
Advanced Quantum Field Theory - Fall 1402: PSet 6 TA: Hossein Mohammadi
Subject: Renormalized Perturbation Theory, IR Divergences, and Renormalization of QED

Instructor: Dr. Amin Faraji Due Date: dd/mm/yyyy

Problem 1: Renormalization of Yukawa Theory

We’ve talked about the renormalized propagator of fermions in Yukawa theory. This exercise aims
to complete the renormalization of this theory in one loop level. Consider Yukawa theory with the
following Lagrangian:

L =
1

2
(∂µφ)2 − 1

2
m2φ2 + ψ̄(i/∂ −M)ψ − igψ̄γ5ψφ

(a) [- points] Correction to the Scalar Two-point Function:

(i) Compute the one-loop contribution to the fermion two-point function, the figure below1.

Figure 1: Scalar propagator at one-loop level in Yukawa Theory.

(ii) Justify that the full two-point function up to g2 order has the following contributions:

iΓ(/p) = i(/p−M)︸ ︷︷ ︸
Free part

− iΣ̃(/p)︸ ︷︷ ︸
Loop contribution

+i (δZψ/p− (δM + δZψ)MR)︸ ︷︷ ︸
Counterterms

Hint: Enter wavefunction and mass renormalization, Zψ and ZM , in the Lagrangian
and exapnd around their tree level. Find their Feynman rule to reach the proposed
form.

(iii) By requiring that

Σ̃(/p = 0) + δM = 0

d

d/p
Σ̃(/p)

∣∣∣
/p=0

= δZψ
(1)

which we will justify in the next problem, find the counterterms. Leave out the finite
part of integrations and just write the exact form of the divergent part in the dimensional
regularization.

1Recall that the solid line is a fermionic particle, and the dashed line is the scalar particle.
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(b) [- points] Fermion-Fermion-Scalar Vertex Correction:

We pursue a similar path to renormalize the interaction vertex.

Figure 2: The Loop contributing to the vertex correction in Yukawa Theory.

(i) Write out its amplitude V (pf , pi).

(ii) Justify that the full amplitude of this three-point function up to g2 order is:

−iΓ(pf , pi) = gγ5︸︷︷︸
The usual interaction rule

− iV (pf , pi)︸ ︷︷ ︸
Loop correction

+ δgγ
5︸︷︷︸

Counterterm

with entering vertex renormalization factor, Zg, and expanding around tree level. (Zg =
1 + δg)

(iii) Use the condition
−iΓ(0, 0) = gγ5 − iV (0, 0) + δgγ

5 ≡ gRγ5

(iv) By doing a similar procedure to the previous section of this problem, find the δg coun-
terterm.
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Problem 2: The Anomalous Magnetic Moment

In this problem, we carefully work out diagram 3 and find the g-factor, which quantifies the strength
of electron spin coupling to an external magnetic field.

Figure 3: Vacuum Polarization diagram in QED.

(a) [- points] The amplitude:

Write down the amplitude of this diagram. (You have to write all fermionic propagators with

slashed quantities in the numerator: i
/p−m → i /p+m

p2−m2 )

(b) [- points] Squaring the denominator:

Using
1

ABC
= 2

∫ 1

0
dxdydzδ(x+ y + z − 1)

1

(Ax+By + Cz)3

, write the denominator of this amplitude in a squared form. You have to end up

Ax+By + Cz = (kµ + ypµ − zqµ1 )2 −∆ + iε

with ∆ = −xyp2 + (1− z)2m2.

(c) [- points] Simplify the numerator:

There is a quantity in the numerator, which is tr of spinorial objects, that gets complicated
when we do a shift of variables. So it is a good idea to simplify it before shifting.

Use arguments like vanishing of integrals, on-shell fermionic in-states, etc., to drop some
terms and reach the following form for the numerator.

