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The prequalified connections introduced in ANSI/AISC 358-10 (AISC 2010a), have been 
extensively tested and showed good ductility and energy dissipation under severe cyclic loading. 
However, to guarantee the flexural plastic hinging with a sufficient length, their application is limited 
to cases where the clear span-to-depth ratio of the beam is greater than a minimum value specified in 
codes (FEMA 2000; AISC 2010a). This requirement limits the application of flexural beams mostly in 
framed-tube structures that generally consist of closely spaced exterior columns and deep spandrel 
beams rigidly connected together. In practice, the framed tubular behavior is achieved by placing 
columns at 3.05 m to as much as 6.1 m apart, with spandrel depth varying from 0.90 to 1.52 m, that 
leads to span-to-depth ratio between 3.4 and 4 (Taranath 2011). This is much lower than seven, 
specified as the minimum value in AISC Prequalified Connections (AISC 2010a) for special moment 
resisting frames. Rather than this limitation, there are several drawbacks that apply to the suggested 
prequalified connections in  ANSI/AISC 358-10 (AISC 2010a). In traditional ductile structural 
systems, since the ductile fuse is an integral part of the beam, strength and drift design of the structure 
are coupled. In these systems, when drift requirements control the design and member sizes are 
increased to meet drift limits, the capacity of the yielding fuse also increases. This in turn results to 
larger force demands on other parts of the structure, including columns, floor slabs, connections, and 
foundations, often resulting in overdesigned structures and increased overall costs. In addition, 
significant damage can result in the beam from repeated inelastic deformation and localized buckling 
during a design level earthquake. As the cumulative inelastic action of the structure is unknown, it is 
difficult to assess the extent of damage and the structure’s ability to provide an adequate level of 
safety for any subsequent loading. Furthermore, repair of the beam is very difficult, disruptive, and 
costly (Shen et al. 2010). 

To overcome the abovementioned limit and drawbacks, in this paper replaceable shear link 
concept is introduced as a new ductile fuse for MRFs. In this new concept, shear force in the beam is 
considered as the displacement-controlled component of the system and similar to eccentrically braced 
frames (EBFs), is so tuned that the seismic energy is dissipated by shear yielding in a small segment at 
the mid span of the beam. For this purpose, replaceable links with smaller shear capacity than the 
beam elements are introduced at the mid length of the beam. Two alternative details of a replaceable 
link beam applicable in design of new structures and also retrofit of existing ones are introduced. 
Moreover, the cyclic behavior of a single span-single story MRF with span-to-depth ratio of four and 
Reduced Beam Section (RBS) connection is studied through finite element models with two 
alternative structural fuses: (1) RBS connection; (2) shear link beam.  

IDEA INCEPTION 

Formation of flexural plastic hinges in the beams is the most common energy dissipating mechanism 
in ductile MRFs (Bruneau et al. 2011). However, beams with shorter span to-depth ratio will have a 
sharper moment gradient across the beam span, resulting in reduced length of the beam participating in 
plastic hinging and increased strains under inelastic rotation demands (AISC 2010a). Moreover, for a 
given beam cross section, due to the formation of plastic hinges, decreasing the beam length results in 
the increase of the shear force demand (Vp) calculated by:  
 

2 p
p

M
V

L
  (1) 

 
where Mp is the nominal plastic flexural strength of beam section and L is the length of the beam. 
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PROPOSED DETAILS 

Two types of replaceable link configurations with alternate link-to beam connections are proposed to 
employ a replaceable shear link in MRFs. Figure 4(a) shows the first type which is a W-shape link 
welded to unstiffened end plates, which are bolted to the floor beam end plates. The second 
replaceable link type consists of two channel sections, back-to-back, connected to the web of the floor 
beam through an eccentrically loaded bolted or welded web connection, as shown in Figure 4(b). Both 
link types has been employed in MRFs as a replaceable flexural hinge and in EBFs as a replaceable 
link beam and tested by Shen  et. al. (2010) and Mansour et. al. (2011). The second link type is also 
applicable in rehabilitation of existing buildings, such as the one shown in Figure 2, since it can be 
fabricated on-site with no or minimal change in the floor slab. In Figure 4(c) the application of a W-
section link with bolted end-plate connection is presented in a frame with non-prismatic beams. In this 
practice which is very common in Iran, the beam section varies in the length according to the moment 
diagram, resulting to a more economical design.  
 

 
(a) 

 
(b) 

Figure 3. Replaceable shear link concept in MRFs: (a) Prismatic beam; (b) non-prismatic beam. 

