Faculty of Mathematics and Computer Shahid Bahonar University of Kerman Kerman, Iran 30 August – 02 September 2021

دانشگاه شهید باهنر کرمان دانشکده ریاضی و کامپیوتر ۱ تا ۱۱ شویر در ۱۶۵۹

The Epiperimetric Inequality Approach for the Regularity of a Free Boundary Problem

Morteza Fotouhi

Sharif University of Technology

August 22, 2021

دانشگاه شهید باهنر کرمان دانشکده ریاضی و کامپیوتر ۸ تا ۱۱ شهریور ۱۴۰۰

Hilbert's 19th Problem

Are the minimizers of $\int_{\Omega} F(\nabla u, u, x) dx$ analytic?

Hilbert's 19th Problem

Are the minimizers of $\int_{\Omega} F(\nabla u, u, x) dx$ analytic?

Remarkable Results:

• S. Bernstein (1904): C^3 solutions are analytic.

Hilbert's 19th Problem

Are the minimizers of $\int_{\Omega} F(\nabla u, u, x) dx$ analytic?

Remarkable Results:

- S. Bernstein (1904): C^3 solutions are analytic.
- I.G. Petrowsky (1939): C^1 solutions are analytic.

Hilbert's 19th Problem

Are the minimizers of $\int_{\Omega} F(\nabla u, u, x) dx$ analytic?

Remarkable Results:

- S. Bernstein (1904): C^3 solutions are analytic.
- I.G. Petrowsky (1939): C^1 solutions are analytic.
- E. De Giorgi J. Nash (1957): With merely assumptions the solutions are $C^{1,\alpha}$.

Main Questions

$$u \leftarrow \min \int_{\Omega} |\nabla u|^2 + 2F(x, u) dx$$

The minimizers solve the semilinear problem

$$\Delta u = f(x, u)$$

- Regularity of the minimizers?
- Regularity of the level sets $\{u=c\}$?

<mark>پنجاه و دومین</mark> کنفرانس ریاضی ایران 52nd Annual Iranian Mathematics Conference

Example: Obstacle Problem

$$u \leftarrow \min_{u \ge 0} \int |\nabla u|^2 + 2u \, dx \xrightarrow{\text{satisfies}} \Delta u = \chi_{\{u > 0\}}$$

Example: Obstacle Problem

$$u \leftarrow \min_{u \ge 0} \int |\nabla u|^2 + 2u \, dx \xrightarrow{\text{satisfies}} \Delta u = \chi_{\{u > 0\}}$$

H. Brezis - D. Kinderlehrer (1973): Solutions have optimal regularity $u \in C^{1,1}$.

Example: Obstacle Problem

$$u \leftarrow \min_{u \ge 0} \int |\nabla u|^2 + 2u \, dx \xrightarrow{\text{satisfies}} \Delta u = \chi_{\{u > 0\}}$$

H. Brezis - D. Kinderlehrer (1973): Solutions have optimal regularity $u \in C^{1,1}$.

L. Caffarelli (1977): Regular part of Free boundary $\partial \{u > 0\}$ is analytic.

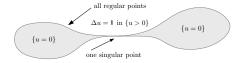
Example: Obstacle Problem

$$u \leftarrow \min_{u > 0} \int |\nabla u|^2 + 2u \, dx \xrightarrow{\text{satisfies}} \Delta u = \chi_{\{u > 0\}}$$

H. Brezis - D. Kinderlehrer (1973): Solutions have optimal regularity $u \in C^{1,1}$.

L. Caffarelli (1977): Regular part of Free boundary $\partial \{u > 0\}$ is analytic.

A. Figalli - J. Serra (2019): Singular part of Free boundary is at least C^1 .



Higher Regularity in a Semilinear Problem (0 < q < 1)

$$\min \int |\nabla u|^2 + \frac{2}{1+q} |u|^{1+q} dx \xrightarrow{\text{solves}} \Delta u = |u|^{q-1} u$$

Priori Regularity: At least $u \in C^{2,q}$. Moreover, $u \in C^{\infty}$ in $\{u \neq 0\}$.

Higher Regularity in a Semilinear Problem (0 < q < 1)

$$\min \int |\nabla u|^2 + \frac{2}{1+q} |u|^{1+q} dx \xrightarrow{\text{solves}} \Delta u = |u|^{q-1} u$$

Priori Regularity: At least $u \in C^{2,q}$. Moreover, $u \in C^{\infty}$ in $\{u \neq 0\}$.

Question: Which regularity for solutions and free boundaries $\partial \{u > 0\}$ and $\partial \{u < 0\}$ do we expect?

Higher Regularity (0 < q < 1)

$$\Delta u = |u|^{q-1}u = (u_+)^q - (u_-)^q$$

• M. F. - H. Shahgholian (2017): The optimal regularity of solution on the free boundary $\partial \{u > 0\}$ is $C^{[\kappa],\kappa-[\kappa]}$, where $\kappa = 2/(1-q)$.

