
Machine learning theory

Nonuniform learnability

Hamid Beigy

Sharif university of technology

March 7, 2022

Table of contents

1. Introduction

2. Nonuniform learnability

3. Structural risk minimization

4. Homeworks

5. Minimum description length

6. Occam’s Razor

7. Decision trees

8. Consistency

9. Nearest neighbor

10. Summary

11. Reading
1/42

Introduction

Introduction

1. Let H be a hypothesis space on a domain X , where X is given an arbitrary probability distribution

D.

2. The notions of PAC learnability allow the sample sizes to depend on the accuracy and confidence

parameters, but they are uniform with respect to the labeling rule and the underlying data

distribution.

3. So far, learner expresses prior knowledge by specifying the hypothesis class H.

4. Consequently, classes that are learnable in that respect are limited, they must have a finite

VC-dimension).

5. There are too many hypotheses classes that have infinite VC-dimension. What can we talk about

their learnability?

6. In this section, we consider more relaxed, weaker notions of learnability (nonuniform learnability).

7. Nonuniform learnability allows the sample size to depend on the hypothesis to which the learner is

compared.

8. It can be shown that nonuniform learnability is a strict relaxation of agnostic PAC learnability.

2/42

Agnostic PAC learnability

1. A hypothesis h is (ε, δ)-competitive with another hypothesis h′ if, with probability higher than

(1− δ),

R(h) ≤ R(h′) + ε.

2. In agnostic PAC learning, the number of required examples depends only on ε and δ.

Definition (Agnostic PAC learnability)

A hypothesis class H is agnostically PAC learnable if there exist a learning algorithm, A, and a

function mH : (0, 1)2 7→ N such that, for every ε, δ ∈ (0, 1) and every distribution D, if m ≥ mH(ε, δ),

then with probability of at least 1− δ over the choice of S ∼ Dm it holds that

R(A(S)) ≤ min
h′∈H

R(h′) + ε.

Note that this implies that for every h ∈ H

R(A(S)) ≤ R(h) + ε.

3. This definition shows that the sample complexity is independent of specific h.

4. A hypothesis class H is agnostically PAC learnable if it has finite VC-dimension.

3/42

Nonuniform learnability

Nonuniform learnability

1. In nonuniform learnability, we allow the sample size to be of the form mH(ε, δ, h); namely, it

depends also on the h with which we are competing.

Definition (Nonuniformly learnability)

A hypothesis class H is nonuniformly learnable if there exist a learning algorithm, A, and a function

mNUL
H : (0, 1)2 × H 7→ N such that, for every ε, δ ∈ (0, 1) and every distribution D, if

m ≥ mNUL
H (ε, δ, h), then with probability of at least 1− δ over the choice of S ∼ Dm it holds that

R(A(S)) ≤ R(h) + ε.

2. In both types of learnability, we require that the output hypothesis will be (ε, δ)-competitive with

every other hypothesis in the class.

3. The difference between these two notions of learnability is the question of whether the sample size

m may depend on the hypothesis h to which the error of A(S) is compared.

4/42

Nonuniform learnability

1. The nonuniform learnability is a relaxation of agnostic PAC learnability. That is, if a class is

agnostic PAC learnable then it is also nonuniformly learnable.

2. There is also a second relaxation, where the sample complexity is allowed to depend even on the

probability distribution D. This is called consistency, but it turns out to be too weak to be useful.

Theorem

Let H be a hypothesis class that can be written as a countable union of hypothesis classes,

H =
⋃

n∈N Hn, where each Hn enjoys the uniform convergence property. Then, H is nonuniformly

learnable.

Proof.

This theorem can be proved by introducing a new learning paradigm.

5/42

Nonuniform learnability

Theorem (nonuniform learnability)

A hypothesis class H of binary classifiers is nonuniformly learnable if and only if it is a countable

union of agnostic PAC learnable hypothesis classes.

Proof.

=⇒ Assume that H =
⋃

n∈N Hn, where each Hn is PAC learnable. Using the fundamental

theorem of statistical learning, then each Hn has the uniform convergence property.

Therefore, using the above Theorem, we obtain that H is nonuniform learnable.

⇐= Assume that H is nonuniform learnable using some algorithm A. For every n ∈ N, let

Hn =

{
h ∈ H

∣∣∣∣ mNUL
H

(
1

8
,

1

7
, h

)
≤ n

}
.

1. Clearly, H =
⋃

n∈N Hn.

2. Using the definition of mNUL
H , we know that for any distribution D that satisfies

the realizability assumption with respect to Hn, with probability of at least
6

7

over S ∼ Dn we have that R(A(S)) ≤ 1

8
.

3. Using the fundamental theorem of statistical learning, this implies that the

VC-dimension of Hn must be finite, and therefore Hn is agnostic PAC learnable.

