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Abstract

We use the singular sources method to detect the shape of the obstacle in a mixed bounda
problem. The basic idea of the method is based on the singular behavior of the scattered
the incident point-sources on the boundary of the obstacle. Moreover we take advantage of t
tered field estimate by the backprojection operator. Also we give a uniqueness proof for the
reconstruction.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The problem of the reconstruction of an obstacle from some knowledge of the sca
wave at large distance is a well-known problem in the area of the inverse problems.
are several methods for the shape reconstruction in the literature [1,4,9]. One of t
portant property of a reconstruction method in the applications is its independence
knowledge of the boundary condition. In fact from physical point of view, it is not real
to know the boundary condition. The linear sampling method and singular sources m
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have this property. In [9] these methods have been applied for sound-soft and ha
obstacles, when the boundary condition is Dirichlet or Neumann.

Recently a kind of obstacle scattering problems has been introduced in electroma
scattering which is called partially coated obstacle scattering. These obstacles are
by some material on a portion of the boundary to reduce the radar cross section
scattered wave. Here the boundary condition of the obstacle is a kind of mixed bou
condition [2,3,6]. A similar kind of the inverse problem of the mixed boundary condit
appears in acoustic scattering.

The authors in [1] proposed the linear sampling method to reconstruct the sh
the obstacle in the case of mixed boundary conditions. The same authors have
variational method for determining the essential supremum of the surface impedance
Also in [5] the point-source method has been applied to reconstruct the coated porti
the surface impedance under the assumption that the shape is determined.

In the present paper we use the singular sources method to reconstruct the shap
obstacle in a mixed boundary conditions model. This method is proposed by Potth
[10]. In this method the reciprocity relation is used to derive the backprojection ope
This operator enable us to estimate the scattered field from the far field pattern. Th
idea of the method is based on the singularity behavior of the scattered field of point-
on the boundary of the obstacle. This means that ifΦs( . , z) denote this scattered field an
z tends to the boundary then∣∣Φs(z, z)

∣∣ → ∞.

This behavior shows that the boundary is the set of points where the scattered fieldΦs(z, z)

becomes singular. In order to apply the singular sources method we need to e
Φs(z, z) from the knowledge of the far field pattern,u∞(x̂, d), which is derived by the
backprojection operator.

In Section 2, the direct scattering problem is considered. In this section also we p
lemma which estimates the norm of the point-source on the obstacle, i.e.‖Φ( . , z)‖H1(D).
In Section 3, by using this lemma we show the singular behavior of the scattered
Φs(z, z). We will prove the uniqueness of the shape reconstruction of the partially c
scattering in this section, too. Finally in Section 3, we will apply the singular sou
method to reconstruct the shape of the obstacle.

2. Partially coated scattering

In this section we formulate the direct scattering problem for mixed boundary
problem. Then we find an upper bound for the point source which is crucial in the
section.

Let D ⊆ R
m (m = 2,3) be an open bounded domain with Lipschitz boundary,Γ such

thatRm \ D̄ is connected. We also assume that the boundary,Γ has a Lipschitz dissectio
Γ = ΓD ∪ Π ∪ ΓI , whereΓD andΓI areC2, disjoint, relatively open subsets ofΓ , andΠ

is their common boundary inΓ .
We consider a plane waveui(x, d) = eikx.d , in the direction ofd with |d| = 1. Let
us(x, d) be the solution of the following exterior mixed boundary value problem:
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∆u + k2u = 0 in R
m \ D̄,

u = f onΓD, (1)
∂u

∂ν
+ iλ(x)u = h onΓI ,

for f = −ui |ΓD
andh = − ∂ui

∂ν
− iλui |ΓI

. Herek > 0 is the wave number,ν denotes the
unit outward normal vector which is defined onΓD ∪ ΓI . The characterλ is a real non-
negative function andλ ∈ L∞(ΓI ). Moreover, the scattered waveus is required to satisfy
Sommerfeld radiation condition

lim|x|→∞ |x|(m−1)/2
(

∂us

∂ν
− ikus

)
= 0, (2)

uniformly in all directionsx̂ := x/|x|.
The radiation condition (2) implies an asymptotic behavior of the function,

us(x, d) = eik|x|

|x|(m−1)/2
u∞(x̂, d) + o

(|x|−(m+1)/2), (3)

uniformly in all directionx̂ = x/|x|, see [4]. The amplitude factoru∞ is known as the fa
field pattern of the scattered wave,us . Notice thatu∞ is a function of the incident direc
tion d ∈ Ω , and the observation direction̂x ∈ Ω . The fundamental solution of Helmhol
equation is given by

