
Advanced Quantum Field Theory - Fall 1402: PSet 5 TA: Hossein Mohammadi
Subject: Regularization schemes and Vacuum Polarization diagram

Instructor: Dr. Amin Faraji Due Date: dd/mm/yyyy

Problem 1: Regularization Schemes

As you know there are many regularization procedures in evaluating loop diagrams, like dimensional
regularization (D.R.), Pauli-Villars regularization (P.V.), lattice regularization, etc. Additionally,
there are many techniques that we have to utilize to evaluate one-loop diagrams. In this problem,
our goal is to cover all such techniques.

The gist of all these schemes is to extract to divergent part of the integral on the loop momentum.
Although there are different ways to regulate divergent amplitudes, all of these will agree on the
observations, which means that none of the interpretations that we’re going to discuss should be
taken seriously. Therefore, the running of parameters, dependence of amplitudes on the energy
scale, and other observables are scheme-independent.

(a) [- points] Pauli-Villars Regularization:

The idea is very simple, we just subtract a term from the divergent part, so that the final con-
tribution is rendered finite. This term is called the ”Pauli-Villars” term which is interpreted
as a ghost particle with mass Λ� m, with the wrong term kinetic sign in the Lagrangian.

Let’s consider the following example:∫
d4k

(2π)4

1

(k2 −m2 + iε)2

In the P.V. scheme, the idea is to replace it with:∫
d4k

(2π)4

[ 1

(k2 −m2 + iε)2
− 1

(k2 − Λ2 + iε)2

]
(1)

This ghost term would cancel the 1
k4 contribution which leaves us with a finite value (of course

Λ-dependent.)

Aside: The P.V. technique breaks the gauge invariance at the loop level1, and it’s not very
convenient when dealing with multi-loop amplitude Besides, it gets very complicated when
several propagators are involved in the loop.

(i) Write the measure d4k in the spherical coordinates, then isolate the angular part. Fi-
nally, do a Wick rotation to translate the integral in the usual Euclidean signature.(Use∫
dΩd = Ωd = 2π

d
2

Γ( d
2

)
for angular part.)

1Remember that gauge-invariance in amplitudes translates into Ward identity. So the regularized amplitude
M(reg)

µν has the property that pµM(reg)
µν 6= 0. That’s unfortunate, we do change our procedure to a more gauge-

friendly one.
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(ii) Evaluate the integral in (1); this is a simple integral that requires a change of variable
to evaluate. The final result is:∫

d4k

(2π)4

[ 1

(k2 −m2 + iε)2
− 1

(k2 − Λ2 + iε)2

]
=

i

16π2
ln

(
Λ2

m2

)
(b) [- points] Feynman parameters:

We prove a simple integral identity that helps complete square the loop integrals’ denominator.
There’s another way to attack loop integrals, which is Schwinger2 parametrization

Prove the following identity by integration:

1

AB
=

∫ 1

0
dx

1

(A+ (B −A)x)2

This identity is briefly showcased when we encounter such integral
∫

ddk
(2π)4

1
k2

1
(k−p)2 . By proper

and obvious definition ofA andB, the denominator square to the form
∫ 1

0 dx
∫

ddk
(2π)4

1
((k−px)2−∆)2 ,

where ∆ = −p2x(1− x).

Aside: Another useful relation is

1

ABC
=

∫ 1

0
dxdydzδ(x+ y + z − 1)

2

(xA+ yB + zC)3

which is very useful in calculating QED vertex correction, see figure 1.

Figure 1: Diagram contributing to QED vertex correction.

(c) [- points] Dimensional Regularization: The goal of this problem is to work out the fol-
lowing integral: ∫

ddk

(2π)4

k2a

(k2 −∆)b

. If we have such a powerful result at our disposal, we only need to use Feynman parametriza-
tion to complete-square the denominator and use this formula.

The dimensional regularization scheme, as its name suggests, treats the dimension of the
spacetime as a parameter to render finite amplitudes. In the end, we extract the divergent
term by a limiting process.

Working out this integral also requires knowledge about β−function.

2Sometimes called Schwinger proper time since the integral was first used in a pertinent content.
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(i) Take β(a, b) =
∫ 1

0 dxx
a−1(1− x)b−1 as the definition of beta function. Do two change of

variables to show that it is equal to:

(a) Γ(a)Γ(b)
Γ(a+b) .

(b)
∫∞

0 ds sa−1

(s+1)a+b .(In this case take x = s
s+1 .)

(ii) In the original integral, rewrite the measure in spherical coordinates and do a Wick
rotation, as you did in part (a).

(iii) Now compute the
∫
dkE

k2a
E

(k2
E+∆)b

by using identities of the beta function.

(iv) Put all things together to find:∫
ddk

(2π)4

k2a

(k2 −∆)b
= i(−1)a−b

1

(4π)
d
2

1

∆b−a− d
2

Γ(a+ d
2)Γ(b− a− d

2)

Γ(b)Γ(d2)
(2)

Now, finding the divergent part of the amplitudes boils down to knowing the divergences
of Γ(z) function. For our purposes, only Γ(ε) = 1

ε − γE +O(ε) is enough3.

The regularization procedure is to take d = 4−ε in the (2), and extract the divergent term
by the expansion of the Gamma function around zero. As an example let’s regularize∫

ddk
(2π)4

1
(k2−∆+iε)2 , which is equal to i

(4π)
d
2

1

∆2− d
2

Γ(4−d
2 ). Expanding d = 4 − ε give the

following result:
i

16π2
(
4π

∆
)
ε
2 (

2

ε
− γE +O(ε))

Remember that aε = eε ln(a) = 1 + ε ln(a), as ε→ 0, hence we get:

i

16π2

1

ε
+

i

16π2
ln

(
4πe−γE

∆

)
+O(ε)

as our divergent and convergent parts respectively, and the ε-dependent parts vanish in
the limit.

