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Abstract The purpose of this paper is to address the question of well-posedness and spec-
tral controllability of the wave equation perturbed by potential on networks which may
contain unbounded potentials in the external edges. It has been shown before that in the
absence of any potential, there exists an optimal time T ∗ (which turns out to be simply twice
the sum of all length of the strings of the network) that describes the spectral controllability
of the system. We will show that this holds in our case too, i.e., the potentials have no effect
on the value of the optimal time T ∗. The proof is based on the famous Beurling-Malliavin’s
Theorem on the completeness interval of real exponentials and on a result by Redheffer
who had shown that under some simple condition the completeness interval of two complex
sequences are the same.
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Spectrum of an operator
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1 Introduction

In the recent years, considerable efforts have been devoted to the mathematical study of
mechanical systems constituted by coupled flexible or elastic elements as strings, beams,
membranes, or plates. These systems are known as multi-link or multi-body structures.
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Their practical relevance is huge. However, the mathematical models describing their evo-
lution are generally quite complex. They can be viewed as systems of partial differential
equations (PDE) on networks or graphs.

This paper is mainly devoted to analyze the vibrations of a simplified 1-d model of a
multi-body structure consisting of a finite number of flexible strings distributed along a
planar graph. Deformations are assumed to be perpendicular to the reference plane.

For a general graph, if one considers wave equation on each edge of the graph, it was
shown in [6] that when the time is greater than twice the total lengths, i.e., T > 2L, one
can deduce that there exist some Fourier weights so that the observation property holds in
the corresponding weighted norm if and only if all the eigenfunctions of the network are
observable. Furthermore, for times smaller than 2L system is not spectrally controllable.

The main goal of this paper is to give a necessary and sufficient condition for the spec-
tral controllability of the wave equation perturbed by potential on networks. The potentials
could be singular on exterior vertices. The importance of this singularity emanates form the
fact that in 1-d case, the so-called inverse-square potential arises, for example, in the con-
text of combustion theory [3, 5, 8, 10] and quantum mechanics [1, 7, 15]. We consider two
cases:

(1) All of the potentials are bounded on each edge, but they do not need to be positive.
(2) We let the potentials on the external edges unbounded but positive. For simplicity, we

assume that they behave like 1/xα for α ∈ (0, 1]. We consider the bounded potentials on
the internal edges too.

It will be shown that in two cases above, there is an optimal time T ∗ that describe the
spectrally controllability of the system. That is for every T > T ∗ system is spectral control-
lable if and only if all the eigenfunctions of the system are observable. Whereas for T < T ∗
system is not spectrally controllable. This optimal time depends only on the length of the
edges and is equal to the optimal time for the spectral controllability of the corresponding
system without any potential. In other words, the potentials (even the singular ones in the
external edges) have no effect on the value of the optimal time for spectral controllability. In
fact, this is a consequence of the celebrated Buerling-Malliavin’s Theorem [4] and a result
proved by Haraux and Jaffard [12] that relates the spectral controllability of the system to
the asymptotic behavior of the eigenvalues of the network.

The paper is organized as follows. In Section 2, we state some elements of modeling
and introduce the problem. Well-posedness of the system will be discussed in Section 3. In
Section 4, we study the spectrum of the operator A corresponding to the system and as a
consequence, we derive a necessary and sufficient condition for the spectral controllability
for large enough time T .

2 Networks of Strings

2.1 Elements on Graphs

A graph G is a pair G = (V, E), where V is a set, whose elements are called vertices of
G, and E is a family of non-ordered pairs v, w of vertices, which we denote by ˆvw. The
elements of E are called edges of G. When G does not contain edges of the form v̂v, it is
said that the graph is simple.

Let us suppose that G has a finite number of N ≥ 2 vertices and M ≥ 1 edges:

V = {v1, . . . , vN }, E = {e1, . . . , eM }.
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We denote deg(v) as the degree of the vertex v in the graph G. We also define the sets

VS := {v ∈ V : deg(v) = 1}, VM := V \ VS ,

where VS is the set of those vertices that belong to a single edge, the exterior ones, while
VM contains the remaining vertices, the interior ones, i.e., those that belong to more than
one edge.

For a vertex v, we denote by

Iv := {i : v is a vertex ofei},
the set of indices of all those edges of G which are incident to v. If the vertex vj is exte-
rior, Ivj

contains a single index; it will be denoted by i(j) and, if this does not lead to
misunderstanding, simply by i. Also let us define

Iext := {i : ∃v ∈ VS , i ∈ Iv}, Iint := I \ Iext .

In this paper, we consider only simple finite and connected graphs whose edges are
viewed as rectilinear segments joining some of those points. The length of the segment
corresponding to the edge ei is called length of ei and is denoted by �i . On every edge
of G, we choose an orientation (that is, one of the vertices has been chosen as the initial
one). Then, ei may be parametrized as a function of its arc length by means of the functions
xi : [0, �i] → ei . For i ∈ Iext , we choose the orientation xi such that xi(0) shows the
exterior vertex. We define the incidence matrix of G

εij =
⎧
⎨

⎩

−1 if xi(0) = vj ,

+1 if xi(�i) = vj .

Given functions ui : [0, �i] → R, i = 1, . . . , M , we will denote by ū : G → R the
function defined for x ∈ ei by

ū(x) = ui(x−1
i (x)).

In this case, we say that ū is a function defined on the graph G with components ui .
Frequently, we indicate this fact just by writing ū = (u1, . . . , uM).

2.2 Equations of Motion for Networks

Now, we consider a network of elastic strings that undergo small perpendicular vibrations.
Let us suppose that the function ui = ui(t, x) : R × [0, �i] → R, describes the transversal
displacement in time t of the string that coincides at rest with the edge ei . Then, for every
t ∈ R, the functions ui, i = 1, . . . , M, define a function ū(t, x) on G with components ui

defined by ui(t, x) = ui(t, x−1
i (x)) for x ∈ ei . This function allows to identify the network

with its rest graph.
As a model of the motion of the network, we assume that the displacements ui satisfy

the following non-homogeneous system with some conditions on the exterior vertices
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui
tt − ui

xx + bi(x)ui = 0, (t, x) ∈ R × [0, �i], i = 1, . . . , M
ui(j)(t, vj ) = hj (t), t ∈ R, vj ∈ C,

ui(j)(t, vj ) = 0, t ∈ R, vj ∈ VS \ C,

ui(t, v) = uj (t, v), t ∈ R, v ∈ VM, i, j ∈ Iv,∑
i∈Iv

∂nu
i(t, v) = 0, t ∈ R, v ∈ VM,

ui(0, x) = ui
0(x), ui

t (0, x) = ui
1(x), x ∈ [0, �i].

(1)
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Indeed, conditions in second and third lines in Eq. 1 reflect the fact that over some
of the exterior nodes, precisely over those corresponding to the vertices contained in
C = {v1, . . . , vr } (i.e., the set of controlled nodes), some controls act to regulate their dis-
placements, while the remaining nodes are fixed. Also, ∂nu

i(t, v) = εij u
i
x(t, x

−1
i (v)) is the

exterior normal derivative of ui at the node v.
For the functions bi , we consider one of these cases:

(1) For every i = 1, . . . , M , we have bi ∈ L∞(0, �i).