 

 
 

(a) 

 
 

(b) 

 
(c) 

Figure 4. Replaceable link configurations: (a) end-plate connected; (b) web connected; (c) end-plate connected to 
non-prismatic beam. 
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DESIGN OF REPLACEABLE SHEAR LINKS 

The link design procedure introduced in this study is based on the concept of replacing the traditional 
flexural hinges at the beam ends in a MRF by a shear fuse at the mid-span of the beam. The design 
shear strength of the link beam (VL) is determined as below so that all inelastic deformations occur in 
the link beam rather than beam ends: 
 

 L pbV V  (2) 

 Where Vpb = the shear force throughout the floor beam corresponding to formation of flexural hinges 
at beam ends, and φ= accounts for the increase in stresses due to strain hardening of the link yielding 
in shear which is assumed to be 1/1.5 in this study. 

The required flexural strength of the link beam is defined from the bending moment diagram 
along the beam so that no flexural yielding occurs at link ends prior to the shear yielding in the link 
web. Defining the link length is the next step. The same concept and rules for defining the length of 
link beams in EBFs is adopted here, since the behavior of the link beam proposed in this study is 
almost the same. Based on AISC Seismic Provisions (AISC 2010b), links with a length less than 
1.6MpL/VpL (VpL= the link plastic shear resistance, and MpL= the link plastic flexural resistance) are 
dominated by shear yielding, whereas those longer than 2.6MpL/VpL are dominated by flexural yielding. 
Shorter links that yield in shear are preferred because these have a more stable energy dissipation 
mechanism and a more predictable post yield behavior than the longer links that yield in flexure 
(Engelhardt and Popov 1989). The design and details of link stiffeners follow the same rules specified 
for link beams in EBFs in AISC Seismic Provisions (AISC 2010b). 

To allow for the placement of the floor deck on top of the floor beam, the link-to-beam 
connections should be sized such that the end plates are flush with the floor beam section. Moreover, 
since the link section depth is less than the floor beam depth, the link is not connected to the floor slab, 
allowing for replacement of the link. 

FINITE ELEMENT STUDY 

The main purpose of this study is to evaluate the efficacy of the proposed shear fuse in MRFs with low 
span-to-depth ratio where flexural hinges are anticipated not to be effective as energy dissipaters.  The 
finite element study involves modelling a single span-single story MRF with low span-to-depth ratio 
(L/d=4) which is much lower than the minimum of seven specified in AISC358-10 (AISC 2010a) for 
most prequalified moment connections in SMRFs. The frame is modelled with two alternatives as the 
energy dissipation mechanism: (1) formation of flexural hinges at beam ends with Reduced Beam 
Section (RBS); (2) shear yielding in the link beam at the mid span.  

The general-purpose nonlinear finite element analysis (FEA) program ABAQUS (SIMULIA 
2011) was used to develop 3-D nonlinear finite element models of frames. The standard W33X118 
section was selected for the beam and W14X193 for the column section to ensure a weak beam-strong 
column configuration, which is required by the AISC Seismic Provisions (AISC 2010b). The link 
beam section was determined to be W21X68 from the design procedure presented before. The details 
of the link beam are presented in Figure 5(a). The column length was considered to be 3960 mm and 
the beam clear span 3344 mm (four times the beam depth). A992 steel (which has a nominal yield 
stress of 345 MPa) was used for the beams, column, link beam, doubler plates, stiffener, end plates, 
and continuity plates. The RBS design followed the limits in AISC Prequalified Connections (AISC 
2010a) with details shown in Figure 5(b). The panel zone strength of the model was based on the 
required strength per AISC Seismic Provisions (AISC 2010b). 

Models were capable of predicting strength degradation resulting from buckling of the flanges, 
web, and stiffeners. Strength degradation associated with material fracture or tearing was beyond the 
scope of this study. In order to improve computation time, the model was developed using reduced 
integration shell elements, indicated S4R in ABAQUS. A shell element was used to model the 



6 
 

members in lieu of a solid element, since a shell element is more capable of properly capturing the 
effects of local buckling. Details of stiffeners, continuity plates, and end plates were not considered 
and the welds were not modelled explicitly. Mesh refinement study was conducted to determine the 
optimized level of refinement necessary to reach the accuracy in the connection region. 

Von Mises yield surface and an associated flow rule was used to model the plasticity. The 
hardening model used in the analysis included combined nonlinear isotropic and kinematic strain 
hardening. Data from cyclic coupon testing conducted by Kaufmann et al. (2001), designated as Steel 
C, were used for calibrating the cyclic material properties for the analysis. The Steel C material was 
A572 grade 50 steel with yield strength of 372 MPa and an ultimate strength of 496 MPa under 
monotonic testing. The same cyclic material properties were used for all components of the models. 

