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Abstract—In this paper, array null steering is formulated as
a sparse recovery problem. In addition, a novel null steering
scheme for large arrays by perturbing only a few elements
is presented. To achieve this goal, compressed sensing (CS) is
used to exploit the sparsity of the perturbed elements. The
advantages of the proposed scheme are a significant reduction
in hardware cost, and lower power consumption, as well as less
aging of the elements, and faster response. Simulation results
show that the CS-based method could be efficiently used to
generate wide nulls using at least two elements. The interference
rejection ratio (IRR) achieved by the proposed method is 10-
20 dB better than the existing solutions. The performance of
different null generation methods in terms of peak-to-sidelobe
ratio (PSLR), pointing error, and beam-width is compared, as
well. The proposed algorithm is a prominent solution for the
future 5G base stations, where a fast and low-cost beam shaping
algorithm is required.

Index Terms—5G, beamforming, compressed sensing, interfer-
ence suppression, null steering, phased array, sparse recovery.

I. INTRODUCTION

INTERFERENCE rejection is a critical task in many phased
array applications, such as radar [1], multi-user communi-

cation systems [2], cognitive radio [3], satellite communication
[4], and biomedical applications. Particularly, in future 5G
base stations where from 64 to 256 antennas are to be used,
null steering is vital to increase throughput and decrease
overall interference level [5]. Undesired signals are rejected
by generating nulls in the array pattern in the corresponding
directions, which in practice is achieved by applying a set
of phase and/or amplitude perturbations to the pre-configured
element weightings.

The conventional method for null steering requires full
control of amplitude and phase of all elements, which is costly
and relatively slow [6]. Generally, nulls are placed in the
interferers directions by minimum perturbation of the element
excitation coefficients (weights) in a mean-squared sense. This
problem is equivalent to the minimization of mean square
of the pattern deviation due to weight perturbation, that is
why this method is also known as minimum mean-squared
error (MMSE) [6]. Another method is null steering by control
of phase only [7]. Using the small phase approximation, the
problem reduces to a linear one with an analytic solution
[7]. Null steering could also be performed by changing the
element positions. In [8], a technique is proposed to change
the position of a subset of elements to steer a null, while in [9]
synthesizing the array pattern only by optimizing the element
positions is implemented. Such methods add to the complexity
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of the system by using servo motors.
If the interferer is not a point source but distributed in space,

one null is not sufficient to reject the incoming signal, so wide-
null steering is necessary. In [10], a scheme is proposed to
produce a wide null by imposing several equidistant nulls over
the desired pattern sector, whereas in the method developed in
[11], a wide null is generated by proper control of the weights
of the two edge elements of the array. Wide-null steering using
higher order nulls is proposed in [12]. However, it is less
effective than the multiple nulling method [10].

Null steering, in both cases of narrow and wide nulls, could
be performed with some limited degrees of freedom; since, in
many cases, the number of required nulls is much smaller than
the number of array elements. In these cases, null steering
can be performed by using a reduced number of elements.
This could be realized in two ways: 1) partitioning the array
into subarrays and controlling the subarray weights, or 2)
using only a subset of element weights [13]. In both cases,
if the elements (or subarrays) to be used for null steering
are already specified, the problem can be classified as an
under-determined system of linear equations, which can be
solved using a least squared solution. Performance of these
methods is highly dependent on how elements (or subarrays)
are selected. Therefore, intelligent selection of the elements is
of high importance in such methods [13].

Compressed sensing (CS), a relatively new signal processing
paradigm, is recently used in various fields of engineering [14].
For example, an adaptive digital beamforming technique with
CS is proposed in [15] that exploits the angular sparsity of
arriving signals to reduce the number of the array elements.
Oliveri et al., in [16] and [17], proposed methods for the
synthesis of maximally sparse linear arrays based on the
bayesian compressive sampling, while a versatile multi-task
bayesian compressive sensing strategy is used in [18], for
sparsening of conformal arrays. A novel compressive sensing
reconstruction approach for correlated images is proposed in
[19]. Moreover, in [20], CS is exploited for channel estimation
in OFDM systems.

