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ABSTRACT
We consider a network creation game in which, each player
(vertex) has a limited budget to establish links to other play-
ers. In our model, each link has a unit cost and each agent
tries to minimize its cost which is its local diameter or its
total distance to other players in the (undirected) underly-
ing graph of the created network. Two variants of the game
are studied: in the MAX version, the cost incurred to a ver-
tex is the maximum distance between that vertex and other
vertices, and in the SUM version, the cost incurred to a ver-
tex is the sum of distances between that vertex and other
vertices. We prove that in both versions pure Nash equilib-
ria exist, but the problem of finding the best response of a
vertex is NP-hard. Next, we study the maximum possible
diameter of an equilibrium graph with n vertices in various
cases. For infinite numbers of n, we construct an equilib-
rium tree with diameter Θ(n) in the MAX version. Also, we
prove that the diameter of any equilibrium tree is O(logn)
in the SUM version and this bound is tight. When all ver-
tices have unit budgets (i.e. can establish link to just one
vertex), the diameter in both versions is O(1). We give an
example of equilibrium graph in MAX version, such that
all vertices have positive budgets and yet the diameter is as
large as Ω(

√
logn). This interesting result shows that the

diameter does not decrease necessarily and may increase as
the budgets are increased. For the SUM version, we prove

that every equilibrium graph has diameter 2O(
√

log n) when
all vertices have positive budgets. Moreover, if the budget
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of every players is at least k, then every equilibrium graph
with diameter more than 3 is k-connected.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity-Nonnumerical Algorithms and Prob-
lems; G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics-graph theory , network problems

General Terms
Performance, Design, Economics

Keywords
Network Design, Game Theory, Nash Equilibrium

1. INTRODUCTION
In recent years, a lot of research has been conducted on

network design problems, because of their importance in
computer science and operations research. The aim in this
line of research is usually to build a minimum cost network
that satisfies certain properties. The most well studied prob-
lem in this area is, perhaps, the problem of finding the min-
imum cost spanning tree. The network structure is usually
determined by a central authority. This is, however, in con-
trast to many real world situations such as social networks,
where networks are formed in a distributed manner by self-
ish agents. Therefore, a novel game theoretic approach has
also been proposed (see [6, 1, 5]), in which it is assumed
that each agent has its own objective, and attempts to min-
imize the cost it incurs in the network, regardless of how its
actions affect other agents.

Fabrikant et al. [6] first introduced this approach and took
into account both the creation and the usage cost of the net-
work. In their model, the players correspond to the vertices
of the network graph, and every player aims at minimiz-
ing the sum of its shortest-path distances to other vertices
plus the price she pays for building links (edges) to other
players. After that, various network creation games were
proposed (see [1, 5, 4, 3, 7]), which vary in the way play-
ers participate in network creation. In most of these games,

207



there is a certain cost for building links, and the goal of each
player is to minimize its maximum distance or total distance
to other vertices.

Our work is motivated by the work of Laoutaris et al.[10].
In their model, every player has a specific budget for pur-
chasing links. The objective of every player is to use its
budget to establish some links to other vertices so as to
minimize its maximum distance or total distance to other
vertices in the resulting network. They focused on the case
where all players have the same budget and all links cost
are the same, so each player can establish a fixed number
of links. In their model, links are directed and properties of
the created directed graph is studied.

In this paper, we have considered an undirected variant of
their model. In our model, once a link is established, both
its endpoints can use it equally. This is a natural model in
applications where the direction of links does not matter,
for example, in computer networks. Although in our model
links are undirected, each edge has just one owner and only
one of its endpoints can be changed during the game. We
also allow the players to have non-equal budgets.

