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Abstract

We use the singular sources method to detect the shape of the obstacle in a mixed boundary value
problem. The basic idea of the method is based on the singular behavior of the scattered field of
the incident point-sources on the boundary of the obstacle. Moreover we take advantage of the scat-
tered field estimate by the backprojection operator. Also we give a uniqueness proof for the shape
reconstruction.
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1. Introduction

The problem of the reconstruction of an obstacle from some knowledge of the scattered
wave at large distance is a well-known problem in the area of the inverse problems. There
are several methods for the shape reconstruction in the literature [1,4,9]. One of the im-
portant property of a reconstruction method in the applications is its independence of the
knowledge of the boundary condition. In fact from physical point of view, it is not realistic
to know the boundary condition. The linear sampling method and singular sources method
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have this property. In [9] these methods have been applied for sound-soft and hard-soft
obstacles, when the boundary condition is Dirichlet or Neumann.

Recently a kind of obstacle scattering problems has been introduced in electromagnetic
scattering which is called partially coated obstacle scattering. These obstacles are coated
by some material on a portion of the boundary to reduce the radar cross section of the
scattered wave. Here the boundary condition of the obstacle is a kind of mixed boundary
condition [2,3,6]. A similar kind of the inverse problem of the mixed boundary conditions
appears in acoustic scattering.

The authors in [1] proposed the linear sampling method to reconstruct the shape of
the obstacle in the case of mixed boundary conditions. The same authors have used a
variational method for determining the essential supremum of the surface impedance in [2].
Also in [5] the point-source method has been applied to reconstruct the coated portion and
the surface impedance under the assumption that the shape is determined.

In the present paper we use the singular sources method to reconstruct the shape of the
obstacle in a mixed boundary conditions model. This method is proposed by Potthast in
[10]. In this method the reciprocity relation is used to derive the backprojection operator.
This operator enable us to estimate the scattered field from the far field pattern. The basic
idea of the method is based on the singularity behavior of the scattered field of point-source
on the boundary of the obstacle. This means thé@t'if. , z) denote this scattered field and
z tends to the boundary then

|(Ps(z,z)| — 00.

This behavior shows that the boundary is the set of points where the scatter@e’figld)
becomes singular. In order to apply the singular sources method we need to estimate
®*(z, z) from the knowledge of the far field pattermS°(x, d), which is derived by the
backprojection operator.

In Section 2, the direct scattering problem is considered. In this section also we prove a
lemma which estimates the norm of the point-source on the obstaclgpice, z) || ;1 p.-
In Section 3, by using this lemma we show the singular behavior of the scattered field
@ (z, z). We will prove the uniqueness of the shape reconstruction of the partially coated
scattering in this section, too. Finally in Section 3, we will apply the singular sources
method to reconstruct the shape of the obstacle.

2. Partially coated scattering

In this section we formulate the direct scattering problem for mixed boundary value
problem. Then we find an upper bound for the point source which is crucial in the next
section.

Let D € R™ (m = 2, 3) be an open bounded domain with Lipschitz bound&rguch
thatR™ \ D is connected. We also assume that the boundahyas a Lipschitz dissection
I'=TpUI U I, wherel'p andIy areC?, disjoint, relatively open subsets 6f, and/T
is their common boundary if'.

We consider a plane wavé (x, d) = ¢/** in the direction ofd with |d| = 1. Let
u® (x, d) be the solution of the following exterior mixed boundary value problem:
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Au+k?u=0 inR"™\ D,

u=f onlp, 1)
ou .

— 4+ iA(x)u=h only,

av

for f = —u'|r, andh = —%—“Ui —iau'|r,. Herek > 0 is the wave number; denotes the
unit outward normal vector which is defined @iy U I';. The charactek is a real non-
negative function and € L°°(I). Moreover, the scattered wawé is required to satisfy

Sommerfeld radiation condition

: (m-1)/2 ou' .
lim |x| — —iku’ | =0, (2)
|x|—00 av
uniformly in all directionst := x/|x]|.