(2) For every i ∈ Iint , we have bi ∈ L∞(0, �i) and for every i ∈ Iext the non-negative
potentials bi are unbounded near the exterior vertices. Here, we consider a singularity of

the order 1/xα on the exterior vertices for some α ∈ (0, 1], i.e. bi(x) = O(
1

xα
) near the

exterior vertices.
In order to study system (1), we need a proper functional setting. We define the Hilbert

spaces

V :={ū ∈
M∏

i=1

H 1(0, �i) :ui(v)=uj (v) if i, j ∈Iv for v∈VM, ui(v)=0 if i ∈Iv for v∈VS},

H :=
M∏

i=1

L2(0, �i),

endowed with the Hilbert structures

< ū, w̄ >V :=
M∑

i=1

< ui,wi >H 1(0,�i )
=

M∑

i=1

∫ �i

0
ui

xw
i
xdx,

and

< ū, w̄ >H :=
M∑

i=1

< ui,wi >L2(0,�i )
=

M∑

i=1

∫ �i

0
uiwidx,

respectively. Obviously, the space

C0 := {ū ∈
M∏

i=1

C1(0, �i) : ui(v) = uj (v) if v ∈ VM, supp ū ∩ VS = ∅},

is dense in H and V . Besides, we will denote

U = (L2(0, T ))r ,

the space of controls.

Remark 2.1 Since the elements of V are zero at the exterior vertices, we can write on a path
on graph starting from an exterior vertex

|u(x)|≤
∫ x

0
|ux |dx ≤

∫ �

0
|ux |dx.

Then, the Poincare inequality will be valid on different paths starting from an exterior vertex
and one can easily deduce that the following Poincare inequality for the elements of V (note
that the graph is connected and the paths may have intersection)

M∑

1

∫ �i

0
u2i,xdx ≥ C

M∑

1

∫ �i

0
u2i dx, ∀ū ∈ V,

which shows that the embedding V ⊂ H is continuous and compact.
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3 Well-posedness

The existence of the solution of system (1) could be studied in the standard way by the clas-
sical transposition method. Let us describe the main steps. First, we study the homogeneous
problem (hj ≡ 0 for all j = 1, . . . , r)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φi
tt − φi

xx + bi(x)φi = 0, (t, x) ∈ R × [0, �i], i = 1, . . . , M
φi(j)(t, vj ) = 0, t ∈ R, vj ∈ VS ,

φi(t, v) = φj (t, v), t ∈ R, v ∈ VM, i, j ∈ Iv,∑
i∈Iv

∂nφ
i(t, v) = 0, t ∈ R, v ∈ VM,

φi(0, x) = φi
0(x), φi

t (0, x) = φi
1(x), x ∈ [0, �i].

(2)

Define the operator A : V → V ′ by

< Aū, v̄ >=
M∑

i=1

∫ �i

0
ui

xv
i
x + bi(x)uividx.

We have two following Lemmas.

Lemma 3.1 The operator A : V → V ′ is bounded.

Proof Note that in case 1, boundedness of A is clear since all bi’s are bounded. But in case
2, we first need to prove a Hardy inequality on external edges:
For every i ∈ Iext and ū ∈ C0, one can write

∫ �i

0
(ui

x − 1

2

ui

x
)2dx ≥ 0,

thus ∫ �i

0
(ui

x)
2 − 1

2

((ui)2)x

x
+ 1

4

(ui)2

x2
dx ≥ 0.

Then by using the integration by parts, we will have
∫ �i

0
(ui

x)
2 − 1

4

(ui)2

x2
≥ 1

2

(ui)2

x
|�i

0 .

Note that ui is equal to zero near the exterior vertices, so
∫ �i

0
(ui

x)
2dx ≥ 1

4

∫ �i

0

(ui)2

x2
dx. (3)

Thus for every ū, v̄ ∈ V and every i ∈ Iext , we have
∫ �i

0
|u

ivi

x2
|dx ≤ (

∫ �i

0

(ui)2

x2
dx)

1
2 (

∫ �i

0

(vi)2

x2
dx)

1
2 ≤ C(

∫ �i

0
(ui

x)
2dx)

1
2 (

∫ �i

0
(vi

x)
2dx)

1
2 ,

(4)

Now for every i ∈ Iext consider Ci > 0 such that 0 ≤ bi(x) ≤ Ci

x2
. Consequently,

| < Au, v > | ≤
∑

i∈Iint

∫ �i

0
|ui

xv
i
x | + |bi(x)uivi |dx +

∑

i∈Iext

∫ �i

0
|ui

xv
i
x | + Ci

x2
|uivi |dx

≤ C‖u‖V ‖v‖V .
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Lemma 3.2 There exists K ≥ 0 such that the operator A + KI : V → V ′ is coercive.

Proof Case 1: bi ∈ L∞(0, �i) for every i. We have

< (A + KI)u, u >=
M∑

i=1

∫ �i

0
[u2x + bi(x)(ui)2 + K(ui)2]dx ≥ ‖u‖2V ,

for
K > Max1≤i≤M‖bi‖∞.

Case 2: Clearly, for K > 0 sufficiently large, one can write

< (A + KI)u, u >=
M∑

1

∫ �i

0
(ui

x)
2dx +

∑

Iext

∫ �i

0
bi(x)(ui)2 + K(ui)2dx

+
∑

Iint

∫ �i

0
(bi(x)(ui)2 + K(ui)2)dx ≥ C

M∑

1

∫ �i

0
[(ui

x)
2 + (ui)2] = C‖u‖2V ,

for some C > 0.

Now let K > 0 be as defined in Lemma 3.2, then A + KI : V → V ′ is a self-adjoint,
bounded and coercive operator, thus by Lax-Milgram Theorem A + KI : V → V ′ is an
isomorphism. Also, the injection V ⊂ H is compact, so the restriction (A+KI)−1|H (when
H is identified with its dual H ′ by means of the Riesz-Frechet isomorphism) is a compact
operator . Note that the spectrum of a compact operator, either is finite, or is a sequence
that converges to zero. On the other hand, by Lemma 3.2, all of the eigenvalues of A + KI

are non-negative, therefore one can deduce that the number of negative eigenvalues of the
operator A is finite. For some technical reasons, we assume all of the eigenvalues of A are
nonzero.

Remark 3.3 The eigenvalues of A can be represented in the form {ξn}n∈I+∪I− where I+
and I− are indices with respect to the positive and negative eigenvalues, respectively, and
the cardinality of I− is finite. The corresponding eigenfunctions {θn}{I+∪I−} may be chosen
to form an orthonormal basis of H.

In what follows, in order to simplify the notations, we suppose that r = 1, that is, only
one node of the network is controlled, the one corresponding to the index i = 1. Obviously,
this is the most delicate situation for controllability to hold. When the number of controls
increases, the controllability properties of the system are enhanced. Now, the corresponding
system of Eq. 1 is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui
tt − ui

xx + bi(x)ui = 0, (t, x) ∈ R × [0, �i], i = 1, . . . , M
u1(t, v1) = h(t), t ∈ R,

ui(j)(t, vj ) = 0, t ∈ R, vj ∈ VS \ {v1},
ui(t, v) = uj (t, v), t ∈ R, v ∈ VM, i, j ∈ Iv,∑

i∈Iv
∂nu

i(t, v) = 0, t ∈ R, v ∈ VM,

ui(0, x) = ui
0(x), ui

t (0, x) = ui
1(x), x ∈ [0, �i].