1.1 The model and notation
Let n be a positive integer and d1, d2, . . . , dn be nonneg-

ative integers. A bounded budget network creation game
with parameters d1, d2, . . . , dn, denoted by (d1, d2, · · · , dn)-
BG, is the following game. There are n players and the
strategy of player i is a subset Si ⊆ {1, 2, . . . , n}\{i} with
|Si| = di. We may build a directed graph G for every strat-
egy profile (S1, . . . , Sn) of this game, which has vertex set
V (G) = {u1, . . . , un}, and for all i, j, (ui, uj) is an arc in G
if j ∈ Si. If (ui, uj) is an arc, then we say the arc (ui, uj)
is owned by player i. As there is clear correspondence be-
tween the players and the vertices, we may sometime abuse
notation and write statements like “vertex ui owns the arc
(ui, uj),” or “player i has an arc to vertex uj .” We think
of the di as the budget available to player i. The underly-
ing graph of G, which is an undirected graph obtained by
ignoring the edge directions in G, is denoted by U(G). If
both arcs (ui, uj) and (uj , ui) are in G, then there is only
one edge uiuj in U(G) (see Fig. 1). In this case, the edge
uiuj is called a double edge. In the following, whenever we
refer to the distance between two vertices, we mean their
distance in U(G). The distance between two vertices u, v is
denoted by dist(u, v). For a directed or undirected graph
G, the diameter of G is the maximum distance between any
two vertices of G.

We define two models for the bounded budget network
creation game, which differ in the definition of the cost func-
tion. In the SUM model, the cost of each player is the sum
of its distances to other vertices, that is, for each vertex
u ∈ V (G),

cSUM (u) =
∑

v∈V (G)

dist(u, v)

while in the MAX model, the cost of each player is the
maximum of its distances to other vertices, that is, for each
vertex u ∈ V (G),

cMAX(u) = max{dist(u, v) : v ∈ V (G)}

The value cMAX(u) is sometimes called the local diameter
of u.

We say a player is playing its best response if it cannot

G U(G)

Figure 1: The illustration of U(G)

decrease its cost by changing its strategy (while the other
players’ strategies are fixed), and we say a strategy profile is
a Nash Equilibrium (NE) if all players are playing their best
responses. If this happens, then the graph G is also said to
be a Nash Equilibrium graph, or simply an equilibrium graph
for (d1, d2, . . . , dn)-BG.

We have also studied the Price of Anarchy (PoA) and the
Price of Stability (PoS) where the social utility function is
the diameter of the graph. Price of Anarchy, introduced by
Papadimitriou et al.[9], measures the effect of selfish agents
on social utility, i.e. computes the worst ratio of the value
of social utility function on every (pure) equilibrium to the
optimal value. The best such ratio is called the Price of
Stability. In this paper, the social utility function is the
diameter of the created network.

1.2 Our results
In this paper, we study various properties of equilibrium

graphs for bounded budget network creation game. First,
in the next section, we prove that for every nonnegative
sequence d1, . . . , dn, (d1, d2, · · · , dn)-BG has a Nash equilib-
rium in both models. Next, we turn our attention to the
diameter of equilibrium graphs. Our focus in this part are
equilibria that have maximum diameters, which is related
to the concept of price of anarchy when the social utility is
the diameter of the created graph. We consider two special
cases in Section 3, and find tight bounds for the maximum
diameter. The two cases are unit budgets (in which di = 1,
for every i) and trees (in which d1+d2+· · ·+dn = n−1). For
the former, we prove that the diameter is always bounded
above by a constant, and for the latter, we prove a Θ(n)
bound for the MAX version and a Θ(log n) bound for the
SUM version. Then, in Section 4, we consider a more gen-
eral case in which di ≥ 1 for all 1 ≤ i ≤ n, and obtain an

upper bound 2O(
√

log n) for the SUM version, and a lower
bound Ω(

√
logn) for the MAX version.

The latter result disproves an intuitive guess that increas-
ing the budgets, i.e the di’s, decreases the diameter of equi-
librium graphs: while the diameter is O(1) for the unit de-
gree case it could be as large as Ω(

√
logn) for larger values

of di’s in the MAX version. We also prove that in the SUM
version, if di ≥ k for all i, then every equilibrium graph with
diameter more than 3, is k-connected. We conclude with dis-
cussion of our results and suggesting some interesting open
problems.
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Table 1: The results of this paper on diameter of
the equilibrium graphs

MAX SUM
Tree Ω(n) Θ(log(n))

Unit Budget O(1) O(1)

General Ω(
√

log(n)) 2O(
√

log n)

2. EXISTENCE OF EQUILIBRIA
Before proving the main result of this section, we show

that computing best response is an intractable problem.