Φ(x,y) =



i
4H

(1)
0 (k|x − y|), x �= y, m = 2,

1
4π

eik|x−y|
|x−y| , x �= y, m = 3,

whereH
(1)
0 denotes the Hankel function of order zero and of the first kind [4].

In order to investigate the problem (1) we need to recall the definition of the follo
Sobolev spaces. LetΓ0 ⊆ Γ be a portion of the boundary,Γ . If H 1(D) denotes the usua
Sobolev space andH 1/2(Γ ) its usual trace space, then we define

H 1/2(Γ0) := {
u|Γ0: u ∈ H 1/2(Γ )

}
,

H̃ 1/2(Γ0) := {
u ∈ H 1/2(Γ ): suppu ⊆ Γ̄0

}
,

H−1/2(Γ0) := (
H̃ 1/2(Γ0)

)∗ the dual space of̃H 1/2(Γ0),

H̃−1/2(Γ0) := (
H 1/2(Γ0)

)∗
the dual space ofH 1/2(Γ0).

In [3], it is shown that for everyf ∈ H 1/2(ΓD) andg ∈ H−1/2(ΓI ), the exterior mixed
boundary value problem (1) under the condition (2) has a unique weak solution, fo
stantλ. Furthermore, in [3], it is shown that the solution is inH 1

loc(R
m\D̄). Although in [3],

it is assumed thatλ is constant, but all of the above results remain valid ifλ ∈ L∞(ΓI ) and
λ � 0, as Colton and Cakoni have been indicated in [2].

Suppose thatΦs( . , z), z ∈ R
m \ D̄, is the scattered wave of the incident waveΦ( . , z).

This means thatΦs( . , z) is the solution of (1) and (2) with the boundary conditi
f = −Φ( . , z)|ΓD

andh = − ∂Φ( . ,z)
∂ν

− iλΦ( . , z)|ΓI
. We also denote the far field patte
of Φs( . , z) by Φ∞(x̂, z). We extendλ to the whole of the boundary with the definition
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ry data

opo-
zero onΓD . Now we note that for everyz ∈ R
m \ D̄, there areψI ( . , z) ∈ H̃ 1/2(ΓI ) and

ψD( . , z) ∈ H̃−1/2(ΓD) such that the following relations on∂D are satisfied:

Φs( . , z)|Γ = −Φ( . , z)|Γ + ψI ( . , z),(
∂Φs( . , z)

∂ν
+ iλΦs( . , z)

)∣∣∣∣
Γ

=
(

−∂Φ( . , z)

∂ν
− iλΦ( . , z)

)∣∣∣∣
Γ

+ ψD( . , z).

By consider the continuous dependence of the scattered field on the bounda
which is proved in [3], by formula (22), we obtain∥∥ψD( . , z)

∥∥
H̃−1/2(ΓD)

,
∥∥ψI ( . , z)

∥∥
H̃1/2(ΓI )

� C

(∥∥Φ( . , z)
∥∥

H1/2(Γ )
+

∥∥∥∥∂Φ

∂ν
( . , z)

∥∥∥∥
H−1/2(Γ )

)
.

Now, from the above relation, Theorem 3.37 and Lemma 4.3 in [8], we conclude∥∥Φ( . , z)
∥∥

H1/2(Γ )
,

∥∥∥∥∂Φ

∂ν
( . , z)

∥∥∥∥
H−1/2(Γ )

� C
∥∥Φ( . , z)

∥∥
H1(D)

, (4)

for everyz ∈ R
m \ D̄. By the following proposition, we estimate the functionsψD andψI .

