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Abstract— Social norms are a core concept in social sciences
and play a critical role in regulating a society’s behavior.
Organizations and even governmental bodies use this social
component to tackle varying challenges in the society, as it is
a less costly alternative to establishing new laws and regulations.
Social networks are an important and effective infrastructure
in which social norms can evolve. Therefore, there is a need
for theoretical models for studying the spread of social norms in
social networks. In this paper, by using the intrinsic properties of
norms, we redefine and tune the Rescorla—Wagner conditioning
model in order to obtain an effective model for the spread of
social norms. We extend this model for a network of people
as a Markov chain. The potential structures of steady states
in this process are studied. Then, we formulate the problem of
maximizing the adoption of social norms in a social network by
finding the best set of initial norm adopters. Finally, we propose
an algorithm for solving this problem that runs in polynomial
time and experiments it on different networks. Our experiments
show that our algorithm has superior performance over other
methods.

Index Terms— Conditioning, Markov chains, norm, Rescorla—
Wagner model, social networks, spread.

I. INTRODUCTION

OCIAL networks have become one of the most important
social organizations. In this space, many connected users
participate in innovation, social development, and the creation
of new ideas. It is through such collaboration that social
networks have a large amount of impact on the arts, culture,
science, education, and so on [1]. These interactions can also
help in evolving social norms based on the needs of a society.
Social norms, also called the social grammar [2], are stan-
dards of behavior which are accepted in a group or community,
where violating them results in some sort of punishment.
Norms play an important role in achieving the goals of a
society, especially to regulate (order) various behaviors [3].
Social norms specify what is acceptable in a group, so they
can even be used to assure adherence to society’s laws [4].
In some cases in societies, social norms are the main tool for
maintaining order [5]. Different claims are made by scholars
about the interaction between informal rules (social norms)
and formal rules (laws), some think that they are comple-
mentary and some think they are substitutes, but there is a
serious belief in the context that formal rules are costly [6].
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Fig. 1. Micro and macro levels in the emergence of a norm [11]. According
to this model, the formation of norms starts at the micro level and continues
to the macro level and ends again at the micro level, where conformity to the
norms is guaranteed using sanctions.

Thus, researchers in various fields have focused on creating
and evolving social norms (see [7]-[9]).

To create a social norm, we need to devise methods for
promulgating the norm and also sanctions that can prevent
their violation [10]. This is based on James Coleman’s model
for social norms [11]. This model, as can be seen in Fig. I,
starts at the micro level, where individual interact, continues to
the macro level, where the norm is formed, and finally ends
again at the micro level, where conformity to the norms is
guaranteed using sanctions [9].

Any model for social-norm evolution must provide solutions
for steps 1 and 3 of Coleman’s model at the micro level. In this
paper, we emphasize on step 3, i.e., promulgation, where for
analyzing the nature of social norms, we want to define a new
method to model the process in which an actor adopts a social
norm. In our model, we focus only on the effective aspects of
this process and discard other factors like cognition (see [12]).
We make use of methods based on classical conditioning and
associative learning. These methods are the main tool for
understanding many aspects and have many practical uses in
different fields such as psychotherapy and law (see [13]-[19]).

Classical conditioning, also called the Pavlov conditioning
and associative learning, is a learning procedure in which
different stimuli are used on an organism for learning a
habit or behavior. Classical conditioning is composed of the
following components [13].

1) Unconditional Stimulus (US): Food.

2) Unconditional Response (UR): Food-induced salivation.

3) Conditional Stimulus (CS): Bell.

4) Conditional Response (CR): Bell-induced salivation.
The examples given for each above-mentioned component
come from the classic experiment done using classical con-
ditioning in which US food alongside CS bell was used for
conditioning dogs (the organism) so that they would salivate
when hearing the sound of a bell. Using associative learning,
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we can see that when the two types of stimulus happen
concurrently many times, CS can alone to induce the CR
(here salivation) [12]. In our model, promulgation of norms
is done using a classical conditioning procedure. We assume
that people are conditioned through their interactions with their
friends, family, and other people with whom they have social
relations.

One of the most famous models in the context of condition-
ing and associative learning is the Rescorla—Wagner model that
has been found very useful for describing animals as well as
human conditioning in a variety of contexts [20]. One of the
main such works is the work of Epstein [12], which uses this
model to analyze social behavior. In this model, the following
formula is used to correlate learning to the amount of effort
(the number of tries required to condition the organism) [21]:

Vi1 =0 + (A —0f) (1)

where v; is the amount of learning after tth trial (the asso-
ciative strength between the CS and US), a is the learning
parameter, and 4, is the intensity of the US on that trial.