Theorem 1. The problem of finding the best response in
both MAX and SUM models of (d1, · · · , dn)-BG is NP-Hard.

Proof. We can reduce the k-center problem [8] to the
problem of finding the best response in the MAX version
of the game. In the k-center problem, a graph G is given
and the aim is to find a subset C of k vertices of G so as to
minimize the maximum distance from a vertex to its near-
est neighbor in C, i.e. maxv∈V (G) minc∈C dist(c, v). As-
sume that we are given an undirected graph H, and we are
supposed to find its k-center. Add a vertex n + 1 to H
and define dn+1 = k. Consider a directed graph G such
that U(G) = H. Now compute the best response for the
(n + 1)’th player in MAX version in response to G. This
essentially finds a subset of k vertices of G whose maximum
distance to the remaining vertices of G is minimized, which
is clearly a k-center for G.

Similarly, we can reduce the k-median problem [11] to find
the best response in the SUM version of the game.

In this section, we prove that for every nonnegative d1, d2,
· · · , dn, Nash equilibria exist for both MAX and SUM ver-
sions. First, we prove a sufficient condition for each vertex
to play its best response, and then prove the main theorem
by considering several cases. The diameter of the equilib-
rium constructed in this theorem is O(1) which proves that
the price of stability is O(1).

Lemma 1. Let u be a vertex. If cMAX(u) ≤ 2 and u is
not an endpoint of any double edge or cMAX(u) = 1 then u
plays its best response in both MAX and SUM models.

Proof. If cMAX(u) = 1, then we are done. Otherwise,
let V − be the set of vertices that have an arc to u and V +

be the set of vertices that have an arc from u. Since u is not
an endpoint of any double edge, V + ∩ V − = ∅. It is easy to
verify that no matter how u plays, it always has distance one
to at most |V +|+ |V −| vertices, and distance at least two to
the rest of the vertices. Therefore, regardless of how u plays,
its cost in MAX model will be at least 2, and its cost in SUM
model will be at least 2(n− 1− |V −| − |V +|) + |V +|+ |V −|.
Therefore, u is already playing its best response.

We are now ready to prove the main theorem of this sec-
tion.

Theorem 2. For every nonnegative d1, d2, · · · , dn, Nash
equilibria exists for both MAX and SUM versions of (d1, . . . ,
dn)-BG.

Proof. The proof is constructive. We consider several
cases, and prove it separately for each case. Without loss of
generality, assume that d1 ≤ d2 ≤ · · · ≤ dn.

Let D = d1 +d2 + · · ·+dn. If D < n−1 then the obtained
graph, U(G), is always disconnected and both MAX and
SUM costs of every vertex are∞. Therefore, for all vertices,
every strategy is a best response. So, assume that D ≥ n−1.
Let z be the number of players with zero budget, so we have
d1 = · · · = dz = 0 < dz+1. There are two cases to consider:
Case 1: dn ≥ z
We provide an algorithm to build a graph G, such that
all of its vertices satisfy the conditions of Lemma 1. G
has vertex set {u1, . . . , un} and is initially empty. We add
the arcs (un, u1), (un, u2), . . . ,(un, udn) and then the arcs
(udn+1, un),(udn+2, un),. . . ,(un−1, un) to G. Note that G
has diameter 2 at this point, but there might be vertices
whose outdegrees are less than their budgets. If ui is such a
vertex, add arcs from ui to arbitrary vertices until its bud-
get is consumed. This operation clearly does not increase
the diameter, but this may result in double edges. For ev-
ery double edge uv such that u has local diameter two and
there exists a vertex w not adjacent to u, replace the arc
(u, v) by (u,w). This can be done only a finite number of
times, since after every replacement the number of double
edges decreases. It is easy to see that the vertices of the
obtained graph have the properties of Lemma 1 and thus
this graph is a NE.
Case 2: dn < z
As in Case 1, we build a graph G that is a Nash equilibrium,
but the proof is more involved in this case. Let t > z be the
largest index with dn + dn−1 + · · · + dt ≥ z + n − t. Such
value of t exists, as for t = z + 1, we have dn + dn−1 + · · ·+
dz+1 = D ≥ n − 1 = z + n − t. Let A = {v1, v2, · · · , vz},
B = {vz+1, vz+2, · · · , vt} and C = {vt+1, vt+2, · · · , vn−1}.