Proposition 1. (i) If D ⊂ R
2, then there exist constantsτ, c > 0, such that∥∥ψD( . , z)

∥∥2
H̃−1/2(ΓD)

,
∥∥ψI ( . , z)

∥∥2
H̃1/2(ΓI )

� c
∣∣lnd(z,D)

∣∣,
for everyz /∈ D, which satisfy0< d(z,D) < τ . Moreover for everyz ∈ R

2 \ D̄, we have∥∥ψD( . , z)
∥∥2

H̃−1/2(ΓD)
,
∥∥ψI ( . , z)

∥∥2
H̃1/2(ΓI )

� C
∣∣lnd(z,D)

∣∣ + E,

where the constantsC andE depend only onD.
(ii) If D ⊂ R

3, then for everyz ∈ R
3 \ D̄, we have∥∥ψD( . , z)

∥∥2
H̃−1/2(ΓD)

,
∥∥ψI ( . , z)

∥∥2
H̃1/2(ΓI )

� c

d(z,D)
.

By considering the relation (4) and the following lemma the proof of the above pr
sition will be clear.

Lemma 2. (i) If D ⊂ R
2, then there exist constantsτ, c > 0, such that∥∥Φ( . , z)

∥∥2
H1(D)

� c
∣∣lnd(z,D)

∣∣,
for everyz /∈ D, which satisfy0< d(z,D) < τ . Moreover for everyz ∈ R

2 \ D̄, we have∥∥Φ( . , z)
∥∥2

H1(D)
� C

∣∣lnd(z,D)
∣∣ + E,

where the constantsC andE depend only onD.
(ii) If D ⊂ R

3, then for everyz ∈ R
3 \ D̄, we have∥∥Φ( . , z)

∥∥2
1 � c

.

H (D) d(z,D)
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Proof. (i) Suppose in (1) we havek = 0, andΦ0(x, z) is the fundamental solution, i
this case. The relation (3.61) in [4] implies thatΦ(x, z) − Φ0(x, z) is differentiable for all
x, z ∈ R

2, hence‖Φ( . , z) − Φ0( . , z)‖2
H1(D)

is bounded. Thus it is sufficient to prove∥∥Φ0( . , z)
∥∥2

H1(D)
� C

∣∣lnd(z,D)
∣∣ + E, (5)

for everyz ∈ R
2 \ D̄. In order to show this we have

Φ0(x, z) = 1

2π
ln

1

|x − z| ,

∇xΦ0(x, z) = − 1

2π

x − z

|x − z|2 .

Therefore

∥∥Φ0( . , z)
∥∥2

H1(D)
� C1

∫
D

1

|x − z|2 +
(

ln
1

|x − z|
)2

dx � C2

∫
D

1

|x − z|2 dx

= C2

∫
D∩BR(z)

1

|x − z|2 dx + C2

∫
D\BR(z)

1

|x − z|2 dx,

whereBR(z) is the ball with the center,z and radiusR. The second integral is bounde
because of the boundedness ofD and |x − z| > R. Also if d(z,D) = h, then for every
x ∈ D ∩ BR(z), we haveh � |x − z| � R, so the first integral is bounded from above by

C

R∫
h

2πr dr

r2
� E ln

R

h
.

Therefore, there are constantsC,E > 0, such that for everyh,∥∥Φ0( . , z)
∥∥2

H1(D)
� C + E ln

1

h
.

This relation is the same as (5) which proves the desired inequalities for everyz and also
for small values ofh.

(ii) Similar to the dimension two, we consider the fundamental solution,Φ0(x, z) in the
casek = 0, and note that we have∣∣Φ0(x, z)

∣∣ = 1

|x − z| ,∣∣∇xΦ0(x, z)
∣∣ = 1

|x − z|2 .

Therefore we can write∥∥Φ0( . , z)
∥∥2

H1(D)
=

∫
D

(
1

|x − z|2 + 1

|x − z|4
)

dx

=
∫ (

1
2

+ 1
4

)
dx
D∩BR(z)
|x − z| |x − z|
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+
∫

D\BR(z)

(
1

|x − z|2 + 1

|x − z|4
)

dx

�
R∫

h

Cπr2
(

1

r2
+ 1

r4

)
dr + C � Cπ

(
R − h + 1

h
− 1

R

)
+ C.