دانشگاه شهید باهنر کرمان دانشکده ریاضی و کامپیوتر ۸ تا ۱۱ شهریور ۱۴۰۰

Faculty of Mathematics and Computer Shahid Bahonar University of Kerman Kerman, Iran 30 August - 02 September 2021

کنفرانس ریاضی ایران 52nd Annual Iranian Mathematics Conference

Regularity of FB

Blow-up:
$$u_{r,x_0}(x) := u(x_0 + rx)/r^{\kappa} \longrightarrow u_{x_0}(x)$$
 as $r \to 0$.

52nd Annual Iranian Mathematics Conference

Regularity of FB

Blow-up:
$$u_{r,x_0}(x) := u(x_0 + rx)/r^{\kappa} \longrightarrow u_{x_0}(x)$$
 as $r \to 0$.

Global Solutions: u_{x_0} is a κ -homogeneous solution in \mathbb{R}^n ,

$$\Delta u_{x_0} = |u_{x_0}|^{q-1} u_{x_0}, \qquad u_{x_0}(\lambda x) = \lambda^{\kappa} u_{x_0}(x).$$

Regularity of FB

Blow-up:
$$u_{r,x_0}(x) := u(x_0 + rx)/r^{\kappa} \longrightarrow u_{x_0}(x)$$
 as $r \to 0$.

Global Solutions: u_{x_0} is a κ -homogeneous solution in \mathbb{R}^n ,

$$\Delta u_{x_0} = |u_{x_0}|^{q-1} u_{x_0}, \qquad u_{x_0}(\lambda x) = \lambda^{\kappa} u_{x_0}(x).$$

• half-plane solutions $u_{x_0}(x) = \alpha_{\kappa}(x \cdot \nu_{x_0})_+^{\kappa}$ for some unit vector $\nu_{x_0} \in \mathbb{R}^n$,

Regularity of FB

Blow-up:
$$u_{r,x_0}(x) := u(x_0 + rx)/r^{\kappa} \longrightarrow u_{x_0}(x)$$
 as $r \to 0$.

Global Solutions: u_{x_0} is a κ -homogeneous solution in \mathbb{R}^n ,

$$\Delta u_{x_0} = |u_{x_0}|^{q-1} u_{x_0}, \qquad u_{x_0}(\lambda x) = \lambda^{\kappa} u_{x_0}(x).$$

• half-plane solutions $u_{x_0}(x) = \alpha_{\kappa}(x \cdot \nu_{x_0})_+^{\kappa}$ for some unit vector $\nu_{x_0} \in \mathbb{R}^n$,

Lipschitz Regularity: On the regular part of FB, we have the normal vector field $x_0 \mapsto \nu_{x_0}$.

Regularity of FB

Shahid Bahonar University of Kerman Kerman, Iran 30 August – 02 September 2021

If $||u_{r,x_0} - u_{x_0}||_{L^2(\partial B_1)} \leq Cr^{\beta}$ for every free boundary point x_0 , then

$$|\nu_{x_1} - \nu_{x_2}| \le C|x_1 - x_2|^{\beta/(\kappa + \beta)},$$

so the free boundary is $C^{1,\beta/(\kappa+\beta)}$.

Epiperimetric Inequality

Define the energy functional

$$M(v) := \int_{B_1} |\nabla v|^2 + \frac{2}{1+q} |v|^{1+q} dx - \kappa \int_{\partial B_1} |v|^2 d\mathcal{H}^{n-1},$$

and the admissible set of blowups

$$\mathbb{H} := \{ \alpha_{\kappa}(x \cdot \nu)_{+}^{\kappa} : \nu \in \mathbb{R}^{n} \text{ is a unit vector} \}.$$

There exist $\epsilon \in (0,1)$ such that if ϕ is a κ -homogeneous function and enough close to \mathbb{H} in topology of $W^{1,2}(B_1)$, then there exists $v \in W^{1,2}(B_1)$ such that $v = \phi$ on ∂B_1 and

$$M(v) - M(\mathbb{H}) \le (1 - \epsilon)(M(\phi) - M(\mathbb{H})).$$

Shahid Bahonar University of Kerman

30 August - 02 September 2021

دانشکده ریاضی و کامپیوتر ۸ تا ۱۱ شهر بور ۱۴۰۰

Epiperimetric Inequality

• Reifenberg E.R. (1964): Analyticity of minimal surfaces.

Epiperimetric Inequality

- Reifenberg E.R. (1964): Analyticity of minimal surfaces.
- Weiss G.S. (1999): Regular part of FB in obstacle problem is $C^{1,\alpha}$.

- Reifenberg E.R. (1964): Analyticity of minimal surfaces.
- Weiss G.S. (1999): Regular part of FB in obstacle problem is $C^{1,\alpha}$.
- Colombo M., Spolaor L., Velichkov B. (2018): Singular part of FB in obstacle problem is $C^{1,\log}$.

Epiperimetric Inequality

- Reifenberg E.R. (1964): Analyticity of minimal surfaces.
- Weiss G.S. (1999): Regular part of FB in obstacle problem is $C^{1,\alpha}$.
- Colombo M., Spolaor L., Velichkov B. (2018): Singular part of FB in obstacle problem is $C^{1,\log}$.
- M. F. H. Shahgholian G.S. Weiss (2021): The regular part of free boundary in problem $\Delta u = |u|^{q-1}u$ is $C^{1,\alpha}$.

Thank you for your attention.