We start with an empty graph G and add arcs in four
steps until the budgets of vertices are consumed (See Fig. 2)

1. An arc from every vertex in B ∪ C to vn (dotted arcs
in Fig. 2).

2. Arcs from {vt} ∪ C ∪ {vn} to A. First, dn arcs from
vn to the first dn vertices of A then dn−1−1 arcs from
vn−1 to the next dn−1−1 vertices of A and so on, until
every vertex in A receives exactly one arc (dashed arcs
in Fig. 2).

3. Arcs from B to C. For every vertex u in B that has
remaining budget, we add arcs from u to vertices in
C in reverse order, i.e. vn−1, vn−2, · · · (gray arcs in
Fig. 2).

4. Arcs from B to A. For every vertex u in B that still has
remaining budget, we add arcs from u to vertices in A
in order, i.e. v1, v2, · · · . So, every vertex in B is only
adjacent to neighboring vertices of vn in A because for
every z < i ≤ t, we have di ≤ dn.(black arcs in Fig. 2).

We now prove that every vertex is playing its best re-
sponse in this graph. Vertices in A are obviously playing
their best strategies as their budgets are zero. It is easy to
verify that we are not creating a double edge in our con-
struction. Since vn has local diameter two, it plays its best
response by Lemma 1. Every arc from a vertex u ∈ C is
either connected to vn or to some vertex in v ∈ A. The
latter cannot be changed, as changing it would disconnect v
from G and increases the cost of u. It is also easy to verify
that u is better off staying connected to vn.
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vn

v1 v2 vdn vz
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vt

vt+1

vn−1

Figure 2: Case 2 of theorem 2

At last, consider a vertex u in B. If u creates arcs in step
4, then it has arcs to all vertices in C (step 3) and therefore,
it has diameter two, since every vertex in A is a neighbour
of vn or one vertex in C. Thus in this case, vertex u satisfies
the conditions of Lemma 1 and it plays its best response.
Otherwise, u has local diameter three. The vertex u must
have K < |C| available budget in step 3. First, it is clear
that u does not change its arc to vn. Furthermore, since for
any vertex w ∈ C there is a vertex w′ ∈ A such that w′ is
only adjacent to w in U(G), vertex u can not make its local
diameter less than 3. Thus in this case, it plays its best
response in the MAX version. Also, in the SUM version, it
is easy to verify that its best strategy is to connect to the
most influential vertices, i.e. vn, vn−1, · · · , vn−K .

3. SPECIAL CASES
In this section, we find tight bounds for price of anarchy

in two special cases. First we consider a situation where
every player has unit budget and prove that the diameter
of equilibrium graphs is bounded by a constant. Next, we
consider the case where the equilibrium graphs are always
trees, and find different bounds for MAX and SUM variants.

Note: we only consider connected equilibrium graphs. Any
graph with more than d components, where d = max{d1, d2,
· · · , dn}, is a Nash equilibrium as no vertex can make the
graph connected and the maximum and total distance of
every player is always infinity. One way to solve this is to
take the number of connected components into account for
cost functions and, therefore, encourage players to reduce
the number of connected components even though that may
not reduce their local diameter.

3.1 Unit Budget Case
One special case of the problem is when all di’s are one. In

this case, we prove that all equilibrium graphs have diameter

O(1). The proof is left to the journal version due to space
shortage.

Theorem 3. In (1, 1, · · · , 1)-BG all the equilibrium graphs
in both MAX and SUM versions have O(1) diameters.