Hence, there are constantsC,E > 0, such that for everyh,∥∥Φ( . , z)
∥∥2

H1(D)
�

∥∥Φ0( . , z)
∥∥2

H1(D)
+ ∥∥Φ( . , z) − Φ0( . , z)

∥∥2
H1(D)

� C + E

(
1

h
− h

)
.

Thus forc = E + C2

4E
we have∥∥Φ( . , z)

∥∥2
H1(D)

� c

d(z,D)
. �

3. Shape reconstruction

The inverse obstacle scattering problem is to determine the shape of the obstacle
recover the boundary conditions on the obstacle from the far field pattern,u∞(x̂, d) for all
directionsx̂, d ∈ Ω . In the inverse mixed boundary value problem, the main goal is to
termineΓ , ΓD , ΓI andλ from u∞(x̂, d). In this section we reconstructΓ by information
of u∞(x̂, d) in all incident directionsd ∈ Ω and all observation directionŝx ∈ Ω . In [1]
and [3], the linear sampling method is used to recover the boundary,Γ . Cakoni and Colton
have used a variational method for determining the essential supremum of the surfa
pedance,λ, in [2]. Also Kress and Rundell have employed a Newton method to recove
shape,D, and impedance,λ, in [7], when obstacle is soft (i.e.ΓD = ∅), and the boundar
is starlike. Recently in [5] the point-source method is used to determineΓD , ΓI andλ, by
knowing the shape ofD.

In this section we develop the singular sources method to reconstruct the shape
scattering object. This method is used in [9] to reconstruct the shape of a scatterer w
having the boundary condition or physical properties of the scatterer, in the cases
obstacle, hard obstacle and inhomogeneous medium scattering. In this method we
field Φs(z, z) to reconstruct the shape of the scattering object. The boundary,Γ , is found
as the set of points whereΦs(z, z) becomes singular.

In the following theorem we now investigate the behavior ofΦs(z, z) whenz tends to
the boundary. HereD is the same as before, moreoverΓD andΓI are assumed to beC2.

Theorem 3. Let Φs( . , z) be the scattering field of the point-sourceΦ( . , z) by a mixed
boundary condition scattererD, moreoverΓD and ΓI are C2. If z tends to a point o
ΓD ∪ ΓI , then∣∣ s

∣∣
Φ (z, z) → ∞.
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Proof. We prove the theorem in the case of dimension 3. The proof for the case of d
sion 2 is similar. Suppose thatz → z∗ ∈ Γ , then we consider two cases.

Case1. Let z∗ ∈ ΓD . We considerψI ( . , z) ∈ H 1/2(Γ ) as an extension ofψI ( . , z) ∈
H̃ 1/2(ΓI ) by zero on the whole boundary,Γ . Now supposewD( . , z) is the radiating solu
tion of Helmholtz equation

∆wD + k2wD = 0 in R
3 \ D̄,

wD = ψI ( . , z) onΓ.

ThuswD( . , z) ∈ H 1
loc(R

3 \ D̄) and∥∥χwD( . , z)
∥∥2

H1(R3\D̄)
� C

∥∥ψI ( . , z)
∥∥2

H1/2(Γ )
,

whereχ ∈ C∞
0 (Rm) is an arbitrary cut-off function. Then by Proposition 1, we conclu

that for everyz, we have∥∥wD( . , z)
∥∥2

H1(B\D̄)
� C

d(z,D)
, (6)

whereB is a ball containsD. Let uD( . , z) be the radiating solution of Helmholtz equati
with the following boundary condition:

uD( . , z) = −Φ( . , z) onΓ.

By uniqueness of the radiating solution from the boundary condition, we obtain

Φs( . , z) = wD( . , z) + uD( . , z). (7)

On the other hand Theorem 2.1.15 in [9] implies that for everyz nearD, uD satisfies the
following estimate:∣∣uD(z, z)

∣∣ � c

d(z,D)
. (8)

Now we show that forz nearD, the rate of growth ofwD(z, z) is less than the rate o
growth of 1

d(z,D)
. That is∣∣wD(z, z)

∣∣ � c

d(z,D)1/2
.