The radiation condition (2) implies an asymptotic behavior of the function,

ik|x|

s _
u(x,d) = D72

u* (%, d) + o(|x| 7"V, (3)
uniformly in all directionx = x/|x|, see [4]. The amplitude factar® is known as the far
field pattern of the scattered wave,. Notice thatu® is a function of the incident direc-
tion d € £2, and the observation directione §2. The fundamental solution of Helmholtz
equation is given by

RHGY (klx = yD), x#y, m=2,
D(x,y)= 1 eiklx—yl
EW’ X # y, m= 3,
whereHél) denotes the Hankel function of order zero and of the first kind [4].
In order to investigate the problem (1) we need to recall the definition of the following
Sobolev spaces. Léf C I" be a portion of the boundary;. If H1(D) denotes the usual

Sobolev space and1/2(I") its usual trace space, then we define

HY2(Ip) :={ulr,: u e HY2()},

AY2(I) := {u e HY2(I'): suppu C I},

H™Y2(Ip) := (AY?(I'v))"  the dual space off ¥/%(I),
A7Y2(Ip) == (HY?(I'v))"  the dual space off ¥/%(I).

In [3], it is shown that for every € HY?(I'p) andg € H~Y2(I7), the exterior mixed
boundary value problem (1) under the condition (2) has a unique weak solution, for con-
stantr. Furthermore, in [3], it is shown that the solution isHi,ﬂ;C(R’” \ D). Althoughin [3],
it is assumed that is constant, but all of the above results remain validé L°° (1) and
A >0, as Colton and Cakoni have been indicated in [2].

Suppose tha®*( ., z), z € R™ \ D, is the scattered wave of the incident wakeé. , 7).

This means thatb®(.,z) is the solution of (1) and (2) with the boundary condition
f=-®(.,2lr, andh = —22:2 _i50(., 2)|r,. We also denote the far field pattern
of @%(.,7) by ®*°(x, 7). We extendr to the whole of the boundary with the definition
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zero onI'p. Now we note that for every € R™ \ D, there arey;(.,z) € HY?(I'7) and
vn(.,z) € HY2(I'p) such that the following relations dhD are satisfied:

(D r==—2..)r+vi1(.,2),
<7a¢("Z)+iMDS(.,Z)) =< 92(,2)

v r v

By consider the continuous dependence of the scattered field on the boundary data
which is proved in [3], by formula (22), we obtain
D sz

C(H@( ] H—1/2<F)).

Now, from the above relation, Theorem 3.37 and Lemma 4.3 in [8], we conclude

0D
—(., <Clo(., , 4
~(2) . 2. D 41, (4)

- M(D(.,z))

+ V(.. 2).
r

a@( )
PR

.2 HY2(r)*
for everyz e R \ D. By the following proposition, we estimate the functions andy;.

Proposition 1. (i) If D c R?, then there exist constantsc > 0, such that

for everyz ¢ D, which satisfy0 < d(z, D) < =. Moreover for every € R?\ D, we have

[DC. D Fs2ry- 191 ¢ D Ry < C|INdG. D)| + E,

where the constantS and E depend only oD.
(i) If D c R3, then for every € R\ D, we have

2
.l AY2(ry) =

[ D Gz 11D e, <

C
d(z, D)’

By considering the relation (4) and the following lemma the proof of the above propo-
sition will be clear.

Lemma2. (i) If D c R?, then there exist constantsc > 0, such that

[E4¢

2
:2) ”Hl(D) =
for everyz ¢ D, which satisfy0 < d(z, D) < =. Moreover for every € R?\ D, we have

2
[ (.. 251 < ClNd(, D)|+E,
where the constants and £ depend only orD.
(i) If D C R3, then for every € R3\ D, we have
C

“CD( Z)”Hl(D) = d(z D)’
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Proof. (i) Suppose in (1) we have = 0, and®q(x, z) is the fundamental solution, in
this case. The relation (3.61) in [4] implies thatx, z) — @o(x, z) is differentiable for all
x,z € R? hence|®(.,z) — Pol., z)||§{l(D) is bounded. Thus it is sufficient to prove

|®0(.. 2|32 < C|INd(z. D)| + E. (5)

for everyz € R2\ D. In order to show this we have
Do(x,2) = i In L
2t |x —z|
Vi@o(x,z) = —ii.
27 |x — z|?

Therefore

2 1 1 \? 1
IoC.. 2[5y < Ca romp TN pog) <G et
D D

C / ! dx+C / ! d

= X X,

2 lx — z|2 2 lx — 2|2
DNBg(z) D\Bg(2)

where Bg(z) is the ball with the center; and radiusR. The second integral is bounded
because of the boundednessi»fand |x — z| > R. Also if d(z, D) = h, then for every
x € DN Br(z), we haveh < |x — z| < R, so the first integral is bounded from above by

R
2nrdr R
C <EIn—.
r2 h
h
Therefore, there are constaitsE > 0, such that for every,

2 1
[ ®0C-. )| pyap) <C+EIN .