3.2 Trees
If d1 + d2 + · · · + dn = n − 1, then it can be easily seen

that every equilibrium graph is a tree. From now on, we use
the notion Tree-BG to indicate the instances of bounded
budget network creation games that have

∑n
i=1 di = n− 1.

In this section, we study the diameter of connected equi-
librium graphs of Tree-BG in both MAX and SUM mod-
els. We prove that in the MAX model, there exists equilib-
rium graphs with diameter Ω(n), while in the SUM model,
equilibrium graphs always have diameter O(logn), and this
bound is tight.

Theorem 4. In the MAX model, there are Tree-BG in-
stances that have equilibrium graphs with diameter Ω(n).

Proof. Let k be a positive integer, and let n = 3k +
1, X = {x1, x2, · · · , xk}, Y = {y1, y2, · · · , yk}, and Z =
{z1, z2, · · · , zk}. Also, let d1 = · · · = d4 = 0, d5 = d6 =
d7 = 2, and d8 = d9 = · · · = dn = 1. Let G be a graph with
vertex set X ∪ Y ∪ Z ∪ {w} and with set of arcs
{(x1, x2), . . . , (xk−1, xk)} ∪ {(y1, y2), . . . , (yk−1, yk)} ∪
{(z1, z2), . . . , (zk−1, zk)} ∪ {(x1, w), (y1, w), (z1, w)}

We claim that for all 1 ≤ i ≤ k, xi is playing its best
response. The proof for yi’s and zi’s are similar. If i > 1,
then xi has unit budget and currently has an arc to xi+1. If
it changes its arc to (xi, xj) for some j > i+1, then its local
diameter doesn’t decrease. If it changes to any other arc,
then the graph gets disconnected, and xi will have infinite
local diameter.
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If i = 1, then x1 should choose a vertex from each of the
two disjoint paths x2x3 · · ·xk and zkzk−1z1wy1y2 · · · yk, and
establish links to these two vertices otherwise the graph will
be disconnected. Its best response is obviously to choose
the middle of the second path (which is w) and an arbitrary
vertex in the first path.

In the next theorem, we will show that the diameters of
equilibrium graphs in the SUM model are much smaller.

Theorem 5. In SUM model, all equilibrium graphs of
Tree-BG have diameter O(log(n)).

Proof. Let G be an equilibrium graph with diameter
d, and let P = v0v1 · · · vd be its longest path. Trivially
at least half of the arcs of P are in the same direction
along P . By symmetry, we may assume that these are the
arcs (vi1 , vi1+1), (vi2 , vi2+1), . . . , (vidd/2e , vidd/2e+1). Let Ai

be the set of vertices that are connected to P through vi
(including vi), and let ai = |Ai|. Notice that a0 = ad = 1 as
P is the longest path in G. See Fig. 3 for an example.

For 1 ≤ j < dd/2e, if vij changes its arc from (vij , vij+1) to
(vij , vij+2), then its distance to vertices in Aij+1 increases by
one, and its distance to vertices in Ak, k > ij + 1, decreases
by one. Since vij is playing its best response,

aij+1 ≥
d∑

k=ij+2

ak ≥
d d
2
e∑

k=j+1

aik+1

Since vj ∈ Aj , we have aj ≥ 1.

a(id d
2
e+1) ≥ 1

a(id d
2
e−1

+1) ≥ a(id d
2
e+1)

a(id d
2
e−2

+1) ≥ a(id d
2
e−1

+1) + a(id d
2
e+1)

...
a(i2+1) ≥ ai3+1 + · · ·+ a(id d

2
e+1)

a(i1+1) ≥ ai2+1 + ai3+1 + · · ·+ a(id d
2
e+1)

We can prove by induction that aij+1 ≥ 2d
d
2
e−j−1 for 1 ≤

j < d d
2
e. Therefore,

a(i1+1) + a(i2+1) + · · ·+ a(id d
2
e+1) ≥

2d
d
2
e−2 + 2d

d
2
e−3 + · · ·+ 21 + 20 + 20 =

2d
d
2
e−1

On the other hand, since all vertices appear in one of the
sets Ai, we have a1 + a2 + · · ·+ ad = n− 1. Thus,

n− 1 = a1 + a2 + · · ·+ ad ≥
d d
2
e∑

j=1

a(ij+1) ≥ 2d
d
2
e−1,

Therefore, d = O(logn).

