
Advanced Quantum Field Theory - Fall 1402: PSet 3 TA: Hossein Mohammadi
Subject: Casimir Energy and point particle quantization

Instructor: Dr. Amin Faraji Due Date: dd/mm/yyyy

Problem 1: Casimir Force - Concept and Regularization

The problem of zero-point energy of quantum field theories1 is not severe since it’s not observable at
all, as in classical physics, where only the difference in energy or potential levels could be measured
or affect the degrees of freedom (D.O.Fs).

Figure 1: The two nested one-dimensional boxes.

But if this energy somehow depends on the problem’s characteristic scale, then the derivative of
the Casimir energy with respect to that scale can have physical significance. Here we obtain the
Casimir force for a simple one-dimensional setup.

(a) [- points] The setup:

Consider a one-dimensional box of length a, inside another box of length L, where a < L.
The outer box is required to bypass some conceptual issues, and in the end, we take L −→∞
limit.

Upon quantization, the discrete frequencies are ωn = π
an and n ∈ N. Casimir energy is the

sum of the energies of all the quantum states. Note that you have to sum energies associated
with two boxes due to the presence of two boxes. One is for the original box of length a; the
other one is for the remaining space, which has length L − a, since we’ve accounted for the
D.O.Fs between length [0, a].

Write Etot(a), show that Casimir force, FCasimir = −dEtot
da diverges.

(b) [- points] Regularization of force via hard cut-off

This divergence arises partly because of our ignorance of super high-frequency modes. Walls
are made of atoms, and super high-frequency modes will penetrate the small gap between
the atoms; thereby it’s not viable to sum over all energy states. Whether what modes will
penetrate the wall is not our interest because it involves providing a theory for the wall’s

1Of course, coupling to gravity is not assumed

Advanced Quantum Field Theory PSet 3 1



atoms. The crucial point is that we have to do the summation in part (a) up to modes that
penetrate the wall.

We employ a high-frequency cut-off Λ, ω < πΛ. Then the allowable modes will have n <
nmax = [Λa].2 Now repeat the calculation in part (a), but instead up to n = nmax. Use
x = Λa − [Λa] to rewrite your expression in terms of x and Λa. (Suppose [Λa] is not an
integer.)

(c) [- points] Averaging x variable:

There still remains x, but it’s finite and lies in interval [0, 1). We can eliminate this variable
by averaging it. Do this averaging.

(d) [- points] The Casimir energy in the hard cut-off scheme:

Finally, take derivative with respect to a. And after derivation, you can take the L −→ ∞
without any concern. What’s the value of the Casimir force?

2[X] denotes the greatest integer less than or equal to X.

Advanced Quantum Field Theory PSet 3 2



Problem 2: Regularization Schemes

As its name suggests, the model provided in the previous problem cuts off the UV modes hardly.
Its form is θ(πΛ − ω). We can forget the model and recruit other regularization schemes to find
Casimir force.

Notice that we can use these schemes in calculating the determinant of operators, as you’ve seen
in the class and gained familiarity in applying them. Here, we want you to reproduce the result of
problem 1 in different schemes.

(a) [- points] Gaussian regularization:

Use Gaussian Kernel to evaluate the zero-point energy and Casimir force.

E(r) =
1

2

∑
n

ωne
−(ωn

πΛ
)2

(b) [- points] Zeta function regularization: Use Zeta function Kernel to evaluate the zero-
point energy and Casimir force.

E(r) =
1

2

∑
n

ωn(
ωn
µ

)−s

Aside: One can prove that the results are regulator-independent as long as regulators sastisfy
certain criteria, namely:

lim
x→∞

xf j(x) = 0, f(0) = 1

We can discuss them in the class if you’d like to.
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Problem 3: Point Particle Quantization by three different methods:
Path Integral Labor - Faddeev Popov - BRST

As you know, the relativistic free-particle action

S0 = −m
∫
dτ(−ηµνẊµẊν)−

1
2

suffers several ailments. So, we define another action involving einbein.

S =
1

2

∫
dτ(e−1(τ)ẋ.ẋ− e(τ)m2)

This formulation comes from putting a metric on the world line, a one-dimensional metric, with
gττ = e2(τ). We can call it one-dimensional Polyakov action.