In this paper, array null steering is formulated as a sparse
recovery problem. In addition, CS is used to perform null
steering using only a few elements. A novel algorithm is
proposed which starts by the pre-determined number of el-
ements dedicated to null steering, and returns the indices of
the most effective elements and their corresponding weights.
Using this method one can use a partially adaptive phased
array instead of a fully adaptive one. It should be noted that
implementation of a fully adaptive phased array has several
disadvantages. The extra hardware adds to the complexity,
size, cost, and power consumption of the system, and increases
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the response time of the system to interference [13]. Even
if a fully adaptive array is available, the proposed method
is still beneficial to decrease the response time of the array,
and increase the mean time before failure (MTBF) of the
active array components contributing to overall reliability of
the system. Moreover, perturbing less number of elements may
result in less gain drop (higher array directivity), and lower
peak-to-sidelobe ratio (PSLR) compared to the conventional
null steering methods as shown in Section IV.

The rest of the paper is organized as follows. In Section
II, null steering is formulated as a sparse recovery problem.
Section III presents the proposed scheme. Simulation results
are demonstrated in Section IV. Finally, Section V concludes
the paper. The notations used in this work are listed in Table
I.

TABLE I
NOTATIONS AND THEIR DEFINITION

Symbol Meaning

(.)T transpose
(.)H hermitian
|.| absolute value

‖.‖p `p-norm

II. PROBLEM STATEMENT

In this section the null steering is formulated as a sparse
recovery problem. Fig. 1 illustrates a uniform linear array
(ULA) of N elements placed along the x-axis. To steer the
main beam toward the desired angle, θs, the conventional
weight for element n is given by

w0n = a0ne
jkdnus (1)

where us = sin θs, and a0n and k denote the element excita-
tion amplitude, and the wave-number, respectively. Besides,

dn = (n− N + 1

2
)d, n = 1, 2, · · · , N (2)

indicates the element positions along the x-axis, where d is
the element spacing. Hence, the conventional radiation pattern
is given by

Bc(u) =

N∑
n=1

w0ne
−jkdnu =

N∑
n=1

a0ne
−jkdn(u−us) (3)

where u = sin θ and θ is the angle measured from broadside
to the array as illustrated in Fig. 1.

To generate M nulls in the array pattern in the directions
of interference sources located at θi1 , θi2 · · · , θiM (as shown
in Fig. 1), element weights can be perturbed from their
conventional values as

wn = w0n + xn (4)

to produce a new pattern, B(u), under M constraints:

B(um) =

N∑
n=1

wne
−jkdnum (5)

= Bc(um) +

N∑
n=1

xne
−jkdnum = 0, m = 1, 2, · · · ,M

All M constraints in (5) can be represented as a linear set
of equations:

Ax = y (6)

𝑥

𝑧

𝟏

𝒒𝟏

𝒒𝑳

𝑵

d

Fig. 1. Uniform linear array configuration and coordinates.

where
y = [−Bc(u1),−Bc(u2), · · · ,−Bc(uM )]T , (7)

x = [x1, x2, · · · , xN ]T , um = sin θim , and

A =


e−jkd1u1 e−jkd2u1 · · · e−jkdNu1

e−jkd1u2 e−jkd2u2 · · · e−jkdNu2

...
...

. . .
...

e−jkd1uM e−jkd2uM · · · e−jkdNuM


M×N

(8)

As long as M < N , Eq. (6) indicates an under-determined
system of linear equations, which has infinitely many solu-
tions. The conventional full phase/amplitude control method
solves this problem by means of least squared error approx-
imation [21] which is equivalent to minimizing the squared
error between the conventional pattern and the constrained
pattern. It is shown in [21] that the problem reduces to:

min
x
‖x‖2 subject to Ax = y (9)

whose solution is:
xMMSE = AT (AAT )−1y. (10)

In this work, we are interested in the sparse solutions, where
the values of most of entries are zero, because such solutions
impose the least perturbation to the elements weighting. This
is equivalent to null steering using only a few elements with
all benefits demonstrated in Section IV. Hence, the problem
can be formulated as a so-called constrained `0-minimization
problem: min

x
‖x‖0 subject to Ax = y (11)

where ‖x‖0, i.e. `0-norm of x, denotes the number of non-
zero entries of x. In the CS literature, this problem is known
as sparse recovery problem, in which A, x, and y are called
measurement matrix, unknown sparse signal, and measurement
vector, respectively.