In this paper, we use the Rescorla—Wagner model as a
basis for modeling the conformance of people to a social
norm. Then, we propose an extension of it to model the
spread of social norms in a social network. We show that our
model can be considered as a standard Markov chain process.
Then, we study the steady states of this process and extract
their form. We show that the structure of the network and
the initial condition of nodes affect the steady state. Finally,
we propose an efficient algorithm to find the initial setting for
which the maximum amount of conformance to a social norm
happens and compare our algorithm with different heuristics
and methods. Our experiments on different networks show that
the amount of conformance to a social norm which can be
achieved by our algorithm is much larger than those methods.

This paper is structured as follows. In the continuation
of this section, we present the related works. In Section II,
we propose our extension to the Rescorla—Wagner model and
show that how it can be represented as a Markov chain process.
In Section III, we analyze the steady states of our model
and find their potential forms and show how the structure
of the network and the initial state of nodes can affect these
states. In Section IV, the problem of maximizing the spread
of social norms in a given social network is defined and
an efficient algorithm for solving this problem is proposed.
Finally, in Section V, we establish an experiment to check
the performance of our algorithm in comparison to other
algorithms which can be used to solve the target problem.

A. Related Works

Much research has been done on utilizing social norms
to tackle various social problems. In this regard, a large
body of work on the topic of social norms has been con-
ducted by Deitch-Stackhouse et al. [22]. This line of research
includes ways to tackle social challenges like sexual violence,
alcoholism, and smoking in schools and universities. This is in
line with an approach called the social norm approach where
positive aspects of adopting a norm are emphasized instead of
prioritizing negative aspects such as fear. For example, one of
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the results shows that only 5% of men conduct sexual assault,
and an effective way to control this 5% is to make use of
the other 95%. In another example, the work of Rahwan [23]
about using artificial intelligence for regulating societies and
social contract is significant. This research explains how we
need tools to program an algorithmic social contract between
various human stakeholders, mediated by machines. Social
norms can be used in this approach to avoid violation of social
contracts.

Some other studies have focused on specific norms inside
social networks. McLaughlin and Vitak [24] use an expectation
violation theory [25] to analyze and extract social norms
related to the ethics of social interactions and activities on
Facebook. Social networks are also an optimum medium for
promulgating social norms. References [8] and [9] use this
medium to promote social norms related to controlling the
spread of the HIV virus. In another example, Dickie et al. [26]
showed that social norm can be used for promulgating hand
wash and is an effective method of preventing the spread of
infectious illness.

What we emphasize in this paper is the evolution of
social norms by utilizing the social networks structure. Much
research in this context has been done on developing behaviors
in social networks [7], [27], [28]. For example, in [7] from
MIT’s Media Laboratory utilizes behavior analysis methods
in networks. Setting social networks to decrease the speed
of dissemination of ideas to prevent the herd behavior in
choosing strategies and approaches is one of the most impor-
tant technology-based methods used by him for changing
behaviors.

Another related research areas are social conta-
gion [29], [30], spread of influence [31]-[33], diffusion of
innovation [34], and cascading behavior [35]. In all of these
research areas, the spread of different types of information
between various nodes in networks is analyzed, and efficient
algorithms to facilitate such flow that can be social norms are
devised and proposed.

To the best of our knowledge, [21] and [31] are the nearest
work to the findings of our paper. Kempe et al. [31] propose
an algorithm for finding the best set of initial adopters for
spreading an influence in a social network. This paper proposes
two simple models for spreading influences through social
networks that are called the threshold model and the cascade
model. Then, it proves that the NP-hardness of finding the best
set of initial adopters for both of these models and designs is
an approximation algorithm for this problem. Finally, it con-
ducts experiments for comparing their algorithm with simple
heuristics. In our paper, we use the same approach for the
spread of social norms.