In order to see this estimate, letG1 andG2 be two neighborhoods ofz∗, with Ḡ1 � G2
andG2 ∩ Γ ⊆ ΓD . Since support ofψI is located inΓI , soψI |ΓD

= 0. Then notice tha
ΓD is smooth andψI ∈ H 3/2(G2 ∩ Γ ), thus theorem of regularity of the solution up to t
boundary in [8] implies thatwD( . , z) ∈ H 2(Ω1), and∥∥wD( . , z)

∥∥
H2(Ω1)

� C
(∥∥wD( . , z)

∥∥
H1(Ω2)

+ ‖ψI‖H3/2(G2∩Γ )

)
,

whereΩi = Gi \ D̄. Hence by the relation (6), we have∥∥wD( . , z)
∥∥2

H2(Ω1)
� C

d(z,D)
.

On the other hand the imbedding theorem implies thatwD( . , z) is a Hölder continuous
function and∣ ∣ ∥ ∥
∣wD(x, z)∣ � C∥wD( . , z)∥

H2(Ω1)
,
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for everyx ∈ Ω1. Therefore∣∣wD(z, z)
∣∣ � c

d(z,D)1/2
, (9)

for everyz ∈ Ω1. By considering (7)–(9) the proof of theorem is complete in this case
Case2. Let z∗ ∈ ΓI . Similar to the first case considerψD( . , z) ∈ H−1/2(Γ ) as an

extension ofψD( . , z) ∈ H̃−1/2(ΓD) by zero on the whole boundary. Now letwI ( . , z) be
the radiating solution of Helmholtz equation

∆wI + k2wI = 0 in R
3 \ D̄,

∂wI

∂ν
+ iλwI = ψD( . , z) onΓ.

Similarly, wI ( . , z) ∈ H 1
loc(R

3 \ D̄) and

∥∥wI ( . , z)
∥∥2

H1(B\D̄)
� C

d(z,D)
.

In this case

Φs( . , z) = wI ( . , z) + uI ( . , z),

whereuI ( . , z) is the radiating solution of Helmholtz equation with the following bound
condition:

∂uI

∂ν
+ iλuI = −∂Φ( . , z)

∂ν
− iλΦ( . , z) onΓ.

We claim thatuI andwI satisfy the following estimations:∣∣uI (z, z)
∣∣ � c

d(z,D)
,

∣∣wI (z, z)
∣∣ � c

d(z,D)1/2
.

In order to see them, letv be the radiating solution of Helmholtz equation with the follo
ing boundary condition:

∂v

∂ν
= iλ onΓ.

Thenw = evwI satisfy

∆w + k2w = f in R
3 \ D̄,

∂w

∂ν
= evψD( . , z) onΓ,

wheref = ev(|∇v|2wI + 2∇v.∇wI − k2vwI ). Now similar to the first case, by theore
of regularity of the solution up to the boundary in the neighborhood ofz∗, we conclude
thatw ∈ H 2(Ω1), and we have

‖w‖H2(Ω1)
� C

(‖w‖H1(Ω2)
+ ‖evψD‖H3/2(G2∩Γ ) + ‖f ‖L2(Ω2)

)
.

Also here we haveψD|ΓI
= 0, and
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‖w‖H1(Ω2)
� C‖wI‖H1(B\D̄) � C

d(z,D)1/2
,

‖f ‖L2(Ω2)
� C‖wI‖H1(B\D̄) � C

d(z,D)1/2
,

∂i∂jw = ev(∂i∂j v + ∂iv∂j vwI + ∂iv∂jwI + ∂j v∂iwI + ∂i∂jwI ).

Now sincev is bounded onΩ2, 0< m � |ev| = eRe(v), then

m‖∂i∂jwI‖L2(Ω1)
� ‖∂i∂jw‖L2(Ω1)

+ ‖∂i∂jw − ev∂i∂jwI‖L2(Ω1)

� ‖w‖H2(Ω1)
+ C‖wI‖H1(Ω1)

� C

d(z,D)1/2
.