Aside: Some useful identities that we encounter frequently are:∫
ddk

(2π)4

1

(k2 −∆ + iε)2
=

i

(4π)
d
2

1

∆2− d
2

Γ(
4− d

2
)

∫
ddk

(2π)4

k2

(k2 −∆ + iε)2
= −d

2

i

(4π)
d
2

1

∆1− d
2

Γ(
2− d

2
)

∫
ddk

(2π)4

k2

(k2 −∆ + iε)3
=
d

4

i

(4π)
d
2

1

∆2− d
2

Γ(
4− d

2
)

(d) [- points] Dimensional Regularization Subtlties:

Since we change the dimension of the spacetime, so the dimension of the fields and the
couplings in the problem should also change.

3γE is the Euler-Mascheroni constant which is about 0.577 .
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(i) In QED Lagrangian, find the mass dimension of Aµ,Ψ,m, e in d-dimensional spacetime.

(ii) To make coupling constant e dimensionless, show that we have to change e → µ
4−d

2 e,
where µ is an arbitrary scale (not infinite!). We should justify later that the observables
are independent of this scale4.

4The dependence of regularized amplitude to this scale is like ln
(

4πe−γEµ2

∆

)
.
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Problem 2: Vacuum Polarization Diagram

Vacuum polarization involves a process in the vacuum of the theory where a pair of charged particles
(e.g. e−e+ particles in QED)is created and annihilated immediately. This virtual dipole is of
significant importance in observations. Here, we work out the QED vacuum polarization diagram
compeletely.

(a) [- points] The amplitude:

Write down the amplitude of the vacuum polarization diagram according to QED Feynman
rules in momentum space. (The figure 2 shows the Feynman diagram.)

Figure 2: Vacuum Polarization diagram in QED.

(b) [- points] Trace Technology:

To simplify the numerator, use these two identities in Clifford algebra: Tr(γµγν) = 4ηµν ,
Tr(γαγµγβγν) = 4

(
ηαµηβν − ηαβηµν + ηανηβµ

)
. You should end up to:

Tr
[
γµ(/k − /p+m)γν(/k +m)

]
= 4
[
− pµkν − kµpν + 2kµkν + ηµν(−k2 + p.k +m2)

]
(c) [- points] Drop Unnecessary Terms:

Now justify you can drop the pµkν part of the integral, use odd integrand argument to
conclude these terms vanish after integration.

(d) [- points] Feynman Trick:

Introduce Feynman parametrization to complete square the denominator, then change the
variables of integration according to kµ → kµ + pµ(1− x). Show that the Jacobian is unit.

You have to have something like this:

Πµν
2 = 4ie2

∫ 1

0
dx

∫
ddk

(2π)4

2kµkν − ηµν(k2 − x(1− x)p2 −m2)

(k2 + p2x(1− x)−m2)2

(e) [- points] Dimensional Regularization:

Use D.R. to regularize this amplitude. There’s another trick that you should utilize: replace
kµkν by 1

dη
µνk2. 5

Πµν
2 = − e2

2π2
p2ηµν

(∫ 1

0
dx x(1− x)

[2

ε
ln
( µ̃2

m2 − p2x(1− x)

)
+O(ε)

])
5Can you justify this innocent trick?
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(f) [- points] Reviving Gauge Invariance:

As we’ve promised, D.R. should preserve gauge invariance (or Ward Identity.) But this is not
manifest in the regularized amplitude in part (e). The idea is that we hadn’t considered the
full amplitude yet, which consists of pµpν terms.

Do so and end up with6:

Πµν
2 = − 8e2

(4π)
d
2

(p2ηµν − pµpν)Γ(2− d

2
)µ4−d

∫ 1

0
dx(1− x)x

( 1

m2 − p2x(1− x)

)2− d
2

So we recover the gauge invariance in the one-loop level.

6I know it’s tedious, but absolutely necessary!
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Problem 3: Physics of the Vacuum Polarization

As we saw,
iΠµν

2 = −i(p2ηµν − pµpν)e2Π2(p2),

Where

Π2(p2) =
1

2π2

∫ 1

0
dx(1− x)x

(2

ε
+ ln

(
µ̃2

m2 − p2x(1− x)

))
.

(a) [- points] The Dressed Propagator Gµν:

Dressed Propagator could be interpreted as Fourier transform of the corrected Coloumb po-
tential, i.e.

Figure 3: The dressed propagator up to one-loop level.

Conclude that iGµν = − i
p2 (1− e2Π2(p2))ηµν .

(b) [- points] Renormalization condition:

Now it’s time to define a renormalization condition. It’s pretty natural to expect that all the
quantum effects are in electric charge and the Coloumb potential (in momentum space) is the
same as before, with eR instead of bare e.

Ṽ (p2
0) =

e2
R

p2
0

Now solve eR in terms of e, then find renormalized potential, which is:

ṼR(p2) =
e2
R

p2

(
1 +

e2
R

2π2

∫ 1

0
dx(1− x)x ln

(
1− p2

m2
x(1− x)

)
+O(e4

R)
)

Aside: The renormalized potential reproduces the Lamb shift in the limit m2 � |p2|(or
Hydrogen atom in low-energy.) The process involves calculating integral with this approx-
imation and then do an inverse Fourier transformation to see Dirac delta function in the
position space7.

7For more detail, consult to 16.3.1 Schwartz
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