Wei et al. [21] propose a generalized version of the
Rescorla—Wagner model based on Markov chains to enable
the study of connections among agents and their effects on
the dynamic of the learning process. To this end, the author
replaces all scalars with matrices. Then, the stability and
convergence issues of the proposed model are studied. Our
paper, on the other hand, proposes a specialized extension of
the Rescorla—Wagner model for the spread of social norms,
and the initial set selection problem is studied.
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II. PROPOSED MODEL

The disposition to social norms and adherence to them is a
gradual process [36], where accepting a social norm by a node
is related to the number of trials that his neighboring nodes
apply [12].

As we previously noted in Colman’s model for social norm
individual actions play a vital role in increasing a node’s
disposition to accept a social norm. To model such actions,
different methods have been proposed, from the marginal
utility theory [11] to the game theory [3], [37]. In our model,
we use Epstein’s intuition in utilizing the Rescorla—Wagner
conditioning theory. Similarly, other studies have also used
the theory of Rescorla—Wagner to propose neurocomputational
models and their applications in social norm creation [38].

Before formally expressing the model, consider the follow-
ing example. Consider an enterprise in which the collabora-
tions among employees form a network. In this enterprise,
we want to promulgate the social norm of “having formal
interactions in the work environment.” There is an initial set
of nodes (employees) whose interactions are currently in the
formal form. When these employees interact with their friends
in the work environment, they may be influenced by their
behavior and thus become inclined to the norm. We can model
this situation in a classical conditioning setting. Assume that
a man who does not adhere to the norm (person A) has linked
with a person who adheres to the norm (person B).

1) US: B interacts with A according to the norm.

2) UR: The disposition toward the norm induced by US.

3) CS: The social position of B and her influence on A.

4) CR: The disposition toward the norm induced by CS.

In accordance to [12], when the US and the CS are repeated
simultaneously for a number of times for an employee, he
becomes conditioned, and therefore, the US is not needed and
the desired effect is achieved only by CS. Therefore, in each
interaction in the work environment, even with one with a
low impact on him, he will act formally. After this phase,
these nodes’ adherence to the social norm may influence their
colleagues and make them inclined to the social norm too.

This scenario happens for many other social norms. Gener-
ally, assume that we have a network A/ with n nodes for which
some of its nodes (the set S) are initially adhered to one of
such social norms. In our model, we hire the Rescorla—Wagner
conditioning formula (1) to model the spread of these norms
in a social network. To do this, let us first define the intensity
of US for a node as the average amount of adherence of his
neighboring nodes to the social norm. Therefore, we have

o
3= ZjeN' vy

" deg' (W) @

where

1) Al is the intensity of the US in the rth simultaneous
occurence of the CS and the US.

2) vf € [0, 1] is the amount of node i’s adherence to
the social norm after tth simultaneous occurence of the
CS and the US. v/ = 1 means that all of his actions
are adapted to the social norm and vf = 0 means the
opposing case.

3) N' is the set of i’s neighboring nodes and deg’ (\) =
|Ni| is the degree of node i in the network A/,
Now, we can reformulate the Rescorla—Wagner model for each
node i according to the above-mentioned definition of 4!

vf = vj_ + ai(’lﬁ—l - U;—l) (&)

where o' € [0, 1] is the learning parameter of node i.
The above-mentioned formula repeats for each node. Their
simple form enables us to write them as one matrix formula

Vi=Vici+ AN 1 = Vio). 4)

where V; is equal to an n x 1 matrix whose ith entriy is vf.
A; is the n x 1 vector of iis Finally, A is an n x n diagonal
matrix for which A;; = a'.

By (2), we can write A, as a linear function of V.
To this aim, consider the adjacency matrix of the network
(a symmetric (0, 1) matrix for which the (i, j) entry is 1 if
there is an edge between nodes i and j and O if there is no
edge and normalize it so that the sum of the entries in each
row is 1. We define this matrix as P where its (i, j) entry is

1/deg' (N), Ifi is connected to j in N
P ;= ; )
0 Otherwise.
By reconsidering (2), one can easily see that
AI - PVI (6)
According to (6), we can rewrite (4) as follows:
Vi=Viaa+APV,1 = Vi)
=Vi_ 1+ AP —1DV,_,
= (AP = D) + DV,
= MVt7] (7)

where [ is the n x n identity matrix and M is equal to
A(P — 1)+ 1. M is the row stochastic, and thus, (7) defines
a standard Markov chain.
Observation 1: M is row stochastic.
Proof: Consider the ith row of matrix M = A(P—1)+1.
M;; =1—a' and for each j # i, we have

-] al/deg'(NV), Ifi is connected to j in A ®
“ o Otherwise.
Thus, trivially each M; ; > 0 and

; . .