6/42

Nonuniform learnability

1. The following example shows that nonuniform learnability is a strict relaxation of agnostic PAC

learnability; namely, there are hypothesis classes that are nonuniform learnable but are not

agnostic PAC learnable.

Example

I Consider a binary classification problem with X = R.

I For every n ∈ N let Hn be the class of polynomial classifiers of degree n.

I Hn is the set of all classifiers of the form h(x) = sign(pn(x)) where pn : R 7→ R is a polynomial of degree

n.

I Let H =
⋃

n∈N Hn, then H is the class of all polynomial classifiers over R.

I It is easy to verify that VC(H) =∞ , while VC(Hn) = n + 1 .

I Hence, H is not PAC learnable, while on the basis of the above Theorem, H is nonuniformly learnable.

7/42

Nonuniform learnability (polynomials)

1

−1

x

p0(x) = sign(x0)

1

−1

x

p1(x) = ax + b

1

−1

x

p2(x) = ax2 + bx + c

1

−1

x

p3(x) = ax3 + bx2 + cx + d

8/42

Structural risk minimization

Structural risk minimization

1. Suppose we can decompose H as a union of increasingly
⋃
γ∈Γ Hγ increasing with γ for some set Γ.

4.2 Empirical risk minimization (ERM) 63

hBayes

h⇤
h

increasing �

H�

Figure 4.2
Illustration of the decomposition of a rich family H =

S
�2� H� .

definition of the algorithm, we can write

R(hERM
S)� inf

h2H
R(h) = R(hERM

S)�R(h✏) + R(h✏)� inf
h2H

R(h)

 R(hERM
S)�R(h✏) + ✏

= R(hERM
S)� bRS(hERM

S) + bRS(hERM
S)�R(h✏) + ✏

 R(hERM
S)� bRS(hERM

S) + bRS(h✏)�R(h✏) + ✏

 2 sup
h2H

|R(h)� bRS(h)| + ✏.

Since the inequality holds for all ✏ > 0, it implies the following:

R(hERM
S)� inf

h2H
R(h)  2 sup

h2H

|R(h)� bRS(h)|,

which concludes the proof. ⇤
The right-hand side of (4.3) can be upper-bounded using the generalization bounds

presented in the previous chapter in terms of the Rademacher complexity, the

growth function, or the VC-dimension of H. In particular, it can be bounded by

2e�2m[✏�Rm(H)]2 . Thus, when H admits a favorable Rademacher complexity, for

example a finite VC-dimension, for a su�ciently large sample, with high probability,

the estimation error is guaranteed to be small. Nevertheless, the performance of

ERM is typically very poor. This is because the algorithm disregards the complexity

of the hypothesis set H: in practice, either H is not complex enough, in which case

the approximation error can be very large, or H is very rich, in which case the

bound on the estimation error becomes very loose. Additionally, in many cases,

determining the ERM solution is computationally intractable. For example, finding

2. The problem then consists of selecting the parameter γ∗ ∈ Γ and thus the hypothesis set Hγ∗ with

the most favorable trade-off between estimation and approximation errors.

3. For SRM, H is assumed to be decomposable into a countable set, thus, we write it as

H =
⋃

k≥1 Hk .

4. Also, the hypothesis sets are nested, i.e. Hk ⊂ Hk+1 for all k ≥ 1.

5. SRM consists of choosing the index k∗ ≥ 1 and the ERM hypothesis h ∈ Hk∗ that minimize an

upper bound on the excess error.

9/42

Structural risk minimization

1. The hypothesis set for SRM: H =
⋃

k≥1 Hk with H1 ⊂ H2 ⊂ . . . ⊂ Hk ⊂

2. We suppose that we are given a family Hn of hypothesis classes, each of which being PAC

learnable, but how do we select n?

3. So far, we have encoded our prior knowledge by specifying a hypothesis class H, which we believe

includes a good predictor for the learning task at hand.

4. Yet another way to express our prior knowledge is by specifying preferences over hypotheses within

H.

5. In the Structural Risk Minimization (SRM) paradigm, we do so by

5.1 first assuming that H can be written as H =
⋃

n∈N Hn and

5.2 then specifying a weight function, w : N 7→ [0, 1], which assigns a weight to each hypothesis class,

Hn, such that a higher weight reflects a stronger preference for the hypothesis class.

6. We will discuss how to learn with such prior knowledge.

10/42

Structural risk minimization

1. Let H be a hypothesis class that can be written as H =
⋃

n∈N Hn.

2. It tries to find a hypothesis that

hSRM
m = arg min

h∈Hn,n∈N
R̂(h) + Complexity(Hn,m)

3. Let also for each n, the class Hn enjoys the uniform convergence property with a sample

complexity function mUC
Hn

(ε, δ).