In this problem, we approach its quantization with three methods. All of which are the same in
their nature. To be more specific, the Faddeev-Popov method accounts for the gauge group volume
by inserting a functional ”1:, which is a functional representation of the Dirac delta. BRST tries
to address this issue by introducing new fields to the problem.

Note that the problem may be challenging to solve. I, myself, even struggle with some parts of it!
Please don’t worry and proceed as much as you can.

(a) [- points] Warm-up:

This action is reparametrization invariant, as suggested in your notes. Work out δXµ and δe
under infinitesimal transformation τ −→ τ + ξ(τ).

Then find the Equation of Motion (E.O.M) of e(τ). Find E.O.M of x by varying action with
respect to it. Show that by replacing back e into E.O.M of xµ, you end up with the same
E.O.M derived from the old action S0.[Which is ∂τ (

mẋµ√
−Ẋ2

) = 0].

This means that reparametrization serves as a gauge transformation for the action S, while
it was hidden in S0.

(b) [- points] Path integral method - direct computation:

We evaluate the path integral by discretization. Notice that it’s similar to the exercises that
were solved beforehand. Except that you have to manage to integrate over gauge D.O.Fs
properly!

Let’s just focus on the propagator. Once we tackle the problem, it’s not hard to generalize
the problem.

N
∫ x(1)=x′

x(0)=x
DeDxµe−

1
2

∫ 1
0 ( 1

e
ẋ2−em2)dτ

(i) As you saw in (a), δe = ∂τ (ξe). To fix the gauge to a constant value, we choose
L =

∫ 1
0

√
gττdτ =

∫ 1
0 e(τ)dτ . Argue why it must be fixed like this. By which I mean it

should be equal to the length of the path and not any other constant.
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(ii) To proceed further, the integration over e, which is integration over metric parameters,
has been vastly studied during World War II.3 These parameters are called Teichmuller
parameters. Fortunately, in one-dimensional metrics, it’s easy to classify all the metrics
and define an integration measure on the space of all metrics.

The e-integration involves both scaling(constant modes) and reparametrization modes.
We’ve removed the reparametrization invariance by the choice of the gauge (L), and
there just remains to integrate over the scaling modes. This is realized via

N
∫ ∞

0
dL

∫ x(1)=x′

x(0)=x
DeDxµe−

1
2

∫ 1
0 ( 1

L
ẋ2−Lm2)dτ (1)

Up to now, I just motivated the above formula, now do the following tasks:

(iii) Exapnd around classical path, and by working out ||δxµ||(as done in your notes), con-
clude that measure would be Dxµ =

∏√
Ldδxµ(τ).

(iv) Discretize and evaluate the path integral.(You’ve to end up to something proportional

to det
(
− ∂2

τ
L2

)−2
).

(v) By spectral decomposition, we find that det
(
− ∂2

τ
L2

)
=
∏∞
n=1

n2

L2 . In this part, just regu-

larize this infinite product via Zeta function regulator.

(vi) Optional! Plug back into path integral (1) and do a fourier transformation to find the
usual Feynman propagator.

[- points] Faddeev-Popov procedure

As mentioned, it involves adding a functional ”1”. This functional ”1”, magically takes gauge
group volume into consideration, as you will see in this part.

(i) Define 1 = ∆(e)
∫
Dξδ(e− L[ξ]), where L[ξ] is value of the constant einbein after gauge

transformation. Now just plug this into path integral (1).

(ii) Do the integral over e, now that there is a functional Dirac delta function, you can do
this very very easy!

(iii) Since the integrand is gauge invariant, do a gauge transformation to drop ξ−dependence
of your exponential part and L[ξ]. Then factor out the path integral on Dξ, which
produces the volume of gauge group, and accounts for gauge D.O.Fs. (This part is
rather formal, no need to write a solution, just explain the ellimination of ξ.)

(iv) Now try to solve for ∆(L) from the part (i). Use integral representation of Dirac delta
function. At the end you should plug this into the result of part (iii), and end up with
propagator’s form.

[- points] BRST quantization

We’re not going to delve into this completely, but it’s going to be a very long introduction to
BRST.