Simple support was defined for the bottom of the columns as boundary condition. Two identical 
displacement-controlled loadings were applied at top of the columns. Initial imperfections were 
included in the analysis, and were based on a proportion of the amplitude of the first two buckling 
modes of the model. The buckling modes were determined by a linear eigenvalue buckling analysis. 
Moreover, Geometric nonlinearity option in ABAQUS was utilized to account for large displacement 
effects so that local buckling could be captured and the post buckling behavior of the components 
could be simulated. 

The loading protocol specified in Section K2 of the 2010 AISC seismic provisions (AISC 
2010b) for qualifying cyclic tests of beam-to-column moment connections in special moment frames 
was used in all analysis.  
 

 
(a) 

 
 

 
(b) 

Figure 5. Details of: (a) shear link beam; (b) RBS connection. 

MODEL VERIFICATION 

In order to verify the modelling approach discussed previously, finite element models were created of 
a link beam and an RBS connection tested in prior researches and the analysis results compared to the 
test results.  

Specimen 9-RLP  which was an intermediate link beam (2.6MpL/VpL < e <1.6MpL/VpL) 
constructed of A992 steel tested by Okazaki and Engelhardt (2007), was modelled based on the 
measured dimensions of the experimental specimen using the techniques described previously. Nodes 
on both link ends were restrained against all rotations. Loads were applied by imposing transverse 
displacements on the right end nodes. Left end nodes were permitted to translate horizontally, but 
were constrained to all have the same horizontal translation. Loading in this manner resulted in 
constant shear along the length of the link with equal end moments and no axial forces. The link 
loading protocol in Section K of the 2010 AISC Seismic Provisions was used for the analysis. Figure 6 
compares the deformed geometry and the inelastic rotation versus shear hysteresis loops of specimen 
9-RLP and the corresponding model. The model properly predicted distributed link web yielding and 
web and flange local buckling in the end panels resulted to strength degradation that occurred in the 
test specimen. Therefore, the simulation results are considered to be in good agreement with the 
experimental results. 
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Figure 10 compares the total energy dissipated in both systems after 5% total story drift. As it is 
evident, the energy dissipation capacity of the shear link beam is comparable to RBS connections. It 
should be noted that as it was stated before, it is expected that the RBS connection in beams with low 
span-to-depth ratio could not provide such ductility capacity due to reduced length of the beam 
participating in plastic hinging and increased strains under inelastic rotation demands. Since the 
extended plastic hinge in the studied RBS connection is accompanied by high strains in the beam 
flange, it is not reasonable to be considered as real. Therefore, as the shear link beam has provided 
almost the same ductility capacity as the RBS connection, it proves to be a suitable alternative for not 
only the RBS, but also for other traditional moment connections.  

   

Figure 10. Comparison of energy dissipation capacity of RBS with shear link beam. 

 

CONCLUSIONS 

A new energy dissipation mechanism that works in shear has been proposed in this study for moment 
resisting frames (MRF) with low span-to-depth ratios. Based on current US codes, beams with span-
to-depth ratio less than seven are not allowed to be used in special moment resisting frames since it is 
anticipated that they cannot provide the required ductility capacity. A new replaceable structural shear 
fuse, that is similar to shear link beams in eccentrically braced frames, is introduced and studied in this 
paper as a replacement for traditional flexural fuse in MRFs with low span-to-depth ratios. Two 
alternative configurations for the link beam have been introduced: (1) a W-shape link welded to 
unstiffened end plates, which are bolted to the floor beam end plates; (2) two channel sections, back-
to-back, connected to the web of the floor. The cyclic behavior of an MRF with RBS connections with 
span-to-depth ratio of four has been studied through finite element models created in ABAQUS. Then 
the RBS connections are removed and the frame is equipped with the new proposed shear link beam 
designed based on the given procedure presented in this paper. The cyclic behavior of this new frame 
is studied and compared with the conventional frame with RBS connections. Based on the results, it 
can be concluded: 
 

- The new proposed shear fuse can provide a high ductility capacity for MRFs with low span-
to-depth ratios. Although the results show a high ductility capacity in RBS connection, but it 
should be noted that this cannot be considered as real since it is anticipated that fracture and 
tearing would occur due to high strains in the beam flange.  

- The shear link beam can be employed in MRFs as a structural fuse with minimal effect on the 
stiffness of the system. Thus, it is possible to decouple the strength and stiffness of the MRFs 
with this new structural shear fuse which can result to a more economical design of the forced 
controlled elements of the system such as column, floor diaphragm, and foundation. 
Moreover, Using the replaceable link concept, the designer has greater flexibility to choose a 
section for the yielding link that best meets the required strength without automatically 
changing the floor beam section. 
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- Since all accumulative damages will be concentrated only within the link, damaged links can 
be quickly inspected and replaced following a major earthquake, significantly minimizing the 
downtime of the structure and extending its life span. 
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