(5)

Now for every t ∈ (0, T ] define the operator At : H × V → L2(0, T ), which associate
to every (φ̄1,−φ̄0) ∈ H × V the normal derivative ∂nφ

1(·, v1) in the controlled node of the
solution of the system (2).
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Proposition 3.4 The operator At : H × V → L2(0, T ) is continuous.

Proof Consider the C1 function q : G → R such that q(v1) = −1 and q(vj ) = 0 for other
vertices. Now multiply the first equation in Eq. 2 by −2qφi

x and integrate by parts:

2
∫ T

0

∫ �i

0
biqφiφi

xdxdt = −2
∫ T

0

∫ �i

0
(φi

tt − φi
xx)qφi

xdxdt

= −2
∫ �i

0
φi

t qφi
xdx|T0 + 2

∫ T

0

∫ �i

0
(φi

t qφi
tx + φi

xxqφi
x)dxdt

= −2
∫ �i

0
φi

t qφi
xdx|T0 +

∫ T

0

∫ �i

0
q[(φi

t )
2 + (φi

x)
2]xdxdt

= −2
∫ �i

0
φi

t qφi
xdx|T0 +

∫ T

0
[(φi

x)
2 + (φi

t )
2]qdt |�i

0

−
∫ T

0

∫ �i

0
[(φi

t )
2 + (φi

x)
2]q ′dxdt. (6)

Summing over i, using the boundary conditions in Eq. 2 and the properties of q, one may
obtain

2
M∑

1

∫ T

0

∫ �i

0
biqφiφi

xdxdt = −2
M∑

1

∫ �i

0
φi

t qφi
xdx|T0 +

∫ T

0
|∂nφ

1(t, v1)|2dt

−
M∑

1

∫ T

0

∫ �i

0
[(φi

t )
2 + (φi

x)
2]q ′dxdt, (7)

which results in
∫ T

0
|∂nφ

1(t, v1)|2dt ≤ C

M∑

1

∫ T

0

∫ �i

0
(φi

t )
2 + (φi

x)
2dxdt + 2

M∑

1

∫ T

0

∫ �i

0
biqφiφi

xdxdt

+C ess sup 0≤t≤T (‖φ(t)‖2V + ‖φ′(t)‖2H ). (8)

Now, we need to distinguish two cases.

Case 1. Since all the potentials bi are bounded, one can use methods used for the proof
of the regularity properties of solutions of the second order hyperbolic equations,
i.e., Galerkin approximations to obtain

ess sup 0≤t≤T (‖φ(t)‖2V + ‖φ′(t)‖2H ) ≤ C(‖φ1‖2H + ‖φ0‖2V ), (9)

therefore by Eq. 8, we get
∫ T

0
|∂nφ

1(t, v1)|2dt ≤ C(‖φ1‖2H + ‖φ0‖2V ), (10)

which gives the desired result.
Case 2. Here, we need to use the Hardy inequality (3) obtained before. Then

∑

i∈Iext

∫ T

0

∫ �i

0
|biqφiφi

x |dxdt ≤ C
∑

i∈Iext

∫ T

0

∫ �i

0

(φi)2

x2
+ (φi

x)
2

≤ C
∑

i∈Iext

∫ T

0

∫ �i

0
(φi

x)
2.
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Also by using the Hardy inequality (3), one can rewrite all the steps in Galerkin approxima-
tions to obtain

ess sup 0≤t≤T (‖φ(t)‖2V + ‖φ′(t)‖2H ) ≤ C(‖φ1‖2H + ‖φ0‖2V ), (11)

and therefore the proof will get completed.

Therefore, the operator A∗
t : L2(0, T ) → H × V ′, the adjoint of At , is also continuous

(we have identified L2(0, T ) and H with their duals). Furthermore, for every h ∈ L2(0, T ),
we define the solution of system (1) with initial state (ū0, ū1) ∈ H × V as

ū = A∗
t h + St (ū0, ū1), (12)

where St (ū0, ū1) is the solution of Eq. 5 with null control, i.e., h ≡ 0. To clarify the meaning
of this formula, let us calculate the operator A∗

t . We will show that it coincides with the
operator B defined for h ∈ C1([0, t]) by

Bh = (ū, ūt ),

where ū is the solution in the classical sense of the problem (5) with null initial data ū0 =
ū1 = 0. Nowmultiply the first equation in Eq. 2 by ui and integrate over [0, t]×[0, �i]. Note
that in case 2, since Hardy inequality (3) is hold, one can rewrite all of the steps in proving
the regularity of solutions of hyperbolic equations to obtain H 2 regularity of solutions φi

and ui in this case. Therefore, one can use integration by parts to get

0 =
∫ t

0

∫ �i

0
(φi

tt − φi
xx + bi(x)φi)ui dxdt =

∫ t

0

∫ �i

0
(ui

tt − ui
xx + bi(x)ui)φi dxdt

+
∫ �i

0
(uiφi

t − φiui
t ) dx|t0 +

∫ t

0
(ui

xφ
i − uiφi

x) dt |�i

0 . (13)

Now in view of the boundary conditions in Eqs. 2 and 5 and by adding equalities above, we
get

∫ t

0
h(τ)∂nφ

1(τ, v1)dτ =
M∑

1

∫ �i

0
(ui(t, x)φi

t (t, x) − φi(t, x)ui
t (t, x))dx,

and this equality means that

< ∂nφ
1(t, v1), h >L2(0,t)=< ū(t), φ̄t (t) >H×H − < ūt (t), φ̄(t) >V ′×V . (14)

Consequently, we have

< At φ̄, h >L2(0,t)=< Bh, φ̄ >(H×V ′)×(H×V ) .

Thus,
< A∗

t h, φ̄ >(H×V ′)×(H×V )=< Bh, φ̄ >(H×V ′)×(H×V ) .

That is, Bh = A∗
t h for every h ∈ C1([0, t]). Taking into account that the operator A∗

t is
continuous and that C1([0, t]) is dense in L2(0, t), we can ensure that A∗

t coincides with
the extension of B to L2(0, t).

This fact gives sense to the equality (12). In the classical case, h ∈ C1([0, t]), (ū0, ū1) ∈
(H × V ′) and ui

0, u
i
1 ∈ C1([0, �i]), then formula (12) simply expresses the fact that the

solution of the inhomogeneous problem with initial state (ū0, ū1) can be represented as the
sum of the solution of the homogeneous problem with initial state (ū0, ū1) and the solu-
tion of the inhomogeneous problem with null initial state (0̄, 0̄). This fact is an immediate
consequence of the linearity of the system (1). Finally, note that in view of Eq. 14 and the
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estimate (10), it follows that for every h ∈ L2(0, T ) the solution ū of Eq. 1 defined by Eq.
12 has the property

ū ∈ L∞(0, T ; H) ∩ W 1,∞(0, T ; V ′), (15)

together with the estimate

‖ū‖L∞(0,T ;H) + ‖ū‖W 1,∞(0,T ;V ′) ≤ C[‖(ū0, ū1)‖H×V ′ + ‖h‖L2(0,T )]. (16)

Remark 3.5 If all the potentials bi are smooth, then as a consequence of a density argument,
(15), (16) and the fact that, for smooth data, the solution ū is smooth as well, one may get

ū ∈ C([0, T ];H) ∩ C1(0, T ; V ′).