This relation is the same as (5) which proves the desired inequalities for eeey also
for small values of:.

(i) Similar to the dimension two, we consider the fundamental solutigyiy, z) in the
casek = 0, and note that we have

|Q§0(X,Z)| =

’

|x — z]

1

|V @o(x, 2)| =i

Therefore we can write

2 1 1
||¢0(-’Z)HH1<D) ZD/(Ix —z[? " |x —z|4>dx

[ (i)
= X
lx—z]2  |x—z*

DNBR(z)
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X
|x_Z| |x_z|

D\Bg(2)

R
<fC7121+1d+C<C7TR h+1 1+C
< r'l -+ — | dr < — - — = .
r2 = 4 h R
h

Hence, there are constaris E > 0, such that for every,

2 2 2
”@D("Z)”Hl(u) < ||¢0("Z)||H1(D) + .2 = o(..2) ”Hl(D)

<SC+E 1 h
X n .

Thus forc = E + f—; we have

P C
[ Dlhw < 7555

3. Shapereconstruction

The inverse obstacle scattering problem is to determine the shape of the obstacle and to
recover the boundary conditions on the obstacle from the far field pait€rt, d) for all
directionsx, d € £2. In the inverse mixed boundary value problem, the main goal is to de-
terminel”, I'p, I'y andA from u® (X, d). In this section we reconstruét by information
of u®(x, d) in all incident directions!/ € £2 and all observation directionse £2. In [1]
and [3], the linear sampling method is used to recover the bounHafakoni and Colton
have used a variational method for determining the essential supremum of the surface im-
pedance), in [2]. Also Kress and Rundell have employed a Newton method to recover the
shape,D, and impedanceé,, in [7], when obstacle is soft (i.d-p = @), and the boundary
is starlike. Recently in [5] the point-source method is used to deterfmind; andx, by
knowing the shape ab.

In this section we develop the singular sources method to reconstruct the shape of the
scattering object. This method is used in [9] to reconstruct the shape of a scatterer without
having the boundary condition or physical properties of the scatterer, in the cases of soft
obstacle, hard obstacle and inhomogeneous medium scattering. In this method we use the
field @%(z, z) to reconstruct the shape of the scattering object. The bounftarig,found
as the set of points wherg*(z, z) becomes singular.

In the following theorem we now investigate the behavio®d{z, z) whenz tends to
the boundary. Her® is the same as before, moreovés andI'; are assumed to h@?.

Theorem 3. Let ®°(., z) be the scattering field of the point-sourds ., z) by a mixed
boundary condition scattereb, moreoverl'p and I'; are C2. If z tends to a point of
I'p U Iy, then

|¢S(z,z)| — 00.
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Proof. We prove the theorem in the case of dimension 3. The proof for the case of dimen-
sion 2 is similar. Suppose that- z* € I'", then we consider two cases.
_ Casel. Letz* € I'p. We consideny; (., z) € HY2(I') as an extension of; (., z) €
HY2(Iy) by zero on the whole boundar¥,. Now supposevp (., z) is the radiating solu-
tion of Helmholtz equation
Awp +k?>wp=0 inR3\ D,
wp =vy(.,z) onrl.
Thuswp(.,z) € HL (R3\ D) and

2 2
”XwD( o) Z) ” Hl(Ra\D) < Cle( s Z) || HY2(Iy
wherey € Cg°(R™) is an arbitrary cut-off function. Then by Proposition 1, we conclude
that for everyz, we have
C
, 6
d(z, D) ©)
whereB is a ball contain®d. Letup(., z) be the radiating solution of Helmholtz equation
with the following boundary condition:
up(.,z2)=—-@(.,z) onrl.
By uniqueness of the radiating solution from the boundary condition, we obtain
®*(.,2)=wp(.,2) +up(.,z). @)

On the other hand Theorem 2.1.15 in [9] implies that for evengarD, u satisfies the
following estimate:

2
|lwn(..2) ”Hl(B\[)) S

|MD(Z,Z)| 2@- 8

Now we show that for near D, the rate of growth ofwp(z, z) is less than the rate of

