
MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Math. Meth. Appl. Sci. 2007; 30:1121–1134
Published online 22 December 2006 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/mma.829
MOS subject classification: 35 J 05; 35B 65

The singular sources method for cracks

Morteza Fotouhi∗,†

Department of Mathematics, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran

Communicated by A. Kirsch

SUMMARY

The singular sources method is given to detect the shape of a thin infinitely cylindrical obstacle from a
knowledge of the TM-polarized scattered electromagnetic field in large distance. The basic idea is based
on the singular behaviour of the scattered field of the incident point source on the cross-section of the
cylinder. We assume that the scatterer is a perfect conductor which is possibly coated by a material and
investigate two models with different boundary conditions. Also we give a uniqueness proof for the shape
reconstruction. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Inverse scattering problems have been used to determine the scattering obstacle from a knowledge of
the scattered wave at large distance. In some problems, the scatterer is a thin infinitely cylindrical
conductor. We consider that the incident electric field is polarized in TM mode. This case is
modelled by the Helmholtz equation defined in the exterior of an open arc in R2. We will encounter
two model cases with respect to the kind of obstacle. If the obstacle is a perfect conductor then the
boundary condition on the open arc is Dirichlet, but if it is coated on one side by some material
then it leads to a mixed boundary condition model.

In order to reconstruct the shape of the open arc, Kress used a Newton’s method for a perfect
conductor by a priori information that the scatterer is an open arc [1]. In [2], the authors applied
the factorization method to reconstruct the shape without any a priori information. Also, the other
advantage of this approach over Newton’s method is that it is not necessary to solve a forward
problem at each step of an iterative process. These two methods are not applicable to cracks with
mixed boundary conditions. Cakoni and Colton [3] used the linear sampling method for both the
cases, Dirichlet and mixed boundary condition.
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1122 M. FOTOUHI

In this paper we develop the singular sources method to reconstruct the shape of the open arc.
This method is proposed by Potthast [4], and is used in several models with inverse scattering
problem [5, 6]. The singular sources method is able to reconstruct obstacles without any a priori
information about the boundary condition. The basic idea of the method is based on the singular
behaviour of the scattered field of the incident point source on the boundary of the obstacle. This
means that if �s(. , z) denote this scattered field and z tends to the boundary then

|�s(z, z)| −→ ∞
This behaviour shows that the boundary of the obstacle is the set of points where the scattered
field �s(z, z) becomes singular. We will show that this approach is applicable for a thin cylindrical
obstacle. In order to apply the singular sources method we need to estimate �s(z, z) from the
knowledge of the far-field pattern, u∞(x̂, d), which is derived by the mixed reciprocity relation
and backprojection operator.

In Section 2, the direct scattering problem is considered and a theorem related to the mixed
reciprocity relation is proved. We show the singular behaviour of the scattered field �s(z, z) in
Section 3. We will prove the uniqueness of the shape reconstruction in this section, too. Finally
in Section 3, we will apply the singular sources method to reconstruct the shape of the crack.

2. SCATTERING PROBLEMS

Let �⊂ R2 be an oriented smooth curve. We denote the right-hand side of � with respect to the
chosen orientation by �+ and the left-hand side by �−. There is an unit normal vector, �, pointing
to the side of �+, and it is defined everywhere except in a finite number of points on �.

The scattering of time-harmonic electromagnetic plane waves from a thin infinitely long cylin-
drical perfect conductor with the electromagnetic field E-polarized leads to the following problem:

�u + k2u = 0 in R2\�
u± = 0 on �± (1)

where u±(x)= limh→0+ u(x ± h�) for x ∈ �, and k>0 is the wave number. The solution,
u ∈ H1

loc(R
2\�), is the total field and decomposed u = ui + us, into the given incident field ui, and

the scattered field us, which is required to satisfy Sommerfield radiation condition

lim
r→∞

√
r

(
�us

�r
− ikus

)
= 0 (2)

uniformly in all directions x̂ := x/|x |, with r = |x |.
If one side of the thin cylindrical obstacle is coated by a material with surface impedance �>0,

we obtain the following mixed crack problem for the total field u = ui + us:

�u + k2u = 0 in R2\�
u− = 0 on �−

�u+
��

+ ik�u+ = 0 on �+ (3)
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THE SINGULAR SOURCES METHOD FOR CRACKS 1123

where (�u+/��)(x)= limh→0+ �·∇u(x + h�), and us satisfies the Sommerfield radiation
condition (2). Here, the surface impedance � is a smooth real non-negative function and � ∈ L∞(�).