Summarizing the previous results, we can formulate

Theorem 3.6 Consider the inhomogeneous problem (5) with h ∈ L2(0, T ). Then, for all
(ū0, ū1) ∈ H × V ′, it has a unique solution

ū ∈ L∞(0, T ;H) ∩ W 1,∞(0, T ; V ′).

Moreover, if all the potentials bi are smooth, then

ū ∈ C([0, T ];H) ∩ C1(0, T ; V ′).

4 The Control Problem

4.1 Basic Definitions

Definition 1 Let T > 0. We say that the initial state (ū0, ū1) ∈ H × V ′ is controllable in
time T , if there exists function h ∈ L2(0, T ) such that the solution of Eq. 5 with initial state
(ū0, ū1) satisfies

ū|T = ūt |T = 0̄.

When for every ε > 0 there exists control hε such that the corresponding solutions ūε verify

‖(ūε |T , ūε
t |T )‖H×V ′ < ε,

it is said that (ū0, ū1) is approximately controllable in time T .

Definition 2 Let T > 0. We say that the set K ⊂ H × V ′ is controllable in time T , if all
the initial states (ū0, ū1) ∈ K are controllable in time T . Then, we shall say that the system
(5) is

1) approximately controllable in time T if there exists a dense set K ⊂ H × V ′,
which is approximately controllable in time T . (And consequently, all the initial states
(ū0, ū1) ∈ H × V ′ are approximately controllable).

2) spectrally controllable in time T if the subspace Z × Z ⊂ H × V ′ is controllable in
time T , where Z is the set of all the finite linear combinations of the eigenfunctions of
the operator A.

Remark 4.1 Obviously, spectral controllability in time T results the approximate controlla-
bility in T . We will show later that under some conditions, these two notions are equivalent
for system (5).
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We start the study of the control problem for a network of strings as follows:
Consider the simplest case, i.e., all the potentials bi in the system (1) are equal to zero:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ui
tt − ui

xx = 0, (t, x) ∈ R × [0, �i], i = 1, . . . , M
ui(j)(t, vj ) = hj (t), t ∈ R, vj ∈ C
ui(j)(t, vj ) = 0, t ∈ R, vj ∈ VS \ C,

ui(t, v) = uj (t, v), t ∈ R, v ∈ VM, i, j ∈ Iv,∑
i∈Iv

∂nu
i(t, v) = 0, t ∈ R, v ∈ VM,

ui(0, x) = ui
0(x), ui

t (0, x) = ui
1(x), x ∈ [0, �i].

(17)

It has been proved in [6] that even in the case that the underlying graph G has a simple
topological configuration, for example G is a tree, then for the exact controllability of the
system (17), high number of controls on the exterior vertices are needed. In other words

Theorem 4.2 If G is a tree and there are at least two uncontrolled nodes, then system (17)
is not exactly controllable whatever T > 0 is, i.e., there exists initial states in H ×V ′ which
are not controllable in any finite time T .

Consequently, in our case, where we have only one control, i.e., r = 1, one only expect
the controllability of the system (1) to hold in strict subspaces of H × V ′. In fact, we show
that for T sufficiently large (i.e., T be greater than twice the sum of the length of the edges)
system (1) is approximately controllable if and only if all the eigenfunctions of the network
are observable. (see Theorem 4.7).

So far, we do not know of any necessary and sufficient condition guaranteeing that all
the eigenfunctions are observable in the general graphs. However, this condition, in the
particular case of stars and trees, turns out to be sharp: the lengths of the strings are mutually
irrational in the case of stars or the spectra of all pairs of subtrees with a common end-point
are mutually disjoint in the more general case of trees. (see [6]).

Now, let us give an equivalent formulation of the control problem in term of operators in
a superficial level. Let PT : U → H × V ′ be the operator defined by

PT h̄ := (ū(T ), ūt (T )),

where ū is the solution of system (5) with initial state (0̄, 0̄). Also denote by WT the rank
of PT . Due to the linearity and time reversibility of system (1), one can see that the con-
trol problem in time T is reduced to study the rank WT of the operator PT . On the other
hand, with the aid of a general result in functional analysis, one can describe the spaceWT

in terms of the adjoint operator of PT . This is essentially the Hilbert Uniqueness Method
(HUM). Now, as shown in Section 3, the operator P∗

T coincides with AT . (AT has been
defined in Section 3). Therefore, the following theorems hold (see [6] for the proofs).

Theorem 4.3 The initial state (ū0, ū1) ∈ H × V ′ is controllable in time T if and only if,
there exists a constant C > 0 such that

∫ T

0
|φ1

x(t, v1)|2dt ≥ C| < ū0, φ̄1 >H − < ū1, φ̄0 >V ′×V |2, (18)

for every solution φ̄ of system (2) with initial state (φ̄0, φ̄1) ∈ Z × Z.

Theorem 4.4 System (1) is approximately controllable in time T if and only if the following
unique continuation property for the homogeneous system (2) is verified

φ1
x(t, v1) = 0, a.e. t ∈ [0, T ] ⇒ (φ̄0, φ̄1) = (0̄, 0̄).
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Let θ̄n be the corresponding eigenfunction of μn such that {θ̄n}n∈I+∪I− form an orthonor-
mal basis of H . Then, the solution of the homogeneous system (2) with initial data
(φ̄0, φ̄1) ∈ V1 × H1 with the expansions

φ̄0 =
∑

n∈I+∪I−
φ0,nθ̄n, φ̄1 =

∑

n∈I+∪I−
φ1,nθ̄n, (19)

is defined by the formula

φ̄(t, x) =
∑

n∈I+
(φ0,n cos λnt + φ1,n

λn

sin λnt)θ̄n +
∑

n∈I−
(d1,ne

λnt + d2,ne
−λnt )θ̄n, (20)

in which λn = √
ξn for n ∈ I+ and λn = √−ξn for n ∈ I− (Remember that {ξn} is the

sequence of eigenvalues of A). Furthermore,

d1,n = 1

2
(φ0,n + φ1,n

λn

), d2,n = 1

2
(φ0,n − φ1,n

λn

).

By this notations and similar methods used in [6], one can prove

Theorem 4.5 Suppose that there exists a constant C > 0 and non-vanishing coefficients
cn such that for every initial data (φ̄0, φ̄1) with Fourier coefficients {φ0,n} and {φ1,n} as
defined in Eq. 19, the following observability inequality holds

∫ T

0
|φ1

x(t, v1)|2dt ≥ C
∑

n∈N
c2n(μnφ

2
0,n + φ2

1,n),

then the space of initial states (ū0, ū1) ∈ H × V ′ defined by
∑

n∈N

1

c2n
u20,n < ∞,

∑

n∈N

1

c2nμn

u21,n < ∞,

is controllable in time T . In particular, any initial state (ū0, ū1) ∈ Z × Z is controllable in
time T .

In particular, the system is spectrally controllable (and then approximately controllable)
in time T .

