive relationships during softening

After the softening initiation, a smeared band of microcracks is assumed to
appear in the direction perpendicular to the principal tensile strain. The
material reference axis system, referred as the local axis system, is aligned
with the principal strain directions at that instant [directions n-p in Figure
5.10-c. The constitutive matrix, relating the local stresses to local strains is
defined as:

[D]np =
E

1− ηυ2

 η ην 0
ην 1 0
0 0 µ 1−ην

2(1+ν)

 η =
En
E

(5.26)

where the parameter η (0 ≤ η ≤ 1) is the ratio between the softening Young’s
modulus En, [Figure 5.10-d], in the direction normal to a fracture plane and
E, is the initial isotropic elastic modulus; and µ is the shear resistance factor.
The following options are considered with respect to the orientation of crack
bands in finite element analyses.

5.7.5 Coaxial Rotating Crack Model (CRCM)

The local axis system n−p is always kept aligned with the directions of prin-
cipal strains, ε1, and ε2. In this model, the strains εn and εp are, respectively,
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ε1, and ε2 at the newly oriented material reference state. Using an implicit
definition of the softened shear modulus in cracked elements, the parameter
µ is defined for the CRCM as follows:

µ =
1 + ν

1− ην2

µ
ηεn − εp
εn − εp

− ην

¶
0 ≤ µ ≤ 1 (5.27)

Here, εn and εp is the normal strain components in the directions normal and
parallel to the fracture plane, respectively.

5.7.6 Fixed Crack Model With Variable Shear Resis-
tance Factor (FCM-VSRF)

In this model, the local reference axis system is first aligned with the princi-
pal strain directions at the instance of softening initiation, and kept nonro-
tational for the rest of an analysis. The shear resistance factor, µ, is derived
using the strain components εn and εpcorresponding to the fixed local axis
directions (which are not necessarily coaxial with the principal stress di-
rections). The definition of a variable shear resistance factor according to
equation 5.27, that takes account of deformations in both lateral and normal
directions to a fracture plane, is different from the usual formulations where
only the crack normal strain is often considered as the damage index.
The total stress-strain relationship matrix, defined in equation 5.26, is

similar to the formulation presented by BaZant and Oh (1983), except that
they have not considered shear deformations in the constitutive relationship.
The present formulation, with the degraded shear modulus term, maintains
a backward compatibility with the presoftening isotropic elastic formulation
when η = 1 and 2. The local constitutive relationship matrix, [D]np, can be
transformed to the global coordinate directions as follows:

[D]xy = [T ]
T [D]np[T ]

where [T ] is strain transformation matrix defined as follows in terms of the
inclination of the normal to it crack plane, θ [Figure 5.10-c]:

[T ] =

 cos2 θ sin2 θ sin θcosθ
sin2 θ cos2 θ − sin θcosθ
−2 sin θcosθ 2 sin θcosθ cos2 θ − sin2 θ


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With an increasing strain softening, the damaged Young’s modulus, En, (Fig-
ure 5.10-d), and hence the parameters η and µ decrease gradually, and may
eventually reach zero values after the complete fracture (εn > εf or ε

0
f). The

constitutive matrix in equation 5.26 is updated as the parameters η and µ
change their values. In the CRCM, a change in the global constitutive re-
lationship may also be caused by a rotation of the local axis system, which
is always kept aligned with the directions of coaxial principal stresses and
strains. During unloading/reloading, when the strain, εn, is less than the
previously attained maximum value, εmax [Figure 5.10-d], the secant modu-
lus, En, remains unchanged; the parameter µ, however, may change during
that process.
The change in global constitutive relations is also caused by a rotation

of the local axis system, which is always kept aligned with the directions
of principal strains to keep the principal stresses and strains coaxial. The
CRCM is very effective in alleviating the stress locking generally observed in
fixed crack models. During unload ing/reloading, when the strain, εn, is less
than the previously attained maximum value, εmax[Figure 5.10-f], the secant
modulus, En, remains unchanged; the parameter µ, however, changes during
that process.

5.7.7 Closing and reopening of cracks

Under reversible loading conditions, the tensile strain, εn, in an element may
alternatively increase and decrease. With the reduction Of εn, the shear
resistance factor, µ, gradually increases. The softened Young’s modulus in
the direction n, En (which may have reached a zero value), is replaced by the
undamaged initial value, E, if the parameter µ is greater than a threshold
value µc. Parametric analyses have shown that the seismic fracture response
of concrete gravity dams is not affected by a value of µc between 0.90 and
0.9999. A relatively flexible tolerance, µc = 0.95, can be used to minimize
spurious stiffness changes during the closing of cracks. When εn > 0 in
subsequent load steps, the value µ is determined by using the damaged value
of η to determine the reopening of cracks. If µ becomes less than µc, the
element behaviour is determined by either the reloading or the reopening
path depending on the final state attained in previous tension cycles. The
appropriate value of the damage modulus, En, is reused in equation 5.26 at
that state. For µc ≈ 1, the residual strain upon closing of a crack is given by
εn = νε2s. Figure 5.10-d sshows the closing-reopening behaviour for a special
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case when εn ≈ 0.