−2ū(q2)
(
/kγµ/p+ /kγµ/k +m2γµ − 2m(2k + p)µ

)
u(q1)

(d) [- points] Shift of variables:

As its form suggests, do kµ → kµ − ypµ + zqµ1 . It is rather obvious that the Jacobian of this
transformation equals to the unit.
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(e) [- points] Simplify the numerator again:

Now there’s a little technical and long calculation. Show that after applying the above
transformation to the numerators we have to end up with

−1

2
Nµ =

[
− 1

2
k2 + (1− x)(1− y)p2 + (1− 4z + z2)m2

]
ū(q2)γ

µu(q1)

+ imz(1− z)pν ū(q2)σ
µνu(q1)

+m(z − 2)(x− y)pµū(q2)u(q1)

(2)

There are several identities that you should utilize.

• kµkν = 1
dη

µνk2 under integration.

• Gordon Identity:

ū(q2)(q1 + q2)
µu(q1) = 2mū(q2)γ

µu(q1) + iū(q2)σ
µν(q1 − q2)νu(q1)

• x+ y + z = 1, as it’s also obvious from Dirac’s delta function.

• tr(γµγν) = 4ηµν .

• tr
(
γαγµγβγν

)
= 4
(
ηαµηβν − ηαβηµν + ηανηβµ

)
(f) [- points] g-factor:

As we have discussed, the g-factor only comes from the σµν part of the amplitude. Even
though there are divergences arising from other terms in 2, we neglect them for the moment.

So we have concluded that the part of amplitude that contributes to the g-factor is:

iM̃µ
2 = pν ū(q2)σ

µνu(q1)
(

4ie3m

∫ 1

0
dxdydzδ(x+ y + z − 1)×

∫
d4k

(2π)4
z(1− z)

(k2 −∆ + iε)3

)
(3)

Recall that the g-factor is choosen to be 4m
e times the coefficient of pν ū(q2)σ

µνu(q1) in the
amplitude, evaluated at p2 = 0. Therefore, you can find the g− factor in the loop level by
doing a simple triple integration. Show that

g = 2 +
α

π
= 2.00232

Caution: All your calculations should be complete and detailed. In any stage, you can
consult Schwartz’s book, chapter 17, to guide you.
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Problem 3: Electron Self-Energy and Subtraction Schemes

Another two-point function in QED is

Figure 4: QED fermionic self-energy graph.

which needs two counterterms to be renormalized, as we will figure out.

(a) [- points] The Regularized Amplitude:

Work out this diagram in the dimensional regularization, and find

Σ2(/p) = − α

2π

∫ 1

0
dx(2m− x/p)

[2

ε
+ ln

(
4πe−γEµ2

(1− x)(m2 − p2x)

)]
.

Hence, the divergent part reads:

Σ2(/p) =
α

π

(/p− 4m

2ε
+ finite

)

(b) [- points] Two counterterms are required:

Argue why we can not eliminate these divergences by only one counterterm for mass, or δm?
What quantity should also be manipulated to eliminate the other divergent part, proportinal
to /p?

(c) [- points] Renormalized Propagator:

After renormalizing ψ0 and m0, the renormalized fermionic propagator is:

iGR(/p) =
1

Z2

i

/p−m0
+ loops = (

1

1 + δ2
)(

i

/p−mR − δmmR
) + loops

Expand this propagator to find such form,

i

/p−mR
+

i

/p−mR

[
i(δ2/p− (δ2 + δm)mR)

] i

/p−mR
+ loops

Now add the loop contribution and determine δ2 and δm such that divergences cancel.
(Choose the dimensional regularization and neglect the finite part of the regularized am-
plitude (MS−scheme))

Advanced Quantum Field Theory PSet 6 5



(d) [- points] Subtraction schemes:

I have defined the on-shell subtraction scheme in the last session. Let us have an example to
see how it works in practice. As you know, in O.S., the renormalized mass mR is set equal to
pole mass mP .

By definitions of the pole mass, which is the pole of the dressed propagator with residue i,
the O.S. conditions are the following2

δ2 = − d

d/p
Σ2(/p)

∣∣∣
/p=mP

δmmP = Σ2(mP )

(4)

Utilizing the second condition to find finite part of the Σ2(/p) in O.S. scheme.(Use Pauli-Villars
regularization, refer to 18.11 Schwartz.)

The final result is:

Σ2(mP ) = − α

2π
mP

(3

2
ln

(
Λ2

m2
P

)
+

3

4

)
Aside: Using the first condition has subtleties. In theories with massless vector particles, it
often leads to divergent integrals. The way to regularize these integrals is to consider that
the photon is massive, mγ 6= 0. We are not going into the details of such a procedure, but I
will describe it briefly in this problem set.