In [3], it is shown that for every arbitrary incident wave ui, both problems (1) and (3) with
radiation condition (2), have a unique solution. The radiation condition (2) in both the models
implies an asymptotic behaviour of the scattered wave

us(x)= eikr√
r
u∞(x̂) + o(r−3/2) (4)

uniformly in all direction x̂ = x/|x |, where r = |x |, see [7]. The amplitude factor u∞ is known as
the far-field pattern of the scattered wave, us. If we consider a plane incident wave ui(x, d)= eikx ·d ,
in the direction d , with |d| = 1, then its scattered field and far field are denoted by us(x, d) and
u∞(x̂, d), respectively.

The fundamental solution of Helmholtz equation is given by

�(x, y)= i

4
H (1)
0 (k|x − y|)

where H (1)
0 denotes the Hankel function of the first kind of order zero [7]. Consider the point source

�(. , z), z ∈ R2\�, its scattered wave is denoted by �s(. , z). This means that �s(. , z) satisfies the
Helmholtz equation in R2\� with condition (2). Also, �s(. , z) + �(. , z) satisfies the boundary
condition in the problem (1) or (3). We also denote the far-field pattern of �s(. , z) by �∞(x̂, z).

In order to investigate inverse problem in the next section, we need to recall the definition of
the following Sobolev spaces. First, we extend the arc �, to an arbitrary piecewise smooth, closed
curve �D enclosed in a bounded domain D, such that the normal vector � on � coincides with
the outward normal vector on �D. If H1(D) denotes the usual Sobolev space and H1/2(�D) its
usual trace space, then we define

H1/2(�) := {u|� : u ∈ H1/2(�D)}
H̃1/2(�) := {u ∈ H1/2(�D) : supp u ⊆�}

H−1/2(�) := (H̃1/2(�))∗ the dual space of H̃1/2(�)

H̃−1/2(�) := (H1/2(�))∗ the dual space of H1/2(�)

Also, we define [u] := u+ −u− and [�u/��] := �u+/��−�u−/��, the jump of u and �u/�� across
�, respectively. It is clear that if u is the solution of (1) or (3) then [u] = [�u/��] = 0 on �D\�.

In order to determine � and �, we will use the singular sources method. This method is based
on the mixed reciprocity relation, relating the scattered field us on the exterior of the scatterer to
the far-field distribution of the fundamental solution �(. , z) due to a point source z ∈ R2\�. In
[6], this relation has been proved for hard and soft obstacles. We will prove the mixed reciprocity
relation for cracks in the following theorem.

Theorem 1 (Mixed reciprocity relation)
For the scattering of the plane waves ui(. , d), d ∈ � and the point sources �(. , z), z ∈ R2\�, from
a crack scatterer � in both model (1) or (3), we have

�∞(−d, z) = ei�/4

√
8�k

us(z, d), z ∈ R2\�, d ∈ �
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1124 M. FOTOUHI

Proof
First of all note that by the Green representation formula, the scattered wave us(z, d) is equal to

us(z, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫

�D
us+(y, d)

��(z, y)

��(y)
− �us+(y, d)

��(y)
�(z, y) ds(y), z ∈ R2\D

∫
�D

−us−(y, d)
��(z, y)

��(y)
+ �us−(y, d)

��(y)
�(z, y) ds(y), z ∈ D

(5)

where �D is an extension of � to a closed curve. Since us(. , d) and �(z, . ) are solutions of
Helmholtz equation in D, when z ∈ R2\D, so∫

�D
us−(y, d)

��(z, y)

��(y)
− �us−(y, d)

��(y)
�(z, y) ds(y)= 0 (6)

Also, us(. , d) and �(z, .) are radiation solutions of Helmholtz equation in R2\D, when
z ∈ D, then ∫

�D
us+(y, d)

��(z, y)

��(y)
− �us+(y, d)

��(y)
�(z, y) ds(y)= 0 (7)