1 .
growth ofm. That is

C
lwp(z,2)| < G D

In order to see this estimate, |64 and G, be two neighborhoods aof*, with G1 € G»
andGo N I" C I'p. Since support ofy; is located inly, soy|r, = 0. Then notice that
I'p is smooth andy; € H32(G, N I'), thus theorem of regularity of the solution up to the
boundary in [8] implies thaivp (., z) € H?(£21), and

HwD( ) Z) || HZ(-QI) < C(” U)D( LX) Z) HHl(.Qz) + ”wI“H?’/Z(GZﬂ]"))v

whereg2; = G; \ D. Hence by the relation (6), we have
C
d(z,D)’
On the other hand the imbedding theorem implies thagt ., z) is a Holder continuous
function and

2
|lwo(..2)| H2Qy) S

lwp(x,2)| < Cllwp(.. D) y2q,):
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for everyx € £21. Therefore

c
|wD(Z,Z)|<Wa 9)

for everyz € §21. By considering (7)—(9) the proof of theorem is complete in this case.

Case?2. Let z* € I';. Similar to the first case considerp(.,z) € H~Y%(I") as an
extension ofyp (., z) € H~Y2(I'p) by zero on the whole boundary. Now lef (., z) be
the radiating solution of Helmholtz equation

Aw;+k*w; =0 inR3\ D,

0
%waz =¥p(.,z) onT.

Similarly, w; (., z) € HL.(R3\ D) and

C

2
||w1(~’Z)HH1(B\13) S d(z, D)’

In this case

(., 0)=wr(.,2)+ur(.,2),

whereu; (., z) is the radiating solution of Helmholtz equation with the following boundary
condition:

dur +iluy = BLLACEY —ird®(.,z) onT.
av av
We claim thatu; andw; satisfy the following estimations:
}u1(z Z)| > _c
’ = d(Z, D) ’
C
|w1(Z,Z)| < W

In order to see them, letbe the radiating solution of Helmholtz equation with the follow-
ing boundary condition:

v .
— =iA onr.
ov

Thenw = e’w; satisfy
Aw+k2w=f inR3\ D,

ow
—=e"Yp(.,2) onr,
dv

where f = ¢”(|Vv|?w; 4+ 2Vv.Vw; — k%vw;). Now similar to the first case, by theorem
of regularity of the solution up to the boundary in the neighborhoogd*pfve conclude
thatw € H2(£21), and we have

lwl pr2g2y) < C(lwll ey + le" Vbl g32Ganry + 11l 12(2,)-

Also here we haveyp|r, =0, and
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C
||w||H1(92) < C||w1||1-11(3\5) < m,
C
d(z, D)Y/?’
9 8.,~w = e”(aiajv + 3,'1)3‘/1)11)] + 0;vd jwr + 0 'UaiwI + 0;0;wy)
Now sincev is bounded o2, 0 < m <

I fllz2(2,) < Cllwillgaep by <

le¥| = eRe®) | then

m||3 81w1||L2((21) ||3,3]w||L2(_Ql) + ||3,8]w —e 3,8]w1||L2(91)

C
< ||w||H2(_Ql) + C||w1||Hl(Ql) < W
Thereforelwy || 2o, < W, and by imbedding theorem we have

c
|wl(Z, Z)| < W,

for everyz € £21. Itis remained to show that

ur(z.2)| >

d(z,D)’

for everyz near to the boundary;. Similar to the above we change to u = ¢”u;. Now
we can writex = ut + u?, whereu? is the radiating solution of

Aut +k%ut=0 inR3\ D,

oul e P(.
ou” __9("P(..2) onr,
ov av

andu? satisfies in the following equation:
Au? + k%u? =

9 2
o =0 onr.
ov

f inR3\ D,

Similar to the above we can get

C
||” ||H2(S21) C||f||L2(S22) C””I”Hl(ﬂz) S W
Thus

u2(z,2)| < ———.
d(z. D)2

By considering the boundednesseifin a neighborhood oD, the proof will be complete
if we show that

lut(z,2)| > —
’ d(z, D)

This estimate follows from the following lemma.co
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Lemma 4. Letu(., z) be the radiating solution of Helmholtz equation with the boundary
condition

du _ I(wd(..2))

v ov
wherew is a smooth function defined in the exterioriofIn the case of dimension two the
following estimate holds far near D:

lu(z, 2)| > c|Ind(z, D)|.