Proposition 4.6 (i) Suppose T > 2L. Consider two sequences {λn}n∈I− and {λn}n∈I+ .
If each of them has distinct elements, then for every n ∈ N, there exists a constant Cn

such that for every function f of the form

f (t) =
∑

j1∈J+
fj1e

iλj1 t +
∑

j2∈J+
fj2e

−iλj2 t +
∑

k1∈J−
fk1e

λk1 t +
∑

k2∈J−
fk2e

−λk2 t , (21)

in which J+, J− are finite subsets of I+ and I−, respectively, and n ∈ J+ ∪ J−, the
following inequality satisfies

|fn| ≤ Cn[
∫ T

0
|f (t)|2dt]1/2. (22)

(ii) On the other hand, for every T < 2L and each finite sequence {αn} of complex
numbers having a non-zero term, there exists no C > 0 such that

|
∑

n∈F

αnfn| ≤ C{
∫ T

0
|f (t)|2dt}1/2. (23)
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for every function f of the form Eq. 21 with F ⊂ J+ ∪ J−.

The proof of this proposition needs some preliminaries of the spectrum of the operator
A. So, we prove it in the next section.

Now, as a consequence of proposition 4.6, we state the main result of this paper.

Theorem 4.7 (a) For every T > 2L, the following properties of the system (5) are
equivalent

(1) The system is approximately controllable in time T .
(2) The system is spectrally controllable in time T .
(3) The spectral unique continuation property holds, i.e., ω1

x(v1) �= 0 is verified by
any non-zero eigenfunction ω̄.

(b) When T < 2L, system (1) is not spectrally controllable; no element of Z × Z is
controllable in time T .

Proof Clearly, (2) ⇒ (1), so it suffices to show (1) ⇒ (3) ⇒ (2).
(1) ⇒ (3): First denote by θ̄n the eigenfunction corresponding to the eigenvalue μn and

set χn := θ1n,x(v1). Then observe that if χn = 0 for some n = n0, then the function

φ̄(t, x) = cos λn0 t θ̄n0(x),

is a solution of Eq. 2 for which φ̄1
x(t, v1) = 0 for every t ∈ R which means that the unique

continuation property in not valid for any T > 0. Therefore, by Theorem 4.4, system (5) is
not approximately controllable in time T .

(3) ⇒ (2): Suppose that φ is a solution of the homogeneous system (2) with initial
conditions (φ̄0, φ̄1) ∈ Z × Z. For the proof of spectral controllability, it suffices to show
that there exist nonzero coefficients cn such that the following observability inequality is
satisfied ∫ T

0
|φ1

x(t, v1)|2dt ≥
∑

n∈I+∪I−
c2n((μn + K)|φ0,n|2 + |φ1,n|2), (24)

where the positive constant K has been defined in Proposition 3.2. Indeed, if Eq. 24 holds,
then by an argument similar to one used in the proof of assertion (ii) of Theorem 4.4 (see
[6]), one can deduce that all the initial data (ū0, ū1) ∈ H × V ′ satisfiyng

∑

n∈I+∪I−

1

c2n
|u0,n|2 +

∑

n∈I+∪I−

1

c2n(μn + K)
|u1,n|2 < ∞, (25)

are controllable in time T . In particular, since all cn’s s are nonzero, then every element of
Z × Z is controllable in time T . Now for initial data

φ̄0 =
∑

n∈I+∪I−
φ0,nθ̄n, φ̄1 =

∑

n∈I+∪I−
φ1,nθ̄n,

the solution of the system (2) is defined by

φ̄(t, x) =
∑

n∈I+
(φ0,n cos λnt + φ1,n

λn

sin λnt)θ̄n +
∑

n∈I−
(d1,ne

λnt + d2,ne
−λnt )θ̄n,

in which λn = √
μn for n ∈ I+ and λn = √−μn for n ∈ I−. Also

d1,n = 1

2
(φ0,n + φ1,n

λn

), d2,n = 1

2
(φ0,n − φ1,n

λn

).
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Now set I∗ = I+ ∪ −I+ and for n ∈ I+ define λn = −λ−n and

an := 1

2
(φ0,|n| + φ1,|n|

iλn

).

Therefore, by setting χn = θ1n,x(v1), one can obtain

∑

n∈I+
(φ0,n cos λnt + φ1,n

λn

sin λnt)χn =
∑

n∈I∗
anχ|n|eiλnt ,

and inequality (24) becomes
∫ T

0
|
∑

n∈I∗
anχ|n|eiλnt +

∑

n∈I−
(d1,ne

λnt + d2,ne
−λnt )χn|2dt ≥ 4

∑

n∈I+
c2nμn|an|2

+
∑

n∈I−
c2n(2K + 4μn)d1,nd2,n + K

∑

n∈I+
c2n|φ0,n|2 + K

∑

n∈I−
c2n(d

2
1,n + d2

2,n). (26)

Let us observe that the eigenvalues μn are all simple. Indeed, if ϕ̄ and ψ̄ are two linearly
independent eigenfunctions corresponding to μn, then the function

w̄ = ψx(v1)ϕ̄ − ϕx(v1)ψ̄

is also a non-trivial eigenfunction. Besides

w1
x(v1) = 0,

which contradicts our hypothesis on the network. Thus, all the eigenvalues are simple and
the sequence {λn}, n ∈ I−∪I+ is strictly increasing. Now from proposition 4.6, there exists
a sequence {Cn} of positive numbers such that

∫ T

0
|φ1

x(t, v1)|2dt ≥ Cnχ
2
n |an|2, ∀n ∈ I+,

∫ T

0
|φ1

x(t, v1)|2dt ≥ Cnχ
2
n (d2

1,n + d2
2,n), ∀n ∈ I−,

Thus for suitable sequence {γn} of positive numbers (for example choose
γ 2
n = 4Cnχ

2
n/(n2 + 1)), one obtain

∫ T

0
|φ1

x(t, v1)|2dt ≥ 2
∑

n∈I+
γ 2
n |an|2 + 2

∑

n∈I−
γ 2
n (d2

1,n + d2
2,n). (27)

Now remark that for every n ∈ I−, we have
d2
1,n + (K + 2μn)

2d2
2,n ≥ 2(K + 2μn)d1,nd2,n. (28)

Hence for C = max{1,K, (K + 2μn)
2}n∈I− , we get (observe that C < ∞ since |I−| is

finit)
Cγ 2

n (d2
1,n + d2

2,n) ≥ γ 2
n (d2

1,n + (K + 2μn)
2d2

2,n). (29)

Thus from Eqs. 28 and 29, one can obtain

γ 2
n (d2

1,n + d2
2,n) ≥ γ 2

n

C
(2K + 4μn)d1,nd2,n. (30)

Now for any n ∈ I+ choose positive number cn such that

c2n ≤ min{ γ 2
n

4μn

,
γ 2
n

K
}. (31)
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Also for n ∈ I−, set c2n = γ 2
n

C
. Note that γ 2

n ≥ Kc2n, because C ≥ K . Now by Eqs. 27, 29

and the choice of cn, we can write
∫ T

0
|φ1

x(t, v1)|2dt ≥
∑

n∈I+
γ 2
n |an|2 +

∑

n∈I+
γ 2
n |an|2 +

∑

n∈I−
γ 2
n (d2

1,n + d2
2,n)

+
∑

n∈I−
γ 2
n (d2

1,n + d2
2,n) ≥ 4

∑

n∈I+
c2nμn|an|2 + K

∑

n∈I+
c2n|an|2

∑

n∈I−
c2n(2K + 4μn)d1,nd2,n + K

∑

n∈I−
c2n(d

2
1,n + d2

2,n).