- deg' (N)a!
ZMi,jzl—al—i—M:l. 9)

o deg' (V)
]

Sections III and IV, we need to know more about the
eigenvalues and eigenvectors of M. Perron’s famous theorem
can be helpful here. Many different proofs are proposed for
this theorem [39].

Theorem 1 (Perron [40]): The eigenvalue of the largest
absolute value of a positive (square) matrix A is both simple
and positive and belongs to a positive eigenvector. All other
eigenvalues are smaller in absolute value.

The following observation specifies the maximum eigen-
value of M and its associated eigenvector.
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Observation 2: M’s maximum eigenvalue is A =1 and its
associate eigenvectoris 1 =[1 1 1---1]7. All Ms other than
eigenvalues are smaller in absolute value.

Proof: M is row stochastic, therefore, it can be simply
shown that A =1 and o =[1 1 1---1]7 are M’s eigenvalue
and eigenvector, respectively. To see this, consider that the
ith row of the n x 1 matrix Mv is the sum of the entries in
M’s ith row, which has been shown to be equal to 1. Thus,
we have Mo = v which proves our claim.

Now, suppose that for a n x 1 vector x and V' > 1,
Mx = A'x. The rows of M are nonnegative and sum to 1.
Therefore, each element of vector Mx is a convex combination
of the x’s entries. This can be no greater than xpax (the largest
entry of x). On the other hand, at least one element of A'x is
greater than xpyax, which proves that the eigenvalue 2’ > 1 is
impossible.

Therefore, the largest eigenvalue of M is equal to 1 and
from Perron’s theorem, all its other eigenvalues are smaller in
absolute value. [l

In Section III, we use this observation to find the potential
forms of the system’s steady state.

III. STEADY-STATE ANALYSIS

In this section, we study the steady state of our social norm
evolution process. In Section II, we showed that this process
can be represented with a standard Markov chain process
model. We call our process is in a steady state if variables
vf s which define the amount of nodes’ adherence to the social
norm are unchanging in time. Therefore, returning back to our
model

Vi=MVi_1. (10)

The steady state is V), for some p > 0 when V,y1 = V).
For simplicity, we represent the steady state with notation V.
We show that the steady state is sensitive to the start state (Vp).
Theorem 2 shows this fact.

Theorem 2: The steady state of the social norm evolution
process V; = MV,_ on a connected graph is in the form of
Voo = cli, where

Vo=cruy+cou+---+cpuy

and uy, us, ..., and u, are the eigenvectors of M with |u;| >
lua| > -+ > |upl.

Proof: Assume that u1, us,...,u, are M’s eigenvectors
associated with eigenvalues A1, A2,...,4,. From Observa-
tion 2, we know that 2; = 1 and u; = [1 1 1---1]7. These
vectors define a basis for R", so we can write V() as a linear
combination of these vectors

Vo = ciuy + coup + - -+ + cpuy

Y

where (c1, ¢2, ..., ¢y) describes the coordinates of Vj in terms
of the ordered basis B = {uy,us,...,u,}. In this setting,
we have

Vi=MVy=ciMuy +c;Muy+---+c,Mu,

= ci1Auy + crhoupy + - -+ cpipty. (12)
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Fig. 2. Sample graph used for understanding the fact that the steady state
of our social norm evolution process is determined by V.

TABLE I

DIFFERENT VALUES FOR V(j AND THEIR CORRESPONDING STEADY STATE
Voo—THE MAXIMUM AMOUNT OF ADHERENCE TO THE SOCIAL NORM
IS ACHIEVED BY CHOOSING NODES 3 AND 4 AS INITIAL ADOPTERS

Vo | Vo

[110000] | [0.3330.333 0.333 0.333 0.333 0.333]
[001100] | [0.416 0.416 0.416 0.416 0.416 0.416]
[000011] | [0.250 0.250 0.250 0.250 0.250 0.250]

With the same justification, we have

Vi = ciljur + c22bun + -+ cpdlug. (13)

From Observation 2, Ay, A3, ..., A, are all less than 1, there-
fore all terms in right-hand sideof (13) except ¢ itl 1] vanishes
for t — o0o. Thus, with 2y = 1 and u; = [1 1 1---1]7,
we have

Voo = tlim Vi=ciu1 = C1T = [c1 c1 1 '“cl]T. (14)
00

O

Therefore, the steady state of our Markov process is
uniquely determined by V. We check this fact by simulating
the process for different values of Vy in the graph shown
in Fig. 2. In this simulation, we assume that the learning
factor of all nodes is equal to 0.5. The values of V) and the
corresponding steady state (V) are presented in Table L.