The bound O(logn) is tight as there exist instances with
diameter Ω(logn).

Theorem 6. For infinitely many n, there exists an equi-
librium graph for Tree-BG in the SUM model with diameter
Ω(log(n)).

Proof. Let k be a positive integer, and let n = 2k+1−1,
d1 = d2 = · · · = d2k−1 = 2, d2k = d2k+1 = · · · = dn = 0,
Consider a balanced binary tree on n vertices in which vertex
i (1 ≤ i < n/2) has arcs to vertices 2i and 2i + 1. For each
i, let Ti be the tree rooted at vertex i. For each i < 2k,
vertex i must have an arc to a vertex in T2i and to a vertex
in T2i+1 in order to keep the graph connected. Observe that
for every j, vertex j has less total distance to vertices in Tj

than any other vertex in Tj , and so all vertices are playing
their best responses. The diameter of this equilibrium graph
is 2(log(n + 1)− 1) = Θ(log(n)).

4. GENERAL CASE
In this section, we assume that all players have positive

budgets i.e. for each 1 ≤ i ≤ n, di ≥ 1. It appears intu-
itive that increasing the budgets (i.e. di’s) would decrease
the diameter. This is, however, not true and we prove an
Ω(

√
log(n)) lower bound for the price of anarchy in the

MAX version. We also prove that the diameter of an equi-

librium graph in the SUM version is 2O(
√

log n).

4.1 Upper bound for SUM
In this subsection we consider the SUM model only, and

prove that for any NE graph the diameter is 2O(
√

log n). The
proof follows the line of proof of Theorem 9 of [2], but the
first step is more involved. Specifically, the proof of the
following proposition, which is somewhat easy in the model
defined in [2], is much harder in our model.

Proposition 1. Let u be a vertex of an NE graph G and
r be a positive integer. Assume that the subgraph of U(G)
induced by the set of vertices whose distance from u is at
most r, is a tree. Then we have r = O(log |V (G)|).

We will work with weighted graphs in this subsection. Let
G be a weighted graph, that is, every vertex u has a weight
w(u), which is a positive integer. For every vertex u, the
cost of u is defined as

c(u) =
∑
v∈V

w(v)dist(u, v).

Note that if all vertices have unit weight, then this reduces
to our unweighted model. We say that G is a weak Nash
equilibrium (abbreviated wNE) if for every arc (u, v) ∈ E
and x ∈ V with (u, x) /∈ E, the cost of u does not decrease
if we replace the arc (u, v) with (u, x). For a vertex u and a
nonnegative integer r, define

Br(u) = {v : dist(u, v) ≤ r}.

For A ⊆ V define

w(A) = wA = w(G[A]) = wG[A] =
∑
a∈A

w(a),

where G[A] denotes the directed subgraph of G induced by
A.

Clearly a Nash equilibrium graph is also a weak Nash
equilibrium graph, and thus it is enough to show that the

diameter of any wNE graph is 2O(
√

log n).
Using the defined notation, we will prove the following

generalization of Proposition 1:

Lemma 2. Let G be wNE, u ∈ V and r > 0. Assume that
U (G[Br(u)]) is a tree T . Then we have r = O(log |wG|).
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Figure 3: The proof of theorem 5

Note that if every vertex v ∈ V (T ) has at least two chil-
dren then r = O(log |V (T )|) = O(log |wT |). Hence the prob-
lematic vertices are those with zero or one child. A vertex
with degree 1 is called a leaf. Thus every vertex in T with
no child is a leaf. It turns out that one should distinguish
between two types of leaves: a poor leaf is a leaf with out-
degree zero, and a rich leaf is a leaf with out-degree one.
The poor leaves cause the most trouble and they are the
reason for introducing the weights.