Therefore‖wI‖H2(Ω1)
� C

d(z,D)1/2 , and by imbedding theorem we have

∣∣wI (z, z)
∣∣ � c

d(z,D)1/2
,

for everyz ∈ Ω1. It is remained to show that∣∣uI (z, z)
∣∣ � c

d(z,D)
,

for everyz near to the boundary,Γ . Similar to the above we changeuI to u = evuI . Now
we can writeu = u1 + u2, whereu1 is the radiating solution of

∆u1 + k2u1 = 0 in R
3 \ D̄,

∂u1

∂ν
= −∂(evΦ( . , z))

∂ν
onΓ,

andu2 satisfies in the following equation:

∆u2 + k2u2 = f in R
3 \ D̄,

∂u2

∂ν
= 0 onΓ.

Similar to the above we can get

‖u2‖H2(Ω1)
� C‖f ‖L2(Ω2)

� C‖uI‖H1(Ω2)
� C

d(z,D)1/2
.

Thus ∣∣u2(z, z)
∣∣ � c

d(z,D)1/2
.

By considering the boundedness ofev in a neighborhood ofD, the proof will be complete
if we show that∣∣u1(z, z)

∣∣ � c

d(z,D)
.

This estimate follows from the following lemma.�
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Lemma 4. Let u( . , z) be the radiating solution of Helmholtz equation with the bound
condition

∂u

∂ν
= −∂(wΦ( . , z))

∂ν
onΓ,

wherew is a smooth function defined in the exterior ofD. In the case of dimension two th
following estimate holds forz nearD:∣∣u(z, z)

∣∣ � c
∣∣lnd(z,D)

∣∣.
In the case of dimension three this estimate will be∣∣u(z, z)

∣∣ � c

d(z,D)
.

Proof. Theorem 2.1.15 in [9] establish similar results for the solution with the boun
condition

∂u

∂ν
= −∂Φ( . , z)

∂ν
onΓ,

and our result can be derived in the same way if we replaceΦ( . , z) by wΦ( . , z). �
Before we begin to consider the shape reconstruction problem, we investiga

uniqueness of the reconstruction. This uniqueness result plays an important role
shape reconstruction. The precise meaning of uniqueness in the mixed boundar
problem is that if from the knowledge of the far field we can reconstructΓ , ΓD , ΓI and
λ uniquely. This question has been answered exactly in [5]. In the following theore
only show the uniqueness of the reconstruction of the boundary,Γ , with simpler proof
which is used the singular behavior ofΦs(z, z). In the proof of this theorem we will us
the reciprocity relation respect to the case of mixed boundary conditions from [5].

Theorem 5 (Mixed reciprocity relation). For the acoustic scattering of the plane wav
ui( . , d), d ∈ Ω , and the point sourcesΦ( . , z), z ∈ R

m \ D̄, from a mixed boundary con
dition scattererD we have

Φ∞(x̂, z) = γmus(z,−x̂), z ∈ R
m \ D̄, x̂ ∈ Ω,

where

γm =



eiπ/4√
8πk

, m = 2,

1
4π

, m = 3.

Theorem 6. LetD1 andD2 be mixed boundary condition obstacles. If the far field patte
u∞

1 (x̂, d) andu∞
2 (x̂, d) for both scatterers coincide for all̂x, d ∈ Ω , thenD1 = D2.

Proof. Let G be the unbounded component of the complement ofD̄1 ∪ D̄2. From
u∞
1 (x̂, d) = u∞

2 (x̂, d) for all x̂, d ∈ Ω,
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and Rellich lemma in [4], we obtain

us
1(x, d) = us

2(x, d) for all x ∈ G, d ∈ Ω.

Thus by Theorem 5 we have

Φ∞
1 (x̂, z) = Φ∞

2 (x̂, z) for all x̂ ∈ Ω, z ∈ G.

Again we can use Rellich lemma to achieve the following relation:

Φs
1(x, z) = Φs

2(x, z) for all x, z ∈ G. (10)

Suppose thatD1 �= D2. Now without loss of generality, we can assume that there e
z0 ∈ ∂G such thatz0 ∈ ∂D1 \ D2. Then by Theorem 3 we conclude that

∞ > Φs
2(z0, z0) = lim

z→z0, z∈G
Φs

2(z, z) = lim
z→z0, z∈G

Φs
1(z, z) = ∞.