As it can be seen in this table, three different scenarios are
simulated, each with a different initial state. In each of these
initial states, the amount of adherence to social norm is set to
zero for all nodes except two of them which we consider as an
initial adopters of the norm. Our simulation shows that among
these scenarios, the scenario in which nodes 3 and 4 are chosen
as initial adopters of the social norm cause the maximum
amount of adherence to the social norm in the steady state.
In Section IV, we devise algorithms for optimizing the amount
of adherence to the social norm by carefully setting the initial
state of the process.

IV. MAXIMIZING THE SPREAD OF SOCIAL NORMS

As we saw in Section III, the social norm evolution process
and its steady state are sensitive to its initial state. Therefore,
we can control the steady state of this process by controlling
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the initial state values. In this section, we consider the problem
of maximizing the adherence to the social norm in the steady
state by setting the initial state. To set the initial state, we must
find k& champions (initial adopters) among the nodes of the
network and set the values of 1)6 to one for them. This problem
can be defined formally as follows:

n
i
max E Dso

i=1

s.t. iv(’) =k

i=1

vhef0,1}, i=1,...,n
of =vj_ +a' (AT =0l y), i=1,..,n
and r=1,2,3,... (15)

From here, we call this problem the social norm spread
maximization problem or MaxSNSP. In Theorem 3, we show
that MaxSNSP is solvable in polynomial time and propose an
algorithm for this aim.

Theorem 3: There exists an optimal algorithm that solves
the MaxSNSP problem in polynomial time.

Proof: We show that Algorithm 1 returns the optimal solu-
tion for the MaxSNSP problem. This algorithm can trivially
can in polynomial time O (n?).

By Theorem 2, we showed that the steady state of the
social norm evolution process V; = MV;_; is in the form
of véo = ¢; for each 1 < i < n. We showed that ¢ is
the coordinate associated with the largest eigenvector of M
in absolute value when we express Vj in the basis containing
all M’s eigenvectors. Therefore, if we have

Vo=c1 ur+coup -+ cpuy
where u1, us,..., and u, are the eigenvectors of M wigh
lui| > |ua| > -+ > |uy|, we can conclude that Voo = c11.
In this section, our aim is to maximize > ', vl = n x cj.
Thus, the MaxSNSP problem reduces to maximizing cj.

For this aim, first in lines 1 and 2 of the algorithm,
we calculate the eigenvectors of M and sort them according
to the absolute values of their corresponding eigenvalues.
Therefore, we assume that |A;] > [A2] > -+ > |4,].
From Observation 2, we know that u; = T and its associate
eigenvalue is 41 = 1. Then, in line 3, we calculate the change
of basis matrix Q to transform coordinatewise representation
of vectors to their equivalent representation with respect to

basis B = {uy,ua, ..., u,}
Uil u2 un1 |
Ui U2 Un,2
0= (16)
Ul,n U2 Un,n
where u; ; represents the jth component of u;. Thus,
T
[c1 c2 -+ cnl” = QVo. 17
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Algorithm 1 MaxSNSP Problem

1: Calculate the eigenvectors of M and call them uq,
Uy, Up.

2: Sort the eigenvectors according to the absolute values of

their corresponding eigenvalues. {|1i] [A2] = o >
|2nl}
3: Set Q = [u1 u2 . u,{]’1

4: Set S equal to the set of k indices i1, i2, ..., i} for which
qui;s (1 < j < k) are the largest k values among
all g1;s (1 <i <n).

s:foralli € {1,2,---,n} do
6: if i € S then

7: l)(i) =1

8: else

9: vé =0

10:  end if

11: end for

Replacing V with [vé 0(2) v(’)’]T and Q with [g; jl1<i,j<n,
we have
c1 qiiqi2 - qia | [0
o Q21 2 Q|| 0]
= . Lo | (18)
Cn qn,1 4n,2 © * Yn.n U(r)l
Therefore, for c¢;, we have
c1 = qr10h + q1.205 + 1308 + - + q1,n0p- (19)