In the case of dimension three this estimate will be

onrl,

Proof. Theorem 2.1.15 in [9] establish similar results for the solution with the boundary
condition

u _ AP(.,2)
v av
and our result can be derived in the same way if we repface z) by wd(.,z). O

onrl,

Before we begin to consider the shape reconstruction problem, we investigate the
uniqueness of the reconstruction. This uniqueness result plays an important role in the
shape reconstruction. The precise meaning of uniqueness in the mixed boundary value
problem is that if from the knowledge of the far field we can reconstfuctp, I'; and
A uniquely. This question has been answered exactly in [5]. In the following theorem we
only show the uniqueness of the reconstruction of the boundaryyith simpler proof
which is used the singular behavior @f (z, z). In the proof of this theorem we will use
the reciprocity relation respect to the case of mixed boundary conditions from [5].

Theorem 5 (Mixed reciprocity relation) For the acoustic scattering of the plane waves
u'(.,d), d € 2, and the point source®(., z), z € R™ \ D, from a mixed boundary con-
dition scattererD we have

D®°(R,2) = ymu’(z, —%), zeR"\D, %€,

where
ein/4 _
_J) V8rk’ m=2,
Ym = 1
A7 m = 3

Theorem 6. Let D1 and D, be mixed boundary condition obstacles. If the far field patterns
ug®(x,d) andus°(x, d) for both scatterers coincide for all, d € £2, thenD; = D».

Proof. Let G be the unbounded component of the complemedof) D,. From

ui®(x,d)=uy’(x,d) forall x,d e 2,
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and Rellich lemma in [4], we obtain
ui(x,d)=uy(x,d) forallxeG, des2.
Thus by Theorem 5 we have
P (x,2) =P3°(x,z) forallxe 2, zeG.
Again we can use Rellich lemma to achieve the following relation:
D} (x,2)=P5(x,z) forallx,zed. (20)

Suppose thaD1 # D,. Now without loss of generality, we can assume that there exists
z0 € 9G such thatg € dD1 \ D2. Then by Theorem 3 we conclude that

00> P3(z0,20)= |lim  ®3(z,z)= lim  Pj(z,2) = o0.
7—20,2€G 7—>20,2€G

This contradiction shows thdd; = D,. O

Now we apply the singular sources method to reconstruct the shape of the obstacle.
According to Theorem 3, the boundary is the set of points wi€ie, z) is large. In order
to determine this set we should calculdt&(z, z) from the far field patterm® (x, d).
Suppose we know a priori informatidd C B, whereB is a bounded domain. For every
z € B, letG(z) be a smooth region which does not have Dirichlet eigenvalkre z ¢ G(z)
andD C G(z) C B, wherek is the wave number. For evegythere isg € L2(£2) such that

@2 —vg ||L2(aG) <&,

where vy (x) := [, g(d)e™**4 ds(d) is a Herglotz wave (see Lemma 3.1.2 in [9]). Now
notice that the functions, and @ (., z) are the solutions of Helmholtz equation @,
hence

[2C.2) = v o) < cae
Thus for every; andt we can find functiorg; (z, .) € L2(£2), such that

|®(..2) —vg,

HY(G) <T.
If we consider the trace ab (., z) andv,, ond D, from Theorem 3.37 in [8], we see that
||(p( ) Z) - Ug, ||Hl/2([‘D) g C2||¢)( o) Z) - vgr HH]'(D) < €21,

wherec; is a constant depends only @én Also from Lemma 4.3 in [8], we have

< cat.

0 &(..2) d
—P(.,7)— —v
ov ¢ v &

H=Y2(Iy)
Therefore for every > 0 andz € B\ D, there isg; (z, .) € L%(£2) such that
|@°(..2) — v}, Ct (11)