4. We suppose that we are given a family Hn of hypothesis classes, each of which being PAC

learnable, but how do we select n?

5. Let us also define the function εn : N× (0, 1) 7→ (0, 1) by

εn(m, δ) = min
{
ε
∣∣∣ mUC

H (ε, δ) ≤ m
}

6. In words, we have a fixed training size m, and we are interested in the lowest possible upper

bound on the gap between empirical and true risks achievable by using a sample of m examples.

7. From the definitions of uniform convergence and εn, it follows that for every m and δ, with

probability of at least δ over the choice of S ∼ Dm, for all h ∈ Hn we have that

|R(h)− R̂(h)| ≤ εn(m, δ)

11/42

Structural risk minimization

1. Let w : N 7→ [0, 1] be weight function over the hypothesis classes H1,H2, . . . such that∑∞
n=1 w(n) ≤ 1.

2. Such a weight function can be the priori preference or some measure of the complexity of different

hypothesis classes.

3. When H = H1 ∪ H2 ∪ . . . ∪ HN and w(n) =
1

N
, this corresponds to no a priori preference to any

hypothesis class.

4. When H is a (countable) infinite union of hypothesis classes, a uniform weighting is not possible

but we need other weighting such as w(n) = 6
(πn)2 or w(n) = 2−n.

5. The SRM rule follows a bound minimization approach.

6. This means that the goal of the paradigm is to find a hypothesis that minimizes a certain upper

bound on the true risk.

12/42

Structural risk minimization

The bound that the SRM rule wishes to minimize is given in the following theorem.

Theorem

Let w : N 7→ [0, 1] be a function such that
∑∞

n=1 w(n) ≤ 1. Let H be a hypothesis class that can be

written as H =
⋃
n∈N

Hn, where for each n, Hn satisfies the uniform convergence property with a sample

complexity function mUC
Hn

. Let εn(m, δ) = min
{
ε
∣∣ mUC

H (ε, δ) ≤ m
}

. Then, for every δ ∈ (0, 1) and

distribution D, with probability of at least 1− δ over the choice of S ∼ Dm, the following bound

holds (simultaneously) for every n ∈ N and h ∈ Hn.

|R(h)− R̂(h)| ≤ εn(m,w(n)× δ)

Therefore, for every δ ∈ (0, 1) and distribution D, with probability of at least 1− δ for all h ∈ H, it

holds that

R(h) ≤ R̂(h) + min
h∈Hn,n∈N

εn(m,w(n)× δ)

13/42

Structural risk minimization

Proof.

I For each n define δn = w(n)δ.

I Applying the assumption that uniform convergence holds for all n with the rate of

|R(h)− R̂(h)| ≤ εn(m, δn).

I We obtain that if we fix n in advance, then with probability of at least 1− δn over the choice of

S ∼ Dm, for all h ∈ Hn, we have

|R(h)− R̂(h)| ≤ εn(m, δn)

I Applying the union bound over n = 1, 2, . . ., we obtain that with probability of at least

1−
∑
n

δn = 1− δ
∑
n

w(n)

≥ 1− δ

I The preceding holds for all n.

14/42

Structural risk minimization

1. Let n(h) = min{n | h ∈ Hn}. Then the above Theorem implies that SRM searches for h that

minimizes

R(h) ≤ R̂(h) + εn(h)(m,w(n(h))× δ)

2. The following Theorem shows that the SRM paradigm can be used for nonuniform learning of

every class, which is a countable union of uniformly converging hypothesis classes. The proof is

given in page 62 of Book (Shalev-Shwartz and Ben-David 2014).

Theorem

Let H be a hypothesis class such that H =
⋃
n∈N

Hn, where each Hn has the uniform convergence

property with sample complexity mUC
Hn

. Let w : N 7→ [0, 1] be such that w(n) = 6
π2n2 . Then, H is

nonuniformly learnable using the SRM rule with rate

mNUL
H (ε, δ, h) ≤ mUC

Hn(h)

(
ε

2
,

6δ

(πn(h))2

)

3. This theorem also proves the nonuniform learnability.

15/42

No-free-lunch for nonuniform learnability

1. We have shown that any countable union of classes of finite VC-dimension is nonuniformly

learnable.

2. It turns out that, for any infinite domain set, X , the class of all binary valued functions over X is

not a countable union of classes of finite VC-dimension.

3. It follows that, in some sense, the NFL theorem holds for nonuniform learning as well:

NFL for nonuniform learning

When the domain is not finite, there exists no nonuniform learner with respect to the class of all

deterministic binary classifiers.

4. Although for each such classifier there exists a trivial algorithm that learns it (ERM with respect

to the hypothesis class that contains only this classifier).

16/42

Nonuniform learnability vs Agnostic PAC learning

1. The prior knowledge of a nonuniform learner for H is weaker, it is searching for a model

throughout the entire class H, rather than being focused on one specific Hn .