The best solution to `0-minimization problem found so
far is the combinatorial search, which is computationally
intractable for large values of N [22], since all possible
k-sparse vectors (k ≤ M) should be tested, in the worst
case (a vector is k-sparse if it contains at most k non-
zero entries.). Hence, several sparse recovery algorithms, such
as orthogonal matching pursuit [23], iterative hard threshold
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[24], YALL1 [25], and smoothed `0-norm (SL0) [26] are
introduced to solve the problem with a reasonable complexity.
After investigating different sparse recovery algorithms, we
concluded that SL0 and YALL1 show desirable performance
in solving this problem. Thus, they are used as sparse recovery
algorithms to perform the simulation in the rest of the work.

In this section, we showed that CS could be used to reduce
the number of perturbed elements required for null steering.
The proposed scheme is presented in the next section.

III. PROPOSED NULL STEERING SCHEME

Assuming that only L out of N array elements are used for
null steering, a two-step scheme is proposed. The first step is
devoted to finding L elements that are capable of steering the
nulls, while perturbing the array pattern as slightly as possible.
In the second step, the weight perturbation of these L elements
for null steering is estimated assuming no weight perturbation
for the remaining N − L elements.

In the following, the proposed scheme is explained in detail.
The goal of the first step is to find the support of the weight
perturbation vector, x, i.e. the set of indices of the elements
to be used for null steering, (see Fig. 1):

S = {i ∈ {1, 2, · · · , N}|xi 6= 0}. (12)
To do so, initially a sparse recovery algorithm should be

applied to obtain a solution to (11), x(0). However, some
sparse recovery algorithms (such as SL0 and YALL1) do
not return an exactly sparse solution (i.e. most entries are
insignificant, but not zero). Setting N − L least significant
entries of x(0) to zero yields an L-sparse vector, but this
solution does not necessarily satisfy Ax = y. So, we set
the indices of the L most significant entries of x(0) as the
support of the solution. Note that this pruning process is not
required when sparse recovery algorithms such as CoSaMP
that inherently perform the pruning are used. The first step is
now successfully done.

Let S = {q1, q2, · · · , qL} ⊆ {1, · · · , N} to be the support,
ruling out the zero entries of x from (11), reduces it to:

min
xS
‖xS‖0 s.t. ASxS = y (13)

where

AS =


e−jkdq1u1 e−jkdq2u1 · · · e−jkdqLu1

e−jkdq1u2 e−jkdq2u2 · · · e−jkdqLu2

...
...

. . .
...

e−jkdq1uM e−jkdq2uM · · · e−jkdqLuM

 (14)

is an M × L sub-matrix of A and xS = [xq1 , xq2 , · · · , xqL ]T
is a vector containing non-zero entries of x. This problem is
similar to (11), but the dimension is reduced from N to L
where L� N and L > M .

Next, AS is calculated according to (14) which is followed
by solving (13) using a sparse recovery algorithm to obtain xS .
Note that, this time one can use a sparse recovery algorithm
different from that used to solve (11). Ultimately, xopt is an
N×1 L-sparse vector with support S, whose non-zero entries
are entries of xS . The entire process of estimating xopt is

summarized in Algorithm 1.

Algorithm 1: Weight Perturbation Estimation
Input: N,L, d, λ, θs, {θi1 , θi2 , · · · , θiM }
Output: xopt
1: Calculate A and y according to (7) and (8)
2: x(0) = Sparse Recovery1(A,y) (solution of (11))
3: S = indices of L most significant entries of x(0)

4: Calculate AS according to (14)
5: xS = Sparse Recovery2(AS ,y) (solution of (13))
6: xopt = the N × 1 vector with support S, whose non-

zero entries are entries of xS

Note that using the proposed scheme, one can arbitrarily
choose any number of elements to perform the null steering.
In the next section, the performance of the different methods
in generating wide nulls is analyzed.

IV. SIMULATION RESULTS

The purpose of this section is to compare the performance of
the proposed scheme with the existing null steering methods.
Throughout this section, a ULA with half-wavelength (λ/2)
spacing is considered. Nevertheless, the results derived in this
work can be extended to any element spacing. To compare
different algorithms in suppressing a distributed interference,
a figure of merit, named interference rejection ratio (IRR), is
defined as:

IRR =
1

B(θs)

∫ +π

−π
B(θ).I(θ)dθ (15)

where B(θ) is the array radiation pattern, and I(θ) is a func-
tion representing the angular distribution of the interference
signal over θ, which is modeled with a Gaussian function:

I(θ) =
1√
2πσ2

i

e
− (θ−θi)

2

2σ2
i (16)

where θi is the interference center direction and σi indicates
the standard deviation of the interference angular location.
In fact, IRR measures how much the array beam is able
to suppress a Gaussian distributed interference. Hence, low
values of IRR are desired (corresponding to high suppression
of the interference). Note that in this work, array weights are
normalized by the maximum value for two reasons: 1) the
array gain comparison becomes fair, and 2) the methods that
require a higher variation of the weight amplitudes will be
distinguished.