HY(B\D) <
and

”¢OO( ) Z) - U;? LZ(Q) g CT’ (12)
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whereC depends only oD and B, while v, andvg? are the scattered field and the far
field with respect to the Herglotz wave, .
Let D, = {z e R™ | d(z, D) < p}. Then according to the regularity of the solution of
elliptic equation and the relation (11) we conclude that for eweeyB \ D,,
|o°C..2) — Vg, ”HZ(B,,(x)) <Cifof(..2) — Vg, [ HY(B,(x)) < GiCr,

where B, is a ball with center inv and radiusp, moreoverC, depends orp. Also the
imbedding theorem and the above result imply #at. , z) — v, is a Holder continuous
function onB, and we have,

|@°(x,2) = vp, ()| < Co| 2° (. 2) = v, | 2y, (1)) < C2C1CT = Cpr, (13)
whereC, depends only op, B andD.
On the other hand, we know that
05,00 = [ geled () dsta), (14)
2

for everyx e R” \ D. Moreover

vgf()?)=/gr(z,d)u°°(£,d)ds(d), (15)
2

for everyx € £2. Thus from (13), (14) and Theorem 5 we have

q"S(JC,Z)—i/gr(z,d)Cboo(—d,x)dS(d) <Cpt.

Ym

Now from (12) and (15) we conclude that thergjgx, .) such that

< Cn.
L2(£2)

q>°°(.,x)—/gn(x,c?)uW(.,c?)ds(J)
2

Thus

/gr(z,d){@Doo(—d,x)—/g,,(x,a?)uoo(—d,c?)ds(&)}ds(d)
2

2

< Hgf(z, ')”LZ(Q)’H¢OO("X) - UZ: “LZ(.Q) < CanT(z, ')||L2(Q)'

Therefore for everyt, z € B\ D,, we have

q>5(x,z)—yif/g,,(x,d‘)g,(z,d)MW(—d,&)ds(cZ)ds(d)
m.Q 2

C
<Cpt+ —n”gr(za -)”LZ(Q)'
Ym
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Now we formulate the previous calculations and results in the following theorem. In order
to do this we define the backprojection opera@ras

1 - - -
(Qw)(x,2) :=V—//gn(x,d)gz(z,d)uw(—d,d)dS(d)dS(d).
2 2

Theorem 7. Consider a mixed boundary condition obstadewhich is contained in a
ball B. For everyr andn, there are kernelg, and g, such that

) C
20— (@)@ 2| < Gt + Hge(e )] sz

for everyz e R™ \ D,, moreoverC andC, are constants.

Remark 1. For an appropriate choice af andn the above error can be made arbitrar-
ily small. In fact for givent > 0, we can choosg such thaty|| g (z, .)ll .2, becomes
sufficiently small. Now ift — 0, andn(t) — 0, then the error tends to zero.

We now summarize the singular sources method step by step.

(1) With a priori knowledgeD C B, choose a domain approximatiéhz) for eachz € B
such that ¢ G(z) and the unknown inclusio® C G(z) is valid as far as possible.

(2) Choose value and then calculate the densjy(z, .).

(3) Choose; according to the above remark, then calcujgté, . ).

(4) Calculate the backprojectiaf@u*°)(z, z) and determine the boundary as the set of
points where(Qu®)(z, z) is large. In fact these points are located in thaeighbor-
hood of the boundary;'.

Remark 2. In order to apply this method, we need to choose the regi@) with the
propertyD C G(z), but this seems impossible whé&nis unknown. There are some strate-
gies to take care of this trouble. Here we mention one of them which is used in [9,10]. We
start with a number of fixed directions, ..., pg which divided the plane in 8 symmetric
region. For every directiop;, we choose a special regia@r; (z) and computezi(l)(z) as

an approximatior®“ (z, z) using the operato@, whereQ is depending ori; (z). We can
obtain a first approximatio®; to the domainD as the set

D1 = {zeB: ’ai(l)(z)| > C fori =1,...,8}.

In each further step, we adapt the cho@&é) according to the reconstructian,, of the
nth step,D,, C G(z), and repeat the procedure to obtain the- 1)th approximationD,, ;1.
For more detail, the reader is referred to [9,10].

Remark 3. We estimate?*(z, z) from the far field,u> by the operatoQ, and if ug° is
measured as the far field®, with some noise such that

”“Oo —ug’ ||L2(.Q><Q) <39,

then the error for the approximation &f (z, z) by (Qu;°)(z, z) is estimated by
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|©°(z,2) — (Qui®) (2. 2)| < |@° (2. 2) — (Qu™)(z. )| + | @ (u™ — u§®) (2. 2)|
Cn 1)
<SG+ y—mHgf(z, ')”LZ(Q) + Vin | g2 2. ‘)”LZ(Q) | &n(z. -)”Lz(Q)'

Therefore the ill-posedness of the reconstructio®a$ mainly influenced by the norm of
the densitieg. andg,,.
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