Thus, the MaxSNSP problem can be redefined as follows:

n
max qu,ivé

i=1

n
s.t. Zv(’) =k
i=1

v € {0, 1}, (20)

Therefore, a simple greedy algorithm that picks k largest
values from ¢ ;s (line 4 of the algorithm) and set their
corresponding coefficient 1)6 to 1 (lines 5—11) can maximize c;
and solve the MaxSNSP problem. 0

V. EXPERIMENTS

In addition to obtaining an optimization algorithm for the
MaxSNSP problem, we are interested in understanding its
behavior in practical environments and comparing its perfor-
mance with other heuristics for identifying influential nodes
in social networks. These heuristics benefit from widely used
structural measures in a social network analysis. Different
heuristics (measures) and networks have been taken into con-
sideration in our experiments. Our results show the superior
performance of our algorithm over other heuristics.

A. Networks
We are interested in studying the effect of different network
topologies on the spread of social norms in social networks.
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Particularly, we experiment with scale-free networks, small-
world networks, and random networks, each captures different
aspects of social networks’ structural properties. These models
are considered as the core for studying the propagation of
norms over networks [41].

Scale-free networks represent the logical connectivity of
people in social networks [42], which is guided by the “richers
get richer” rule. This rule decribes the network has the
structural property that the connectivity of the network follows
a power-law degree distribution [43]. This property tells that
the network has a small number of nodes (hubs), which have
a very high connectivity while the most of other nodes are
sparsely connected. In this paper, we use the Barabasi—Albert
model for generating scale-free networks [44]. This method
starts generating the network with a complete initial network
with mq nodes. Then, new nodes are added to the network
one at a time. Each new node draws m edges to the previous
nodes with a probability proportional to the number of links
that nodes already have.

A small-world network is a network, in which most nodes
are not connected directly, but the neighbors of each node are
likely to be directly connected and the average path length of
the network (the average number of hops needed to reach from
one node to another node) is small. Such networks represent
situations where the nodes are more likely to interact with
other nodes in their physical proximity [45]. In this paper,
the Watts—Strogatz model is used for modeling such properties
of networks [46]. This method puts nodes around a ring and
connects each node to its 2 m nearest neighbors on the ring
(m nodes on its left side and m on its right side). Then,
some of the edges are rewired randomly with probability p
independently of the other edges.

Random networks are used as a model to answer questions
about how networks’ properties form in a random environ-
ment. In fact, most of the network models have some random-
ness in nature, but the one which is almost inclusively called
the random network is the Erdos—Renyi network model [47].
In this paper, we choose this model to generate random
networks. In this model, each edge has a fixed probability
(parameter p) of being present or absent, independently of
the other edges.

We also include two real-world networks to see how our
algorithm works in real scenarios. The first real work that
we call BuisNet is a network extracted from interactions in a
business company. This network is drawn from the enterprise
social network that is installed and used in this company. This
network has 297 nodes and 2053 edges. The second network
is called Zachary’s karate club network [48] with 34 nodes and
78 edges. This network shows the ties between the members
of a karate club.

B. Heuristics

We compare our algorithms with heuristics based on differ-
ent network structural properties. The main line of all these
heuristics is to first calculate one of the structural properties
of the network’s nodes. Then, k£ nodes with the highest value
of the mentioned property are chosen as initial adopters.
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Fig. 3. Comparison of Algorithm 1 and the other heuristics over a
Watts—Strogatz network with n = 1000, m = 10, and p = 0.1.

Therefore, for each of the following heuristics, we only explain
the base structural property [49].

1) MaxDegree: This heuristic tries to find k nodes with the
highest degree (the number of edges connected to the
node).

2) MaxCC: In this heuristic, the local clustering coeffi-
cient (cc;) is used. This property looks all pairs of node
i’s neighboring nodes and counts how many of them are
linked together. That is,

- #ljke E|j #k, ] keNi}
l_ deg; - (deg; — 1)/2

where N; is the set of i’s neighboring nodes and E is
the set of network’s edges.

3) MaxBet: This heuristic sort nodes by their betweenness.
Betweenness (bet;) counts the number of shortest paths
which goes through node i. If we define P;(jk) as the
number of shortest paths between nodes j and k that i
lies on and P(jk) as the number of all shortest paths
between j and k, we have

L _ PGB/PGE
ety = ——— 21— 2
nn—1)/2

4) MaxPage: This heuristic considers the pagerank (pr;) of
nodes. Nodes’ pagerank is computed from a set of n
equations as follows:

_1-d

pr;
Vi pri_T —L

fen deg j
where d is a constant between 0 and 1.