This contradiction shows thatD1 = D2. �
Now we apply the singular sources method to reconstruct the shape of the ob

According to Theorem 3, the boundary is the set of points whereΦs(z, z) is large. In order
to determine this set we should calculateΦs(z, z) from the far field patternu∞(x̂, d).

Suppose we know a priori informationD ⊂ B, whereB is a bounded domain. For eve
z ∈ B, letG(z) be a smooth region which does not have Dirichlet eigenvalue−k2, z /∈ G(z)

andD̄ ⊆ G(z) ⊆ B, wherek is the wave number. For everyε there isg ∈ L2(Ω) such that∥∥Φ( . , z) − vg

∥∥
L2(∂G)

< ε,

wherevg(x) := ∫
Ω

g(d)eikx.d ds(d) is a Herglotz wave (see Lemma 3.1.2 in [9]). No
notice that the functionsvg and Φ(. , z) are the solutions of Helmholtz equation inG,
hence∥∥Φ( . , z) − vg

∥∥
H1(G)

� c1ε.

Thus for everyz andτ we can find functiongτ (z, . ) ∈ L2(Ω), such that∥∥Φ( . , z) − vgτ

∥∥
H1(G)

� τ.

If we consider the trace ofΦ( . , z) andvgτ on ∂D, from Theorem 3.37 in [8], we see tha∥∥Φ( . , z) − vgτ

∥∥
H1/2(ΓD)

� c2
∥∥Φ( . , z) − vgτ

∥∥
H1(D)

� c2τ,

wherec2 is a constant depends only onD. Also from Lemma 4.3 in [8], we have∥∥∥∥ ∂

∂ν
Φ( . , z) − ∂

∂ν
vgτ

∥∥∥∥
H−1/2(ΓI )

� c3τ.

Therefore for everyτ > 0 andz ∈ B \ D̄, there isgτ (z, . ) ∈ L2(Ω) such that∥∥Φs( . , z) − vs
gτ

∥∥
H1(B\D̄)

� Cτ (11)

and ∥ ∥
∥Φ∞( . , z) − v∞
gτ

∥
L2(Ω)

� Cτ, (12)
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whereC depends only onD andB, while vs
gτ

andv∞
gτ

are the scattered field and the f
field with respect to the Herglotz wavevgτ .

Let Dρ = {z ∈ R
m | d(z,D) � ρ}. Then according to the regularity of the solution

elliptic equation and the relation (11) we conclude that for everyx ∈ B \ Dρ ,∥∥Φs( . , z) − vs
gτ

∥∥
H2(Bρ(x))

� C1
∥∥Φs( . , z) − vs

gτ

∥∥
H1(Bρ(x))

� C1Cτ,

whereBρ is a ball with center inx and radiusρ, moreoverC1 depends onρ. Also the
imbedding theorem and the above result imply thatΦs( . , z) − vs

gτ
is a Hölder continuous

function onBρ and we have,∣∣Φs(x, z) − vs
gτ

(x)
∣∣ � C2

∥∥Φs( . , z) − vs
gτ

∥∥
H2(Bρ(x))

� C2C1Cτ = Cρτ, (13)

whereCρ depends only onρ, B andD.
On the other hand, we know that

vs
gτ

(x) =
∫
Ω

gτ (z, d)us(x, d) ds(d), (14)

for everyx ∈ R
m \ D̄. Moreover

v∞
gτ

(x̂) =
∫
Ω

gτ (z, d)u∞(x̂, d) ds(d), (15)

for everyx̂ ∈ Ω . Thus from (13), (14) and Theorem 5 we have∣∣∣∣∣Φs(x, z) − 1

γm

∫
Ω

gτ (z, d)Φ∞(−d, x) ds(d)

∣∣∣∣∣ � Cρτ.

Now from (12) and (15) we conclude that there isgη(x, . ) such that∥∥∥∥∥Φ∞( . , x) −
∫
Ω

gη(x, d̃)u∞( . , d̃) ds(d̃)

∥∥∥∥∥
L2(Ω)

� Cη.

Thus ∣∣∣∣∣
∫
Ω

gτ (z, d)

{
Φ∞(−d, x) −

∫
Ω

gη(x, d̃ )u∞(−d, d̃ ) ds(d̃ )

}
ds(d)

∣∣∣∣∣
�

∥∥gτ (z, . )
∥∥

L2(Ω)
.
∥∥Φ∞( . , x) − v∞

gη

∥∥
L2(Ω)

� Cη
∥∥gτ (z, . )

∥∥
L2(Ω)

.