By considering relations (5)–(7), we conclude that in both the cases z ∈ D or z ∈ R2\D the following
relation is true:

us(z, d)=
∫

�D
[us(y, d)]��(z, y)

��(y)
−
[
�us(y, d)

��(y)

]
�(z, y) ds(y)

Note that if us(. , d) is smooth away from �, then [us] = [�us/��] = 0 on �D\�, also we have
[us] = [u] and [�us/��] = [�u/��], where u(. , d) denotes the total field with respect to the incident
plane wave of direction d , therefore

us(z, d)=
∫

�
[u(y, d)]��(z, y)

��(y)
−
[
�u(y, d)

��(y)

]
�(z, y) ds(y) (8)

On the other hand, if we substitute �s(x, z) instead of us(z, d) in (5) and let |x | −→∞, then we
imply that the far field �∞(x̂, z) for every z ∈ R2\� and x̂ ∈ � is equal to

�∞(x̂, z) = ei�/4

√
8�k

∫
�D

�s+(y, z)
�e−ikx̂ ·y

��(y)
− ��s+(y, z)

��(y)
e−ikx̂ ·y ds(y) (9)

Also, we know that us(. , d) and �s(. , z) are radiation solutions of Helmholtz equation in R2\D,
then we have ∫

�D
�s+(y, z)

�us+(y, d)

��(y)
− ��s+(y, z)

��(y)
us+(y, d) ds(y)= 0 (10)

It follows from (9) and (10) with −d replaced by x̂ , that

�∞(−d, z) = ei�/4

√
8�k

∫
�D

�s+(y, z)
�u+(y, d)

��(y)
− ��s+(y, z)

��(y)
u+(y, d) ds(y) (11)
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Moreover u(. , d) and �s(. , z) are solutions of Helmholtz equation in D, then from Green’s theorem
we conclude that ∫

�D
�s−(y, z)

�u−(y, d)

��(y)
− ��s−(y, z)

��(y)
u−(y, d) ds(y)= 0 (12)

Thus, from (11) and (12), we obtain

�∞(−d, z) = ei�/4

√
8�k

∫
�D

{
�s+(y, z)

�u+(y, d)

��(y)
− ��s+(y, z)

��(y)
u+(y, d)

−�s−(y, z)
�u−(y, d)

��(y)
+ ��s−(y, z)

��(y)
u−(y, d)

}
ds(y)

Now note that the jump of u(. , d), �s(. , z) and their derivatives are zero across �D\�, then

�∞(x̂, z) = ei�/4

√
8�k

∫
�

{
�s+(y, z)

�u+(y, d)

��(y)
− ��s+(y, z)

��(y)
u+(y, d)

−�s−(y, z)
�u−(y, d)

��(y)
+ ��s−(y, z)

��(y)
u−(y, d)

}
ds(y)

Now consider the boundary conditions in Dirichlet case (1), we have

u+(. , d) = u−(. , d) = 0 on �

�s+(. , z) =�s−(. , z) = −�(. , z) on �

Therefore,

�∞(−d, z) = ei�/4

√
8�k

∫
�

−�(y, z)

[
�u(y, d)

��(y)

]
ds(y)

According to relation (8) and relation [u] = 0, on � in the Dirichlet case, the theorem will be
proved in this case. Similarly in the mixed boundary condition (3), we have

u− = 0,
�u+
��

+ ik�u+ = 0 on �

�s− = − �,
��s+
��

+ ik��s+ = −��

��
− ik�� on �

and these relations imply that

�∞(−d, z) = ei�/4

√
8�k

∫
�
[u(y, d)]��(y, z)

��(y)
−
[
�u(y, d)

��(y)

]
�(y, z) ds(y)

which is equal to relation (8). �
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3. INVERSE SCATTERING

The inverse scattering problem in this model is to determine the shape of the arc from the far-field
pattern, u∞(x̂, d) for all observation directions, x̂ ∈ � and all incident directions, d ∈ �. In [3],
the linear sampling method is used to recover the arc, �. This method is applicable without any
a priori knowledge of the kind of scattering model, i.e. we do not need to know if the scatterer is
an open arc or an non-empty interior obstacle sound-soft or hard-soft.