5) MaxCL: This heuristic sort nodes by nodes’ close-
ness (cl;). Closeness tracks down how close a given node
is to any other node. If we define /(ij) as the distance
between the nodes i and j, then we have

n—1

2l

Cli =
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Fig. 4. Comparison of Algorithm 1 and the other heuristics over a
Barabasi—Albert network with n = 1000, my = 20, and m = 20.
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Fig. 5. Comparison of Algorithm 1 and the other heuristics over a

Erdos—Renyi network with n = 1000 and p = 0.02.

C. Results

We compare the performance of our proposed algorithm
with the mentioned heuristics on different networks. The main
purpose of these experiments is to show that the complexity
in Algorithm 1 is needed and no simple heuristic (as one
may claim) can beat this algorithm. The results are presented
in Figs. 3-7. All of these figures show the outperformance
of Algorithm 1 over the heuristics. In each of these figures,
we used the following simulation scenario.

1) Using each network model, we generate a network.
The parameters used for generating each network are
depicted in Figs. 3—7 captions. For each of its nodes,
we set the learning factor parameter (¢;) to a uniform
random number between 0 and 1.

2) For each 1 < k < n, we run our algorithm and other
heuristics over the network generated by the network
model. Each of these algorithms returns a subset of
k nodes as the initial adopters. We construct the vec-
tor Vo from this returned set.

3) The spread of social norm process is simulated over
the network starting from each of the returned sets of

300

250 r

200

Cur Algarithm
MaxCC Heuristic
MaxBet Heuristic
MaxDeg Heuristic
MaxEig Heuristic
MaxCL Heuristic
MaxPage Heuristic

100

1] 50 100 150 200 250 300
k (|Val)

Fig. 6. Comparison of Algorithm 1 and the other heuristics over the BuisNet
network.
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Fig. 7. Comparison of Algorithm 1 and the other heuristics over
Zachary’s karate club network.

initial adopters. For simulation, an iterative process is
started at Vj and in each iteration of this process Vjii
is set to M'V;. This process continues until it reaches to
a steady state, where Vi = V.

4) The amount of social norm adherence in the steady state
of each process is saved and finally plotted in Figs. 3-7.

VI. CONCLUSION

In this paper, by using the very famous Rescorla—Wagner
conditioning model, we obtained an effective model for the
spread of social norms. We created an extension to this model
for a social network of people and showed that this new model
is a standard Markov chain process. The steady states of this
process were studied and the potential structures of steady
states of it were extracted.

Then, by using our mathematical model, we formulated the
problem of maximizing the adherence to a social norm in a
social network by finding the best set of initial norm adopters.
We proposed a linear programming algorithm for solving this
problem that runs in polynomial time. Finally, the superior
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performance of this algorithm in comparison to other typical
algorithms that are typically used in social network contexts

was

shown by simulating the process over different network

models.
This research can have many opportunities for followup
works, which we have listed some of them in the following.

1)

2)

3)

4)

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]

(11]

One can use the algorithm for the MaxSNSP problem
in a real-world scenario in which a social norm must
be promulgated among a set of people. This environ-
ment can be, for example, a business company with
an established enterprise social network by which one
can extract the friendship network among people. The
learning factors of each person can be estimated by
mining their content over the social network. Then by
running Algorithm 1, the best set of initial adopters can
be calculated and tested for spreading the social norm.
In this paper, we considered the static control in which
the steady state of the process is examined. The dynam-
ics of this process is also important and must be con-
trolled which can be modeled by tools such as dynamical
systems [50].

In our model, we focused on affective aspects of adopt-
ing a behavior. There are some other interesting factors
such as cognition, mass media, and so on. Considering
each of these factors needs serious modifications in the
model that can be interesting.

While our algorithm works well, the intuition behind
it is not clear, because our algorithm and formulations
are directly extracted from mathematics of the model.
More than that our experiments in which our algorithm
is compared with heuristics (which are based on different
structural properties) show that no networks structural
property can estimate the chosen initial set by our
algorithm. Thus, it could be an interesting research
direction to find how the measure used by our algorithm
can be interpreted with the network’s structure.
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