In the first simulation, four possible combinations of the two
aforementioned sparse recovery algorithms, SL0 and YALL1,
as Sparse Recovery1 and Sparse Recovery2 in Algorithm
1 are used to compare CS-based null steering with the full
amplitude/phase control (MMSE) method [6] and the scheme
presented in [11]. Fig. 2 compares the performance of the
different schemes in rejecting a distributed interference. In this
simulation, the proposed scheme generates two nulls around
θi = 33◦ with the spacing of 0.05◦ to suppress an interference
with σi = 1.6◦ for N = 128, θs = 10◦. Note that the scheme
in [11] attempts to produce a wide null around θi = 33◦ by
perturbing the two side-elements of the array. The proposed



IEEE SIGNAL PROCESSING LETTERS 4

# of elements used

20 40 60 80 100 120

G
a

in
 (

d
B

)

15

16

17

18

19

20

21

22

SL0 - YALL1

YALL1 - SL0

YALL1 - YALL1

SL0 - SL0

Scheme in [11]

MMSE

Conventional

2

(a)

# of elements used

20 40 60 80 100 120

In
te

rf
e

re
n

c
e

 R
e

je
c
ti
o

n
 R

a
ti
o

 (
d

B
)

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

SL0 - YALL1

YALL1 - SL0

YALL1 - YALL1

SL0 - SL0

Scheme in [11]

MMSE

Conventional

2

(b)

Fig. 2. Comparison of the different null steering methods in terms of (a) array gain, and (b) IRR for N = 128, steering at 10◦, when a distributed interference
is located around θi = 33◦ with σi = 1.6◦.
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Fig. 3. Array radiation patterns generated by the different null steering schemes for N = 128, steering at 10◦, when a distributed interference is located
around θi = 33◦ with σi = 1.6◦.

method (SL0-SL0) outperforms the scheme in [11] by 8dB
to 22dB for different values of L, in terms of IRR, while the
other CS-based schemes fail to provide nulls with sufficient
IRR. Another important result is that in the proposed method,
as the number of elements used for null steering decreases,
the IRR decreases. The radiation patterns depicted in Fig. 3
indicate that not only the null generated using the proposed
method is deeper and wider, but also the sidelobes are lower
in the interference region.

The performance of the proposed scheme in rejecting a
distributed interference located around θi = 38◦ with σi =
1.6◦ by imposing three nulls with the spacing of 0.05◦ by
perturbing three out of 256 elements of a linear array with
θs = 0◦ is compared with the other schemes in Table II.
In addition to gain and IRR, other parameters of the beams
formed by each method are included in the comparison. It is
seen that, not only the proposed method is superior in terms
of gain and IRR, but also it does not have any broadening
effect on the half power beam-width (HPBW) of the pattern,
and does not cause any pointing error.

V. CONCLUSION

In this paper, null steering was formulated as sparse re-
covery problem and compressed sensing was used to perform

TABLE II
BEAM PARAMETERS FOR N = 256, L = 3, NULLS AT

37.95◦, 38◦, 38.05◦ , STEERING AT 0◦ .

Feature This Work Scheme in [11] MMSE
IRR (dB) -79.8 -52.1 -51.5
Gain (dB) 24.04 23.84 24.00
PSLR (dB) 13.57 13.53 13.63
HBPW (◦) 0.6 0.6 0.6

Pointing Error (◦) 0 0 0

null steering using only a few elements of a large array. The
capability of the proposed scheme in providing wide nulls
was investigated. Different combinations of SL0 and YALL1
algorithms were analyzed among which the SL0-SL0 method
was superior in terms of the Interference Rejection Ratio
(IRR). The IRR is a figure of merit measuring the ability of
a pattern to suppress a distributed interference with Gaussian
distribution. It was shown that the IRR of the proposed method
is 10 to 20 dB better than the existing solutions.

The future work will focus on applying the proposed scheme
to 5G base station arrays where multiple wide nulls are
required. Deriving an optimal null placement, using higher
order nulls, and extending the proposed method to the planar
arrays are main steps in future research.
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