On the other hand, it is obvious that |an|2 ≥ |φ0,n|2. Therefore, the above inequality results
in

∫ T

0
|φ1

x(t, v1)|2dt ≥ 4
∑

n∈I+
c2nμn|an|2 +

∑

n∈I−
c2n(2K + 4μn)d1,nd2,n

+K
∑

n∈I+
c2n|φ0,n|2 + K

∑

n∈I−
c2n(d

2
1,n + d2

2,n),

which is exactly (26).
(b) Let I ⊂ N be a finite set. By Theorem 4.3, the initial state

(ū0, ū1) = (
∑

n∈I
αnθ̄n,

∑

n∈I
βnθ̄n) ∈ Z × Z (32)

is controllable in time T if, and only if, there exists a constant C > 0 such that
∫ T

0
|φ1

x(t, v1)|2dt ≥ C|
∑

n∈I
αnφ1,n −

∑

n∈I
βnφ0,n|2,

for any solution φ̄ of system (2) with initial state (φ̄0, φ̄1) ∈ Z × Z. Therefore, if the initial
state defined by Eq. 32 is controllable in time T , then there exists a constant C > 0 such that

∫ T

0
|
∑

n∈I∗
anχ|n|eiλnt +

∑

n∈I−
(d1,ne

λnt + d2,ne
−λnt )χn|2dt ≥ C

∣
∣
∣
∣
∣
∣

∑

n∈I∩I+
αn(an − a−n)iλn

− βn(an + a−n) +
∑

n∈I∩I−
αnλn(d1,n − d2,n) − βn(d1,n + d2,n)

∣
∣
∣
∣
∣
∣

2

= C

∣
∣
∣
∣
∣
∣

∑

n∈I∩I+
(iαnλn − βn)an + (−iαnλn − βn)a−n

+
∑

n∈I∩I−
(αnλn − βn)d1,n + (−αnλn − βn)d2,n

∣
∣
∣
∣
∣
∣

2

= C

∣
∣
∣
∣
∣
∣

∑

n∈(I∩I+)∪−(I∩I+)

ρnan +
∑

n∈I∩I−
ρ1,nd1,n + ρ2,nd2,n

∣
∣
∣
∣
∣
∣

2

,(33)

for every finite sequences (an), (d1,n), and (d2,n), where ρn, ρ1,n, and ρ2,n can be chosen
appropriately. On the other hand, since T < 2L, in account of proposition 4.6, we can
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ensure that there are no sequences ρn, ρ1,n, and ρ2,n satisfying (33). Therefore, the initial
state (ū0, ū1) defined by Eq. 32 is not controllable in time T , if T < 2L.

Remark 4.8 The proof of assertion (a) shows why we assume all of the eigenvalues of A

are nonzero. In fact for the zero eigenvalue, the expression (φ1,0t + φ0,0)θ̄0 would appear
in the expansion of solution φ̄, then because of the term t one can not rewrite the proofs of
proposition 4.6 and theorem 4.5. On the other hand in [9], a model of one-dimensional wave
equation with potential has been considered for which by the use of Carleman estimates an
observability inequality like (18) has been proved. Thus, one can guess that even in the case
of zero eigenvalue, by using Carleman estimates, Theorem 4.5 holds. But the subject of
Carleman estimates for a general network is far from being complete. We refer to [2] for the
analysis of the wave equation with potential on a star-shaped network by using Carleman
estimates.

5 Spectrum of A

Suppose that λ = {λn} be a sequence of complex numbers none of which is zero. Also
denote by � the set of all the finite linear combinations of the functions {eiλnt }.

Definition The completeness radius of the sequence λ = {λn}n∈I is defined as

I (λ) := sup{r ∈ R : � is dense in C([−r, r])}.
The following has been proved in [14].

Theorem 5.1 Suppose that λ = {λn} and η = {ηn} are sequences of complex numbers none
of which is zero. Then under condition

∑

n

| 1
λn

− 1

ηn

| < ∞, (34)

one can deduce I (λ) = I (η).

Also, the celebrated Buerling- Malliavin’s Theorem gives a relation between the com-
pleteness radius and density of real sequences, [12]:

Theorem 5.2 Let λ = {λn} be a sequence of real numbers. Assume that there exists
constants d+, d− ≥ 0 and 0 ≤ α < 1, such that

|{λ ∈ � : 0 ≤ λ ≤ t}| = d+t + O(tα),

|{λ ∈ � : −t ≤ λ ≤ 0}| = d−t + O(tα).

Then

I (λ) = πd, d = max{d+, d−}.

In the previous section, we see that the eigenvalues of the operator A : V → V ′ can
be represented in the form {ξn}n∈I+∪I− where I+ and I− are indices with respect to the
positive and negative eigenvalues respectively, also |I−| < ∞.

Now, set λn = √
ξn for n ∈ I+ and λn = √−ξn for n ∈ I−. Also sort the eigenvalues of

A such that the sequence {μn} be an increasing sequence and λ+ = (λn). As we will show
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later, the number I (λ+) gives the optimal time for spectral controllability. On the other
hand, by Theorem 5.2, it equals to the density of the sequence λ+.

Now, it is not difficult to obtain certain information on the asymptotic behavior of the
sequence of eigenvalues of the network. In fact, using the min-max principle of Courant
[13], the eigenvalues of the network may be compared with the eigenvalues of the strings
with Dirichlet and Neumann boundary conditions. For this purpose, some preliminaries are
needed.

Let V, H be Hilbert spaces, V densely and continuously embedded in H . Identify H and
H ′, so that

V ↪→ H = H ′ ↪→ V ′.

Proposition 5.3 Let a : V × V → H be a continuous, symmetric, and coercive (i.e.,
∃α > 0 : |a(u, u)| ≥ α‖u‖2V , ∀u ∈ V ) bilinear form. Define Ã : V → V ′ by

(Ãu, v) = a(u, v), ∀u, v ∈ V.

and consider

A : D(A) ⊂ V → H, whereD(A) := {u ∈ V |Ãu ∈ H } = Ã−1H andA := Ã|D(A).

Also put the following norm on D(A):

‖u‖D(A) := ‖Au‖H .

Then, (A,D(A)) is self adjoint and A is an isomorphism.

Proof In fact, this is one of the forms of the Friedrichs extenstion for semibounded
symmetric operators. See section XI.7 in [17].

Now, we have the following important result which compares the eigenvalues of opera-
tors. In fact, it is a consequence of the Minimax principle of Courant. See [11], theorem 2.2,
p. 31.

Theorem 5.4 Consider Hilbert spaces H, V and bilinear forms a, a1, a2 which satisfy the
hypothesis of proposition 5.3. Also assume that the embedding V ↪→ H be compact and

a(u, u) ≥ 0, aj (u, u) ≥ 0, ∀u ∈ V, j = 1, 2.

(i) Let A1 and A2 with corresponding eigenvalues λ1n and λ2n be constructed from the
triples (V ,H, a1) and (V ,H, a2) as in Proposition 5.3 with

a1(u, u) ≤ a2(u, u), ∀u ∈ V.

Then
λ1n ≤ λ2n, ∀n ∈ N.