In this section we develop the singular sources method to reconstruct the shape of the open
arc. This method is used in [6] to reconstruct the shape of an non-empty interior scatterer without
knowing the boundary condition or physical properties of the scatterer, in the cases of soft obstacle,
hard obstacle and inhomogeneous medium scattering. In this method we use the field �s(z, z) to
reconstruct the shape of the scattering object. The arc, �, is found to be the set of points where
�s(z, z) becomes singular. First, we prove the following lemma which is necessary for investigation
of singular behaviour of �s(z, z) on �.

Lemma 2
If D ⊂ R2, is an open set then there exist constants �, c>0, such that

‖�(. , z)‖2H1/2(�D)
� c|ln d(z, D)|

∥∥∥∥��(. , z)

��

∥∥∥∥2
H−1/2(�D)

� c|ln d(z, D)|

for every z /∈ D, which satisfies 0<d(z, D)<�.

Proof
For every z ∈ R2\D, �(. , z) satisfies the Helmholtz equation in D, then from Theorem 3.37 and
Lemma 4.3 in [8], we conclude

‖�(. , z)‖H1/2(�D),

∥∥∥∥��(. , z)

��

∥∥∥∥
H−1/2(�D)

�C‖�(. , z)‖H1(D)

On the other hand Lemma 2 in [5] estimates the norm of �(. , z) on D for every z /∈ D, which
satisfies 0<d(z, D)<�

‖�(. , z)‖2H1(D)
� c|ln d(z, D)| �

Now we investigate the behaviour of �s(z, z) when z tends to the arc, �, in the following
theorem.

Theorem 3
Let �s(. , z) be the scattering field of the point-source �(. , z) by an open arc, �. In both the
models, Dirichlet and mixed boundary condition, we have

lim
z→z∗

|�s(z, z)| = ∞

for every z∗ ∈ �.

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1121–1134
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Proof
We consider the theorem in two cases, Dirichlet and mixed boundary condition.

Case 1—Dirichlet model. Suppose that z approaches to z∗ ∈ �. Let D be a bounded domain such
that � is a part of �D and z /∈ D. Now consider u(. , z) to be the radiating solution of Helmholtz
equation

�u + k2u = 0 in R2\D
u = −�(. , z) on �D

In fact u(. , z) is the scattered wave of point source �(. , z) with respect to the obstacle D. Then
by Theorem 2.1.15 in [6], we conclude that for every z near D

|u(z, z)| � c|ln d(z, D)| (13)

Now let w(. , z) = �s(. , z) − u(. , z), then w(. , z) satisfies the Helmholtz equation in R2\D, with
the boundary condition

w(. , z) = 0 on �

We show that for z near D, the rate of growth of w(z, z) is less than the rate of growth of
|ln d(z, D)|. That is

|w(z, z)| � c
√|ln d(z, D)|

In order to see this estimate, let G1 and G2 be two neighbourhoods of z∗, with G1 �G2 and
G2 ∩ �D ⊆�. Then note that � is smooth and w(. , z) = 0∈ H3/2(G2 ∩�), thus theorem of
regularity of the solution up to the boundary in [8] implies that w(. , z) ∈ H2(�1), and

‖w(. , z)‖H2(�1)
�C(‖w(. , z)‖H1(�2)

+ ‖w(. , z)‖H3/2(G2∩�)) �C‖w(. , z)‖H1(�2)

where �i =Gi\D. Hence, by the definition of w(. , z), we have

‖w(. , z)‖H2(�1)
�C(‖�s(. , z)‖H1(�2)

+ ‖u(. , z)‖H1(�2)
)

Now note that the estimation of the radiation solution of Helmholtz equation from the boundary
values for a crack scattering, Theorem 2.4 in [3] implies that

‖�s(. , z)‖H1(�2)
�C‖�(. , z)‖H1/2(�)

Also, if u(. , z) is a radiating solution of Helmholtz equation in R2\D, then

‖u(. , z)‖H1(�2)
�C‖�(. , z)‖H1/2(�D)

Therefore, according to Lemma 2, we imply that

‖w(. , z)‖H2(�1)
�C

√|ln d(z, D)|
for every z near D. On the other hand, the imbedding theorem implies that w(. , z) is a Hölder
continuous function and

|w(x, z)| �C‖w(. , z)‖H2(�1)