3Even in the front of the war!
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The BRST approach compensates for the gauge D.O.Fs in the Lagrangian by another method,
adding new auxiliary fields with (anti-)commuting Grassmann fields. This approach is very
powerful to fix gauge in ANY gauge thoery to ANY function. It involves promoting symmetry
of the Lagrangian to a larger symmetry called BRST symmetry. This symmetry is crucial
to show the independence of physical results from different gauges and construct consistent
Hilbert space of the theory.

Define BRST transformations by:

δBRST (xµ) = Λce−1ẋµ

δBRST (e) = Λċ

δBRST (c) = 0

δBRST (b) = iΛπ

δBRST (π) = 0

(2)

Where c(τ) is an auxiliary ghost, real Grassmann field. Λ is pure imaginary Grassmann
number (independent of τ) called BRST parameter. b(τ) is anti-ghost, Grassmann field, and
π(τ) is a usual commuting field.

We also add gauge fixing term to action. Consider you want to fix gauge freedom (e) to an
arbitrary function f(x, e, π), define Ψ =

∫ 1
0 dτ b(τ)f(x, e, π). Then add Sfix[x, e, c, b, π] = δ

δΛΨ

to your action, where δ
δΛΨ means BRST transformation of Ψ with the parameter Λ removed

from the left.

Up to now, your action is Sq ≡ S[x, e] + Sfix[x, e, c, b, π]. The path integral would be

Z =

∫
DxDeDcDbDπe−Sq

explicitly, well-defined for any choice of f(x, e, π). We call Sq gauge-fixed BRST-invariant
action.

(i) Show that this is a symmetry of the action S. (δBRST (S) = 0)

(ii) Fix the freedom with the choice e = L or f(x, e, c, b, π) = L− e, compute Sfix from the
definition of Ψ.

(iii) Write out the path integral expression, you’ll see that integral over π results a functional
Dirac delta function on e, so that you can evaluate e-integration. This is pretty similar
to Faddeev-Popov procedure.

Finally reach at Z =
∫
DxDcDb e−

∫ 1
0 dx
(
ẋ2

2L
+L

2
m2+bċ

)
. Where the integration on b,c

ghosts will produce the same det(∂τ ) on the Faddeev-Popov procedure.

This is the end of the story. You can proceed by this action to do perturbative calculation,
including ghost vertices in your Feynman diagrams. All the well-known QFT identites
and observations satisfied in any perturbative order.
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Problem 4: Free Fermionic Path integral and miscellaneous deriva-
tions

We’ve looked at Fermionic path integrals before. Here, we complete our discussion.

Also, There were some minor derivation steps that I mentioned during the recorded assistant classes,
and we investigate some of them here.

(a) Fermionic Path Integral:

(i) Generalize the Grassmann integral you’ve encountered in problem set 2, prove the fol-
lowing relation:∫

dθ̄1 . . . dθ̄ndθ1 . . . dθne
−

∑
ij θ̄iAijθj+

∑
i η̄iθi+

∑
i θ̄iηi = det(A)e

∑
ijη̄iA

−1
ij ηj

(ii) Define (iγµ∂µ−m)−1 by (iγµ∂µ−m)Π(x− y) = −iδ(x− y), then do a Fourier transfor-
mation and find the usual propagator.

(iii) Now evaluate Z[η̄, η] =
∫
DΨ̄DΨei

∫
d4xΨ̄(x)(iγµ∂µ−m)Ψ+η̄Ψ+Ψ̄η.

(iv) Compute the following four-point function, with the definition of the generating func-
tional.

〈0|T{Ψ(x1)Ψ̄(x2)Ψ(x3)Ψ̄(x4)} |0〉

(b) [- points] Miscellaneous:

(i) As we saw in the assistant class, an innocent shift in path integral measure will benefit
us overwhelmingly! Prove the Schwinger-Dyson equation (pursue the same line followed
in the class.)

−i�x
∂Z[J ]

∂J(x)
=
{

L ′
int[−i

∂

∂J(x)
] + J(x)

}
Z[J ]

(ii) In proving gauge invariance, I showed that adding the − 1
2ξ (∂µA

µ)2 doesn’t affect corre-

lation functions of a gauge-invariant operator. What about − 1
2ξ (∂µA

µ)4 or ξAµAµ?
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