(ii) Consider subspace W ⊂ V which is densely and continuously embedded in H . Let
AV and AW with corresponding eigenvalues λV

n and λW
n be constructed from the

triples (V ,H, a) and (W,H, a) as previous. Then

λV
n ≤ λW

n , ∀n ∈ N.

Now, let us go back to the main problem and investigate I (λ+) defined after Theorem
5.2.

Proposition 5.5 Let λ = {λn}n∈I+ . Then I (λ) = L = ∑M
1 �i .
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Proof Case 1. Let K be as defined in Lemma 3.2 and choose M1 > 0 large enough so
that

‖bi‖∞ + K < M1, i = 1, . . . , M.

Also define the spaces

W1 := {ū ∈
M∏

i=1

H 1
0 (0, �i) : ū(v) = 0 for every v ∈ V},

W2 :=
M∏

i=1

H 1(0, �i),

and consider the operators

A1 : W1 → W ′
1, < A1ū, v̄ > :=

M∑

i=1

∫ �i

0
ui

xv
i
x + M1u

ivi dx,

A2 : W2 → W ′
2, < A2ū, v̄ > :=

M∑

i=1

∫ �i

0
ui

xv
i
x dx.

So one has
W1 ↪→ V ↪→ W2,

and according to the properties of K,M1, we have

0 ≤< A2ū, ū >≤< (A + KI)ū, ū >≤< A1ū, ū > .

Let us denote by {μD
n } and {μN

n } the strictly increasing sequences of eigenvalues
of the operators A1 and A2, respectively. Then by Theorem 5.4, one may obtain

μN
n ≤ ξn + K ≤ μD

n , ∀n ∈ N. (35)

But note that {μD
n } (resp. {μN

n }) is equal to ⋃M
i=1{μi,D

n } (resp.
⋃M

i=1{μi,N
n }) in

which {μi,D
n } (resp. {μi,N

n }) is the sequence of eigenvalues of the corresponding
operator on the string ei of length �i with Dirichlet (resp. Neumann) boundary
conditions. We know that the eigenvalues {μi,D

n } and {μi,N
n } may be computed

explicitly:

μi,D
n = (

nπ

�i

)2 + M1, μi,N
n = (

(n − 1)π

�i

)2.

Therefore,
μi,D

n = μ
i,N
n+1 + M1,

and consequently
μD

n = μN
n+1 + M1,

According to (35), we will have

μN
n ≤ ξn + K ≤ μN

n+1 + M1, (36)

This inequality leads us to obtain some asymptotic information of the sequence
{λn}. In fact, define λN

n = √
μN

n , then for r > 0 from the left-hand side of Eq. 36
one gets

n(r, (λn)) ≤ n(f (r), (λN
n )),

in which f (r) := √
r2 + K .
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On the other hand, if λN
n+1 ∈ (0, r) from the right-hand side of Eq. 36, we

deduce that
ξn < r2 + M1 − K,

so
n(g(r), (λn)) + |I−| ≥ n(r, (λN

n )) − 1,

in which g(r) :=
√

r2 + M1 − K and I− is the finite index set of the negative
eigenvalues of A. Therefore,

n(g−1(r), (λN
n )) − 1 − |I−| ≤ n(r, λn) ≤ n(f (r), (λN

n )).

Now

n(r, (λN
n )) =

M∑

i=1

n(r, (λi,N
n )) =

M∑

i=1

1 + [�i

π
r].

Thus
M∑

i=1

{1 + [�i

π
g−1(r)]} − 1 − |I−| ≤ n(r, (λn)) ≤

M∑

i=1

1 + [�i

π
f (r)].

Now from dividing the above inequality by r > 0 and letting r → ∞, the density
of the sequence (λn) is obtained:

D(λn) := lim
r→∞

n(r, (λn))

r
= L

π
,

where

L =
M∑

i=1

�i .

Thus from the theorem 5.2, one can deduce that

I (λ) = L.

Case 2. Let K be as in case 1 and choose M1 > 0 such that ‖bi‖∞ + K < M1 for every
i ∈ Iint and bi(x)+K ≤ M1/x

2 for every i ∈ Iext and all x ∈ (0, �i). Also define
the spaces W1 and W2 as in case 1 and the operators Ai : Wi → W ′

i (i = 1, 2)
such that

< A1ū, v̄ > :=
M∑

i∈Iint

∫ �i

0
ui

xv
i
x + M1u

ivi dx +
M∑

i∈Iext

∫ �i

0
ui

xv
i
x + M1

x2
uividx,

< A2ū, v̄ > :=
M∑

i=1

∫ �i

0
ui

xv
i
x dx.

for every ū ∈ W1 we have

< (A + KI)ū, ū >=
M∑

1

∫ �i

0
(ui

x)
2dx+

∑

i∈Iint

∫ �i

0
(bi(x)+K)u2dx

+
∑

i∈Iext

∫ �i

0
(bi(x)+K)u2dx ≤

M∑

1

∫ �i

0
(ui

x)
2dx

+
∑

i∈Iint

∫ �i

0
M1u

2dx+
∑

i∈Iext

∫ �i

0

M1

x2
u2dx =< A1ū, ū > .
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Also for K > 0 sufficiently large, we have

< (A + KI)ū, ū >≥
M∑

1

∫ �i

0
(ui

x)
2 =< A2ū, ū >,

and in summerize

0 ≤< A2ū, ū >≤< (A + KI)ū, ū >≤< A1ū, ū > .

Now define the sets {μi,D
n }, {μi,N

n }, {μD
n }, {μN

n }, {μ̂n}, and {λN
n } as in case 1.

Then, by Theorem 5.4, the following holds:

μN
n ≤ ξn + K ≤ μD

n . (37)

But μi,N
n = (

(n−1)π
�i

)2. Therefore, as in case 1

n(r, (λn)) ≤ n(f (r), (λN
n )) =

M∑

i=1

1 + [�i

π
f (r)], (38)

where f (r) = √
r2 + K . On the other hand by Eq. 37, we get ξn ≤ μD

n − K , and
so

n(g(r), (λn)) + |I−| ≥ n(r, (λD
n )) = n1(r) + n2(r), (39)

in which λD
n = √

μD
n , g(r) = √

r2 − K . Also n1(r) and n2(r) are the number of
{λi,D

n } for i ∈ Iint and i ∈ Iext , respectively. Now observe that if i ∈ Iint then

μi,D = (
nπ

�i

)2 + M1. (40)

Thus for r ≥ √
M1, we have

n1(r) =
∑

i∈Iint

[�i

π

√
r2 − M1]. (41)

But if i ∈ Iext , then one should compute the eigenvalues of the following Sturm-
Liouvill problem with Dirichlet boundary conditions

− ui
xx + M1

x2
ui = λui. (42)

Let M1 = ν2 − 1
4 for ν > 0. Then one can see that solutions of Eq. 42 are in the

form

ui(x) = xν+ 1
2 [1 +

∞∑

1

(−1)mλm

m!(1 + ν)(2 + ν) . . . (m + ν)
(
x

2
)2m].

The condition ui(�i) = 0 implies that �i

√
λ

2 is the zero of Bessel function of order
ν:

Jν(x) = 1 +
∞∑

1

(−1)mxm

m!(1 + ν)(2 + ν) . . . (m + ν)
.