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1121–1134
DOI: 10.1002/mma



1128 M. FOTOUHI

for every x ∈ �1. Therefore,

|w(z, z)| � c
√|ln d(z, D)| (14)

for every z ∈ �1. By considering (13) and (14) the proof of theorem is complete in this case.
Case 2—Mixed boundary condition. Let z approach to z∗ ∈ � and extend � to �D similar to the

previous case. If z approaches from left-hand side of � then we consider Helmholtz equation in
R2\D with Dirichlet boundary condition. The proof of the first case works in this situation. Thus,
we assume that z approaches to z∗ from the right-hand side of �. Now let u(. , z) be the radiating
solution of Helmholtz equation

�u + k2u = 0 in R2\D
�u
��

+ ik�u = −��(. , z)

��
− ik��(. , z) on �D

Similar to the first case, consider w(. , z) = �s(. , z) − u(. , z), then w(. , z) satisfies the Helmholtz
equation in R2\D, with the boundary condition

�w

��
+ ik�w = 0 on �

We claim that u and w satisfy the following estimations:

|w(z, z)| � c
√|ln d(z, D)|

|u(z, z)| � c|ln d(z, D)|

In order to see them, let v be the radiating solution of Helmholtz equation with the following
boundary condition:

�v

��
= ik� on �D

Then w1 = evw satisfies

�w1 + k2w1 = f in R2\D
�w1

��
= 0 on �

where f = ev(w∇v · ∇v+2∇v · ∇w−k2vw). Now similar to the first case, by theorem of regularity
of the solution upto the boundary in the neighbourhood of z∗, we conclude that w1 ∈ H2(�1), and
we have

‖w1‖H2(�1)
�C

(
‖w1‖H1(�2)

+
∥∥∥∥�w1

��

∥∥∥∥
H1/2(G2∩�)

+ ‖ f ‖L2(�2)

)
Now since v is bounded on �2, then

‖ f ‖L2(�2)
�C‖w‖H1(�2)

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1121–1134
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and

‖w1‖H1(�2)
�C‖w‖H1(�2)

Thus,

‖w1‖H2(�1)
�C‖w‖H1(�2)

Also, we have w = e−vw1, then

‖w‖H2(�1)
�C‖w1‖H2(�1)

�C‖w‖H1(�2)

and so

‖w‖H2(�1)
�C(‖�s(. , z)‖H1(�2)

+ ‖u(. , z)‖H1(�2)
)

According to Theorem 2.5 in [3], we have

‖�s(. , z)‖H1(�2)
� C

(
‖�(. , z)‖H1/2(�) +

∥∥∥∥��(. , z)

��
+ ik��(. , z)

∥∥∥∥
H−1/2(�)

)

� C

(
‖�(. , z)‖H1/2(�) +

∥∥∥∥��(. , z)

��

∥∥∥∥
H−1/2(�)

)
Also u(. , z) satisfies the following estimate:

‖u(. , z)‖H1(�2)
� C

∥∥∥∥��(. , z)

��
+ ik��(. , z)

∥∥∥∥
H−1/2(�D)

� C

(
‖�(. , z)‖H1/2(�D) +

∥∥∥∥��(. , z)

��

∥∥∥∥
H−1/2(�D)

)
Therefore by Lemma 2, we have

‖w‖H2(�1)
� c

√|ln d(z, D)|
and by imbedding theorem we conclude that

|w(z, z)| � c
√|ln d(z, D)|

for every z near �. It remains to show that

|u(z, z)| � c|ln d(z, D)|
for every z near to �. Similar to the above, we change u to ũ = evu. Now we can write ũ = u1+u2,
where u1 is the radiating solution of

�u1 + k2u1 = 0 in R2\D
�u1
��

= −�(ev�(. , z))

��
on �D

Copyright q 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2007; 30:1121–1134
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and u2 satisfies in the following equation:

�u2 + k2u2 = f in R2\D
�u2
��

= 0 on �D

Similar to the above, we can get

‖u2‖H2(�1)
�C‖ f ‖L2(�2)

�C‖u‖H1(�2)
� c

√|ln d(z, D)|
Thus,

|u2(z, z)| � c

d(z, D)1/2

By considering the boundedness of ev in a neighbourhood of D, the proof will be complete if we
show that

|u1(z, z)| � c|ln d(z, D)|
This estimate follows from Lemma 4 in [5]. �

Before we begin to consider the shape reconstruction problem, we investigate the uniqueness
of the reconstruction. In the following theorem we show the uniqueness of the reconstruction of
the arc, �, which has used the singular behaviour of �s(z, z).