Therefore for everyx, z ∈ B \ Dρ , we have∣∣∣∣∣Φs(x, z) − 1

γm

∫
Ω

∫
Ω

gη(x, d̃ )gτ (z, d)u∞(−d, d̃ ) ds(d̃ ) ds(d)

∣∣∣∣∣
Cη∥∥ ∥∥
� Cρτ +
γm

gτ (z, . )
L2(Ω)

.
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Now we formulate the previous calculations and results in the following theorem. In
to do this we define the backprojection operator,Q as

(Qw)(x, z) := 1

γm

∫
Ω

∫
Ω

gη(x, d̃ )gτ (z, d)u∞(−d, d̃ ) ds(d̃ ) ds(d).

Theorem 7. Consider a mixed boundary condition obstacleD which is contained in a
ball B. For everyτ andη, there are kernelsgτ andgη such that

∣∣Φs(z, z) − (Qu∞)(z, z)
∣∣ � Cρτ + Cη

γm

∥∥gτ (z, . )
∥∥

L2(Ω)
,

for everyz ∈ R
m \ Dρ , moreoverC andCρ are constants.

Remark 1. For an appropriate choice ofτ andη the above error can be made arbitr
ily small. In fact for givenτ > 0, we can chooseη such thatη‖gτ (z, . )‖L2(Ω) becomes
sufficiently small. Now ifτ → 0, andη(τ) → 0, then the error tends to zero.

We now summarize the singular sources method step by step.

(1) With a priori knowledgeD ⊂ B, choose a domain approximationG(z) for eachz ∈ B

such thatz /∈ G(z) and the unknown inclusionD ⊂ G(z) is valid as far as possible.
(2) Choose valueτ and then calculate the densitygτ (z, . ).
(3) Chooseη according to the above remark, then calculategη(z, . ).
(4) Calculate the backprojection(Qu∞)(z, z) and determine the boundary as the se

points where(Qu∞)(z, z) is large. In fact these points are located in theρ-neighbor-
hood of the boundary,Γ .

Remark 2. In order to apply this method, we need to choose the regionG(z) with the
propertyD̄ ⊂ G(z), but this seems impossible whenD is unknown. There are some stra
gies to take care of this trouble. Here we mention one of them which is used in [9,10
start with a number of fixed directionsp1, . . . , p8 which divided the plane in 8 symmetr
region. For every directionpi , we choose a special regionGi(z) and computea(1)

i (z) as
an approximationΦs(z, z) using the operatorQ, whereQ is depending onGi(z). We can
obtain a first approximationD1 to the domainD as the set

D1 := {
z ∈ B:

∣∣a(1)
i (z)

∣∣ > C for i = 1, . . . ,8
}
.

In each further step, we adapt the choiceG(z) according to the reconstructionDn of the
nth step,D̄n ⊂ G(z), and repeat the procedure to obtain the(n+1)th approximationDn+1.
For more detail, the reader is referred to [9,10].

Remark 3. We estimateΦs(z, z) from the far field,u∞ by the operatorQ, and if u∞
δ is

measured as the far fieldu∞, with some noise such that∥∥u∞ − u∞
δ

∥∥
L2(Ω×Ω)

� δ,
then the error for the approximation ofΦs(z, z) by (Qu∞
δ )(z, z) is estimated by
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∣∣Φs(z, z) − (
Qu∞

δ

)
(z, z)

∣∣ �
∣∣Φs(z, z) − (Qu∞)(z, z)

∣∣ + ∣∣Q(
u∞ − u∞

δ

)
(z, z)

∣∣
� Cρτ + Cη

γm

∥∥gτ (z, . )
∥∥

L2(Ω)
+ δ

γm

∥∥gτ (z, . )
∥∥

L2(Ω)

∥∥gη(z, . )
∥∥

L2(Ω)
.

Therefore the ill-posedness of the reconstruction ofD is mainly influenced by the norm o
the densitiesgτ andgη.
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