Aside: M.S. scheme is a very convenient since we eliminate all the finite parts in the loop
contributions. However, the problem of relating mass (mR) in different schemes leads to a
powerful constraint in particle physics, which using M.S. in particle physics is very inconve-
nient!

2Of course, to order e2R in perturbation theory. The definition of pole mass is not perturbative, but our calculations
are!
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Interlude: Renormalized Perturbation Theory

Renormalized perturbation theory is a systematic approach to tame all the infinities that areised
while dealing with loops.

The idea is to consider a renormalization, Z#, for all the parameters and fields in the theory.
Then expand them around their classical value, Z# = 1 + δ#. Then, match δ# in any order of
perturbation theory with the loop amplitudes’ divergences.

For QED, consider the following renormalization factor:

m0 = ZmmR

e0 = ZeeR

ψ0 =
√
Z2ψ

R

A0
µ =

√
Z3A

R
µ

(5)

As you know, bare parameters are considered to be infinite, so the Z-coefficient on the right-hand
side of 5 are infinite, and renormalized quantities are designated to be finite.

By substitution, the QED Lagrangian would become:

L = −1

4
Z3(∂µA

R
ν − ∂νARµ )2 + iZ2ψ̄R /∂ψR − Z2ZmmRψ̄RψR − eRZeZ2

√
Z3ψ̄R /AψR

Conventionally, Z1 ≡ ZeZ2

√
Z3.

Next we expand these factors around the tree level.

Z1 = 1 + δ1

Z2 = 1 + δ2

Z3 = 1 + δ3

Zm = 1 + δm

where counterterms are functions of eR, that is because we want the counterterms to cancel loop
divergences in any order of perturbation theory.

Plugging them into Lagrangian and collecting similar terms would lead to:

L = −1

4
FRµν

2
+ iψ̄R /∂ψR −mRψ̄

RψR − eRψ̄R /ARψR

− 1

4
δ3F

R
µν

2
+ iδ2ψ̄

R /∂ψR − (δm + δ2)mRψ̄
RψR − eRδ1ψ̄R /ARψR

In renormalized perturbation theory, counterterms appear as interactions and used in Feynman
diagrams calculations to render the amplitudes finite, order by order. You can see their Feynman
rule in momentum space in figure 5
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Figure 5: Feynman rules for counterterm contributions in QED Lagrangian.

Now, it is possible to justify perturbation theory since eR < 1.

(a) [- points] Fermionic two-point function in renormalized perturbation theory:

Draw three diagrams contributing to the fermionic propagator.One is at the tree level, and
the other two are its loop correction and assicuated counterterms. Substitute their amplitude
from problem 3 and compare your result with Problem 3 (c).

Aside: By correcting this vertex, you will be able to find δm and δ2 counterterms in e2R order.
We have mentioned that finding them requires IR regularization, which you are invited to do
for yourself. At the end we would have:

δ2 =
e2R
8π2

(
− 1

ε
− 1

2
ln

(
µ̃2

m2
R

)
− 5

2
− ln

(
m2
γ

m2
R

))
. (6)

with mγ as the mass of photons, added to regularize the IR-divergence.

(b) [- points] Photon propagator:

Add three contributions of tree-level, loop amplitude and counter terms for photon propaga-

tor. You saw that with

Π2(p
2) =

8

(4π)
d
2

Γ(2− d

2
)µ4−d

∫ 1

0
dx x(1− x)

[ 1

m2
R − p2x(1− x)

]2− d
2

Show that your renormalized propagator still satisfies Ward identity.

Aside: In O.S. scheme, renormalization condition would be Π(p2 = 0) = Π(0) = 0, with
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Figure 6: Definition of the Π(p2), which is the non-tensorial part of the dressed propagator.

The O.S. condition on e2R order gives δ3,

δ3 = −
e2R
6π2

1

ε
−

e2R
12π2

ln

(
µ̃2

m2
R

)

(c) [- points] Interaction vertex correction:

We have worked out the most general form of the amplitude of the interaction vertex3:

Figure 7: The most general Feynman rule for QED vertex. With Γµ(p) = F1(p
2)γµ+ iσµν

2me
pνF2(p

2).