Let l ∈ V be a poor leaf in G and (u, l) ∈ E. Let G0 =
(V0, E0, w0) be a weighted graph with V0 = V − {l}, E0 =
E − {(u, l)}, w0(v) = w(v) for v 6= u and w0(u) = w(u) +
w(l). Then it can be verified that if G is a wNE then so
is G0. We say that G0 is obtained by folding the poor leaf
l. The proof of the following lemma is left to the journal
version of this paper due to space shortage.

Lemma 3. Let G be a wNE and T be an induced subtree
of U(G). Let r ∈ V (T ) be such that if we choose r as the
root of T , then every edge of T is oriented away from r. In
other words, if u, v are vertices in T and (u, v) is an arc in
G then u is the parent of v in T . Then the depth of T is at
most logwT + 1.

Remark. Note that if the conditions of the above lemma
hold, then one can fold the whole subtree T into the ver-
tex r. Moreover, folding this subtree does not decrease the
diameter of G significantly. That is, if G is wNE and we
perform a sequence of subtree folds on it until we reach a
new digraph G′ with no poor leaves, then G′ is also wNE
and diam(G) = diam(G′) + O(logw(G)).

From now on, we will assume that the weak Nash equilib-
rium we are studying has no poor leaves (the diameter would
be the same, modulo an O(logw(G)) term). Handling rich
leaves is easy, as shown by the following lemma (whose proof
can be found in the journal version of this paper).

Lemma 4. Let G be wNE. Then the distance between any
two rich leaves is at most 2.

To handle the vertices of degree 2 (which have one child)
we use the following lemma, whose proof can be found in
the journal version as well.

Lemma 5. Let G be wNE and P be a path in U(G) such
that for every two vertices u, v ∈ V (P ), the shortest (u, v)-
path in P is the unique shortest (u, v)-path (which implies, in
particular, that P is an induced subgraph). Then the number
of edges {u, v} ∈ E(P ) such that both u, v have degree 2 is
O(logwP ).

Proof of Lemma 2. By the remark after Lemma 3 we
may assume that G has no poor leaves. For each edge
{u, v} ∈ E(P ) such that both u and v have degree 2, we
contract that edge, and repeat until no such edge exists.
By Lemma 5, the depth changes by at most O(logwG). By
Lemma 4, there is at most one vertex that has children who
are leaves. Hence the depth of the tree is O(log |V (T )|).
Consequently, the depth of T is O(logwG).

The rest of the proof is almost identical to the proof of
Theorem 9 of [2]. In the following we will assume that the
graphs are unweighted (equivalently, all vertices have unit
weights). Note that in this case wG = n.

Lemma 6. Let G be wNE. Given any vertex u, there is
an arc (x, y) with dist(x, u) = O(logn) and whose removal
increases the cost of x by at most O(n logn).

Hence for some constants a, b > 0, if G is an wNE then for
any u ∈ V , there is an arc (x, y) with dist(x, u) ≤ a logn and
whose removal increases the cost of x by at most bn logn.
The proof of the following can be found in the journal version
of this paper.

Corollary 1. In any wNE the addition of any arc (u, v)
decreases the cost of u by at most (a + b + 1)n logn.

Theorem 7. The diameter of any wNE is 2O(
√

log n).

4.2 Lower bound for MAX
In this section, we prove that for some positive di’s there

exist equilibrium graphs for MAX model with diameter
Ω(
√

logn) .
For an undirected graph U , vertex u ∈ V (U) and sub-

set A ⊆ V (U), the distance between u and A is defined as
dist(u,A) = min{dist(u, a) : a ∈ A}.

Lemma 7. Let U be an undirected graph with diameter k
and maximum degree ∆ with the following properties:
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1. All vertices have local diameter k.

2. ∆k − 1 < n(∆− 1).

Then every G with no double edge, with U = U(G) is a Nash
equilibrium for the MAX model.