Now let us denote by Jν,n the nth zero of Jν . It is proved in [16] that for
sufficiently large n

Jν,n = (n + ν

2
− 1

4
)
π

�i

+ O(n−1), n → ∞ (43)
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Thus if ni
0 be the first index for which Eq. 43 is satisfied, then for r > ni

0, one
can write

∑

i∈Iext

Ni
0+[ r�i

π
−(

ν

2
− 1

4
)
π

�i

]−1 ≤ n2(r) ≤
∑

i∈Iext

Ni
0+[ r�i

π
−(

ν

2
− 1

4
)
π

�i

], (44)

where Ni
0 is the number of roots of the equation Jν = 0 on the interval (0, ni

0).
Now from Eqs. 39–44, we get
∑

i∈Iint

[�i

π

√
r2 − M1]+

∑

i∈Iext

{Ni
0+[ r�i

π
−(

ν

2
− 1

4
)
π

�i

]−1} ≤ n(g(r), (λn))+|I−|.

Thus according to Eq. 38, we obtain

∑

i∈Iint

[�i

π

√

g−1(r)2 − M1] +
∑

i∈Iext

{N0 + [g
−1(r)�i

π
− (

ν

2
− 1

4
)
π

�i

] − 1} − |I−|

≤ n(r, (λn)) ≤
M∑

i=1

1 + [�if (r)

π
],

and consequently D(λn) = L

π
,so again we get I (λ) = L.

Remark 5.6 Note that from theorem 5.1, the value of I (λ) does not change if a finite number
of points are removed or adjoined to λ = (λn)n∈I+ . Therefore, from the above theorem, one
has

I ((λn)n∈I+ ∪ (λn)n∈I−) = L.

Now we prove Proposition 4.6 which played a key role in the proof of the controllability
result in the previous section.

Proof of Proposition 4.6 (i) Let U = (0, T ), if Eq. 22 is not satisfied for some n, then
one can find a sequence of the functions {f p} in the form of Eq. 21 such that |f p

n | = 1
and

∫

U |f p(t)|2dt → 0 as p → ∞. Now there are four cases:
If n ∈ J+, then we have two cases:

(1) The constant function 1 is the limit in L2(U) of the functions g+ of the form

g+(t) =
∑

j1∈J+
gj1e

iμj1 t +
∑

j2∈J+
gj2e

−iμj2 t +
∑

k1∈J−
gk1e

λk1 t−iλnt

+
∑

k2∈J−
gk2e

−λk2 t−iλnt , (45)

in which μj1 = λj1 + λn and μj2 = λj2 − λn.
(2) The constant function 1 is the limit in L2(U) of the functions g− of the form

g−(t) =
∑

j1∈J+
gj1e

iμj1 t +
∑

j2∈J+
gj2e

−iμj2 t +
∑

k1∈J−
gk1e

λk1 t−iλnt

+
∑

k2∈J−
gk2e

−λk2 t−iλnt ,

in which μj1 = λj1 − λn and μj2 = λj2 + λn.
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If n ∈ J−, similarly we have

(3) The constant function 1 is the limit in L2(U) of the functions g+ of the form

g+(t)=
∑

j1∈J+
gj1e

iλj1 t−λnt+
∑

j2∈J+
gj2e

−iλj2 t−λnt+
∑

k1∈J−
gk1e

βk1 t+
∑

k2∈J−
gk2e

βk2 t ,

(46)
in which βki

= λki
− λn for i = 1, 2,

(4) The constant function 1 is the limit in L2(U) of the functions g− in the form

g−(t)=
∑

j1∈J+
gj1e

iλj1 t−λnt+
∑

j2∈J+
gj2e

−iλj2 t−λnt+
∑

k1∈J−
gk1e

βk1 t+
∑

k2∈J−
gk2e

βk2 t ,

(47)
where βki

= λki
+ λn for i = 1, 2.

Now, consider the first case. In this case by repeated integration in t , we can deduce
that all polynomials of t with complex coefficients are also limits in L2(U) of some
functions g of the form Eq. 45. Indeed, let p ∈ N∪{0} and suppose for ε > 0 we have

‖tp−
∑

j1∈J+
gj1e

iμj1 t−
∑

j2∈J+
gj2e

−iμj2 t−
∑

k1∈J−
gk1e

λk1 t−iλnt−
∑

k2∈J−
gk2e

−λk2 t−iλnt‖2≤ε,

then by integrating in t one can obtain

‖ tp+1

p + 1
−

∑

j1∈J+

gj1

iμj1

eiμj1 t +
∑

j1∈J+

gj1

iμj1

+
∑

j2∈J+

gj2

iμj2

e−iμj1 t −
∑

j2∈J+

gj2

iμj2

−
∑

k1∈J−

gk1

λk1 − iλn

eλk1 t−iλnt +
∑

k1∈J−

gk1(p + 1)

λk1 − iλn

−
∑

k2∈J−

gk2

−λk2 − iλn

e−λk2 t−iλnt +
∑

k2∈J−

gk2

−λk2 − iλn

‖∞ ≤ εT 1/2.

Therefore,

‖tp+1 − (p + 1){
∑

j1∈J+

gj1

iμj1

eiμj1 t −
∑

j2∈J+

gj2

iμj2

e−iμj2 t +
∑

k1∈J−

gk1

λk1 − iλn

e(λk1−iλn)t

+
∑

k2∈J−

gk2

−λk2 − iλn

e(−λk2−iλn)t } + C‖∞ ≤ ε(p + 1)T ,

where the constant C is equal to

C = (p + 1){
∑

j1∈J+

gj1

iμj1

−
∑

j2∈J+

gj2

iμj2

+
∑

k1∈J−

gk1

λk1 − iλn

+
∑

k2∈J−

gk2

−λk2 − iλn

}.

Then by approximating C in L2(U) by functions of the form Eq. 45, one can find
sequences of coefficients {hn} such that

‖tp+1 −
∑

j1∈J+
hj1e

iμj1 t −
∑

j2∈J+
hj2e

−iμj2 t −
∑

k1∈J−
hk1e

(λk1−iλn)t

−
∑

k2∈J−
hk2e

(−λk2−iλn)t‖∞ ≤ 2ε(p + 1)T .

This proves the claim by induction in p since it has been proved already for p = 0.
Finally, by Stone-Weierstrass density theorem, one can obtain that the functions g
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of the form Eq. 45 are dense in L2(U), and the same property follows at once for
functions f of the form Eq. 21 which contradict the assumption T > 2L. In other
three cases by exactly similar arguments, one can get the above contradiction.

(ii) For any finite subset F ⊂ J+ ∪ J−, consider the new sequence λ̄ := (λ)(J+∪J−)\F .
Then as stated in remark 5.6, one has I (λ̄) = I (λ). Thus for any T < 2L the set of
functions f of the form Eq. 21 with {J+ ∪ J−} ∩ F = ∅ are dense in L2(U) and as a
consequence for each non trivial sequence {αn}F of complex numbers, the function

a(t) =
∑

n∈F∩J+
αne

iλnt +
∑

n∈F∩J−
αne

λnt

can be approached by functions f of the form Eq. 21 with {J+ ∪ J−} ∩ F = ∅. By
taking the difference, we find a sequence of functions of the form Eq. 21 tending to
zero in L2(U) and for which the left-hand side in Eq. 23 is positive and constant. This
clearly proves assertion (ii).
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