In the order e2R, would add and we find the associated counterterm, δ1.

Notice that we had not worked out this counterterm in problem 1, we just extracted the
σµν part to find the anomalous magnetic moment of the electron. This contribution is even
harsher to compute. Fortunately, we do not need to calculate it since there is a strong
condition between Z1 and Z2 in QED, namely Z1 = Z2. This implies that δ1 = δ2 in any

3We have imposed Lorentz covariance and Ward identity constraints. Also, we supposed that incoming and
outgoing fermions are on-shell.

Advanced Quantum Field Theory PSet 6 9



order of perturabtion theory. So by using (6),

δ1 = δ2 =
e2R
8π2

(
− 1

ε
− 1

2
ln

(
µ̃2

m2
R

)
− 5

2
− ln

(
m2
γ

m2
R

))

(d) [- points] Z1 = Z2 and its implications:

Read 19.5 Schwartz carefully and briefly discuss both the origin and the physical implication
of this equality. Reflect how this is generalized in QCD.

Aside: We have worked out the following renormalization condition in one loop level

Σ(mP ) = 0

Σ
′
(mP ) = 0

Π(0) = 0

Γµ(0) = γµ

These conditions define countertems in all orders in QED and render all loops finite. The
fact that we only need four counterterms to eliminate all loop divergences is QED’s renor-
malizability.
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Finally: Infrared divergences

I was going to cover this topic completely, but since you are already progressed at an astonishing
pace, I would rather mention a few facts about IR divergences.

As an instance, the e+e− → e+e− process (Bhabha scattering) has no finite amplitude after UV
regularization in e4R order; the divergence is due to integration on small momentum regions. The
contributing diagrams up to e4R are:

Figure 8: Feynman diagrams contributing to Bhabha scattering.

By considering a small mass for photon, mγ , IR divergence could be tamed.

σV =
e2R
8π2

σ0

{
− ln2(

m2
γ

Q2
)− 3 ln

(
m2
γ

Q2

)
− 7

2
+
π2

3

}
With Q2, the ”CM”-energy and σ0 =

e4R
12πQ2 the tree level scattering cross section. Notice that we

”MUST” compute the cross section, not the amplitude, to deal with IR infinities correctly.

The double logarithm ln2(#) could not be remedied by comparing cross sections at different energy
scales Q1, Q2.

σV (Q2
1)− σV (Q2

2) =
e2R
8π2

σ0

{
− ln2(

m2
γ

Q2
1

) + ln2(
m2
γ

Q2
2

)− 3 ln

(
Q2

2

Q2
1

)}
The remedy comes from ”Real Emission Graphs” (REG)4

4They are the same order in perturbation theory as the cross section of diagrams 8, but has more final states of
the massless particle.

You might ask if these graphs are in order e3R, but the figure 8 diagrams are e2R and e4R, respectively. The clarification
is the below figure
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Figure 10: Diagrams that add up to cancel IR infinities, only after working cross section, not
amplitude.

After working out its cross section, you will find:

σR =
e2R
8π2

σ0

{
+ ln2(

m2
γ

Q2
) + 3 ln

(
m2
γ

Q2

)
+ 5− π2

3

}
Fortunately, both ln2(#) and ln(#) cancel, and we have

σtot = σ0
(
1 +

3e2R
16π2

)
.

The fact that one can not get rid of IR infinities unless adding REGs has a significant physical
consequence. The final photon states in REGs are inevitable in experiments. It does not vanish
when the resolution of the detectors is increased!

These graphs’ calculations are boring, and at some stages, Mathematica is required. Weinberg elab-
orates this explanation about IR infinities more, I would suggest everyone read the final conclusions
of Weinberg if they are engrossed.

Figure 9: Diagrams that add up to cancel IR infinities, only after working cross section, not
amplitude.

All the calculations are in order e6R. An even stronger statement is that you can take different charges for two
fermionic vertices, namely Qe and Qµ (showing the e+e− → µ+µ− process) then all the diagrams in the Q3

eQ
3
µ add

up to cancel IR divergences.
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