Proof. Assume for the sake of contradiction that v is a
vertex that is not playing its best response. Let A be the set
of neighbors of v if it had changed its strategy and played its
best response. As v has degree at most ∆, we have |A| ≤ ∆.
By property (1) the local diameter of v is exactly k before
changing its strategy.

Claim. There exists a vertex u, different from v, with
dist(u,A) > k − 2.

Proof. There are at most |A|∆ vertices whose distance
from A is exactly 1. Similarly, there are at most |A|∆2

vertices with distance exactly 2 from A. Continuing in the
same way, we find that there are at most |A|∆k−2 vertices
with distance exactly k−2 from A. If there is no u 6= v with
dist(u,A) > k − 2, then we must have

n ≤ 1 + |A|+ |A|∆ + · · ·+ |A|∆k−2 ≤
1 + ∆ + ∆2 + · · ·+ ∆k−1 =
∆k−1
∆−1

,

which contradicts the property (2).

After v changes its strategy so that its neighborhood be-
comes A, its distance to u becomes at least k, which is a
contradiction.

Lemma 8. For every integers t, k > 3 satisfying 1 + 2k <
2t, there exists an undirected graph U with tk vertices, min-
imum degree at least 2, and diameter k, such that every G
with no double edge and U = U(G) is a Nash equilibrium for
the MAX model.

Proof. Let V (U) = {1, 2, . . . , t}k with (a1, a2, . . . , ak)
adjacent to (b1, b2, . . . , bk) if at least one of the following
happens:

1. ai = bi+1 for all 1 ≤ i ≤ k − 1,

2. bi = ai+1 for all 1 ≤ i ≤ k − 1.

Then U has minimum degree 2t − 2, maximum degree 2t
and tk vertices. The local diameter of every vertex is k:
for an arbitrary (a1, . . . , ak) ∈ V (U) choose b1, . . . , bk /∈
{a1, . . . , ak}. Then it is easy to check that the distance
between (a1, . . . , ak) and (b1, . . . , bk) is k. The condition
∆k − 1 < n(∆ − 1) of the previous Lemma follows from
1 + 2k < 2t and a little calculation.

Theorem 8. For infinitely many n, there exists an equi-
librium graph with positive di’s for the MAX model with di-
ameter

√
log2 n.

Proof. Let k > 3 and t = 2k. Using the previous theo-

rem, we find an undirected graph U with n = (2k)k = 2k2

vertices and diameter k =
√

log2 n. Now, let G be a di-
rected graph with U(G) = U and such that the outgoing
degree of all vertices of G is at least 1. Such a G can always
be found as the minimum degree of U is larger than 1. Then
G satisfies the conditions of the theorem.

4.3 K-Connectivity
One of the most important issues in designing stable net-

works is the connectivity of the built network. In this sec-
tion, we find a direct connection between the budget limits
and the connectivity of the equilibrium graph, which shows
that we can guarantee stronger connectivity for our network
when all players have enough budgets. The proof is left to
the journal version due to space shortage.

Theorem 9. Suppose that G is an equilibrium graph for
(d1, d2, . . . , dn)-BG in SUM version and di ≥ k for all 1 ≤
i ≤ n. If G has diameter greater than 3, then it is k-vertex
connected.

5. CONCLUSION
In this paper, we analyzed the diameter of equilibrium

graphs in network creation games where every player has a
specific budget for the number of vertices that it can estab-
lish links to. We found tight bounds for two special cases,
trees and unit budget. For the case where all players have
positive budget, we proved a non-trivial lower bound for the
MAX version and upper bound for SUM version.

Improving these bounds for both versions are interesting
problems to work on. Considering other special cases (e.g.
the case where di = c for some constant c ≥ 2) is also a good
problem to work on. We have tried several examples and it
appears that in the positive budgets case, the diameter of
every SUM equilibrium is bounded by a constant. Either
proving that this is correct, or finding a counter-example is
another interesting open problem. Last but not least, the
convergence rate of the game is another interesting param-
eter to study. That is, to determine how quickly the game
converges to an equilibrium, if at each step, one player is
chosen and plays its best response.
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