Theorem 4
Assume that �1 and �2 are two open arc obstacles such that their far-field patterns u∞

1 (x̂, d) and
u∞
2 (x̂, d) coincide for all x̂, d ∈ �. Then �1 = �2 and their boundary conditions are similar. Also,

if �1 and �2 satisfy in the mixed boundary condition model then �1 = �2.

Proof
Let G be the unbounded component of R2\(�1 ∪ �2). From

u∞
1 (x̂, d) = u∞

2 (x̂, d) for all x̂, d ∈ �

and Rellich Lemma in [7], we obtain

us1(x, d) = us2(x, d) for all x ∈G, d ∈� (15)

Thus, by Theorem 1 we have

�∞
1 (x̂, z) =�∞

2 (x̂, z) for all x̂ ∈ �, z ∈G

Again, we can use Rellich Lemma to achieve the following relation:

�s
1(x, z) =�s

2(x, z) for all x, z ∈G (16)

If �1 �=�2, then without loss of generality we can assume that there exists z0 ∈ �1\�2. Thus,
Theorem 3 implies that

∞>�s
2(z0, z0) = lim

z→z0,z∈G
�s
2(z, z) = lim

z→z0,z∈G
�s
1(z, z) = ∞
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This contradiction shows that �1 =�2. From relation (15), we conclude that traces of us1(x, d)

and us2(x, d) are equal on �1 =�2. Thus, the boundary conditions of the obstacles �1 and �2 are
similar. Also, by equality of the scattered waves us1(x, d) and us2(x, d), we conclude �1 = �2 in
the mixed boundary condition model. �

Now we apply the singular sources method to reconstruct the shape of the obstacle. According
to Theorem 3 the arc, �, is the set of points where �s(z, z) is large. In order to determine this set
we should calculate �s(z, z) from the far-field pattern u∞(x̂, d).

Suppose we know by a priori information that �⊂ B, where B is a bounded domain. For every
z ∈ B, let G =G(z) be a smooth region which does not have Dirichlet eigenvalue −k2, z /∈G,
�⊆G ⊆ B and the exterior of G is connected, where k is the wave number. For every ε, there is
g ∈ L2(�) such that

‖�(. , z) − vg‖L2(�G)<ε

where vg(x) := ∫
� g(d)eikx ·d ds(d) is a Herglotz wave (see Lemma 3.1.2 in [6]). Now note that

the functions vg and �(. , z) are the solutions of Helmholtz equation in G, hence

‖�(. , z) − vg‖H1(G) � c1ε

Therefore, for every z and �, there exists g�(z, .) ∈ L2(�) such that

‖�(. , z) − vg�‖H1(G) � �

If we consider the trace of �(. , z) and vg� on �, from Theorem 3.37 in [8], we see that

‖�(. , z) − vg�‖H1/2(�) � c2‖�(. , z) − vg�‖H1(G) � c2�

where c2 is a constant which depends only on �. Also from Lemma 4.3 in [8], we have∥∥∥∥ �
��

�(. , z) − �
��

vg�

∥∥∥∥
H−1/2(�)

� c3�

Therefore, for every �>0 and z ∈ B\� in both models with Dirichlet and mixed boundary condition,
there is g�(z, .) ∈ L2(�) such that

‖�s(. , z) − vsg�
‖H1(B\�) �C� (17)

and

‖�∞(. , z) − v∞
g�

‖L2(�) �C� (18)

where C depends only on � and B, while vsg�
and v∞

g�
are the scattered field and the far field with

respect to the Herglotz wave vg� .
Let �� ={z ∈ Rm |d(z,�) � �}. Then according to the regularity of the solution of elliptic

equation and relation (17) we conclude that for every x ∈ B\��

‖�s(. , z) − vsg�
‖H2(B�(x)) �C1‖�s(. , z) − vsg�

‖H1(B�(x)) �C1C�
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where B� is a ball with centre in x and radius �, moreover C1 depends on �. Also the imbedding
theorem and the above result imply that �s(. , z) − vsg�

is a Hölder continuous function on B� and
we have

|�s(x, z) − vsg�
(x)|�C2‖�s(. , z) − vsg�

‖H2(B�(x)) �C2C1C� =C�� (19)

where C� depends only on �, B and �.
On the other hand, we know that

vsg�
(x)=

∫
�
g�(z, d)us(x, d) ds(d) (20)

for every x ∈ Rm\�. Moreover,

v∞
g�

(x̂) =
∫

�
g�(z, d)u∞(x̂, d) ds(d) (21)

for every x̂ ∈ �. Thus, from (19), (20) and Theorem 1 we have∣∣∣∣�s(x, z) − 1

�m

∫
�
g�(z, d)�∞(−d, x) ds(d)

∣∣∣∣ �C��

Now from (18) and (21) we conclude that there is g�(x, .) such that∥∥∥∥�∞(. , x) −
∫

�
g�(x, d̃)u∞(. , d̃) ds(d̃)

∥∥∥∥
L2(�)

�C�

Thus, ∣∣∣∣∫
�
g�(z, d)

{
�∞(−d, x) −

∫
�
g�(x, d̃)u∞(−d, d̃) ds(d̃)

}
ds(d)

∣∣∣∣
� ‖g�(z, .)‖L2(�).‖�∞(. , x) − v∞

g�
‖L2(�) �C�‖g�(z, .)‖L2(�)

Therefore, for every x, z ∈ B\��, we have∣∣∣∣�s(x, z) − 1

�m

∫
�

∫
�
g�(x, d̃)g�(z, d)u∞(−d, d̃) ds(d̃) ds(d)

∣∣∣∣ �C�� + C�

�m
‖g�(z, .)‖L2(�)

Now we formulate the previous calculations and results in the following theorem. In order to do
this we define the backprojection operator, Q as

(Qw)(x, z) := 1

�m

∫
�

∫
�
g�(x, d̃)g�(z, d)u∞(−d, d̃) ds(d̃) ds(d)
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Theorem 5
Let � be a crack obstacle then there are kernels g� and g� for every � and � such that

|�s(z, z) − (Qu∞)(z, z)| �C�� + C�

�m
‖g�(z, .)‖L2(�)

for every z ∈ R2\��, moreover C and C� are constants.

Remark 1
For an appropriate choice of � and � the above error can be made arbitrarily small. In fact for
given �>0, we can choose � such that �‖g�(z, .)‖L2(�) becomes sufficiently small. Now if �→ 0,
and �(�) → 0, then the error tends to zero.

Remark 2
In order to apply this method, we need to choose the region G(z) with the property � ⊂ G(z), but
this seems impossible when � is unknown. In order to take care of this trouble, we start with a
number of fixed directions p1, . . . , p8 which divided the plane into eight symmetric regions. For
every direction pi , we choose a special region Gi (z) and compute a(1)

i (z) as an approximation
�s(z, z) using the operator Q, where Q is depending on Gi (z). We can obtain a first approximation
�1 as the set

�1 := {z ∈ B : |a(1)
i (z)|>C for i = 1, . . . , 8}

In each further step, we adapt the choice G(z) according to the reconstruction �n of the nth step,
�n ⊂G(z), and repeat the procedure to obtain the (n + 1)th approximation �n+1.

Remark 3
We estimate �s(z, z) from the far field, u∞ by the operator Q, and if the far field is measured
with some noise and there is u∞

� an approximation of u∞ such that

‖u∞ − u∞
� ‖L2(�×�) � �

then the error for the approximation of �s(z, z) by (Qu∞
� )(z, z) is estimated by

|�s(z, z) − (Qu∞
� )(z, z)| � |�s(z, z) − (Qu∞)(z, z)| + |Q(u∞ − u∞

� )(z, z)|

� C�� + C�

�m
‖g�(z, .)‖L2(�) + �

�m
‖g�(z, .)‖L2(�)‖g�(z, .)‖L2(�)

Therefore, the ill-posedness of the reconstruction of � is mainly influenced by the norm of the
densities g� and g�.
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