2. The cost of this weakening of prior knowledge is the increase in sample complexity needed to

compete with any specific h ∈ Hn.

3. Consider the task of binary classification with the zero-one loss and assume that for all n, we have

VC(Hn) = n.

4. For Hn, we have mUC
Hn

(ε, δ) = C
n + log(1/δ)

ε2
, where C is a constant.

5. By using weight function w(n) = 1
2n2 , we have

mNUL
H (ε, δ, h)−mUC

Hn
(ε/2,w(n)δ) = O

(
log n

ε2

)
6. That is, the cost of relaxing the learner’s prior knowledge from a specific Hn that contains the

target h to a countable union of classes depends on the log of the index of the first class in which

h resides.

7. That cost increases with the index of the class, which can be interpreted as reflecting the value of

knowing a good priority order on the hypotheses in H.

17/42

Homeworks

Homeworks

Please send these homeworks via email. The deadline is 14001/01/31.

1. Let Hn =

{
h ∈ H

∣∣∣∣ mNUL
H

(
1

8
,

1

7
, h

)
≤ n

}
, show that VC(Hn) is finite.

2. Prove Theorem 7.2 of Book (Shalev-Shwartz and Ben-David 2014).

3. Is sin(θx) nonuniformly learnable?

4. What are differences between definitions of uniform convergence property and agnostic PAC

learnability?

5. Let Hn =
{
R 7→ {0, 1}

∣∣ f −1(.) is finite
}

. Is H agnostic PAC learnable? Is H nonuniformly

learnable?

18/42

Minimum description length

Minimum description length

1. Let H be a countable hypothesis class. Then, we can write H as a countable union of singleton

classes, namely, H =
⋃

n∈N{hn}

2. By Hoeffding’s inequality, each singleton class has the uniform convergence property with rate

mUC (ε, δ) =
log(2/δ)

2ε2
.

3. Therefor, function εn becomes εn(m, δ) =
log(2/δ)

2ε2
and SRM rule becomes

arg min
hn∈H

[
R̂(hn) +

√
log(1/w(n)) + log(2/δ)

2m

]
4. Equivalently, we can think of the weight function as w : H 7→ [0, 1], and then the SRM rule

becomes

arg min
h∈H

[
R̂(h) +

√
− logw(h) + log(2/δ)

2m

]
5. This means, the prior knowledge is solely determined by the weight we assign to each hypothesis.

6. We assign higher weights to hypotheses that we believe are more likely to be the correct one, and

in the learning algorithm we prefer hypotheses that have higher weights.

19/42

Minimum description length

1. Having a hypothesis class, one can wonder about how we describe, or represent, each hypothesis

in the class.

2. We naturally fix some description language. This can be English, or a programming language, or

some set of mathematical formulas.

3. Let H be the hypothesis class we wish to describe. Fix some finite set Σ of symbols, which we call

the alphabet.

4. Let Σ = {0, 1}. A string is a finite sequence of symbols from Σ: for example, σ = (0, 1, 1, 1, 0)

is a string of length 5.

5. We denote by |σ| the length of a string. The set of all finite length strings is denoted Σ∗.

6. A description language for H is a function d : H 7→ Σ∗, mapping each member h ∈ H to a string

d(h) (the description of h and its length is denoted by |h|).

7. We require that description languages be prefix-free; namely, for every distinct h and h′, d(h) is

not a prefix of d(h′).

430 Chapter 16 Greedy Algorithms

a:45 b:13 c:12 d:16 e:9 f:5

58 28 14

86 14

100

0 1 0 1 0 1

0 1 0

0 1

e:9f:5

14
0 1

c:12 b:13

25
0 1

d:16

30
0 1

55
0 1

a:45

100
0 1

(a) (b)

Figure 16.4 Trees corresponding to the coding schemes in Figure 16.3. Each leaf is labeled with
a character and its frequency of occurrence. Each internal node is labeled with the sum of the fre-
quencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code a = 000, . . . ,
f = 101. (b) The tree corresponding to the optimal prefix code a = 0, b = 101, . . . , f = 1100.

acter, and repeat the decoding process on the remainder of the encoded file. In our
example, the string 001011101 parses uniquely as 0 ! 0 ! 101 ! 1101, which decodes
to aabe.

The decoding process needs a convenient representation for the prefix code so
that we can easily pick off the initial codeword. A binary tree whose leaves are
the given characters provides one such representation. We interpret the binary
codeword for a character as the simple path from the root to that character, where 0
means “go to the left child” and 1 means “go to the right child.” Figure 16.4 shows
the trees for the two codes of our example. Note that these are not binary search
trees, since the leaves need not appear in sorted order and internal nodes do not
contain character keys.

An optimal code for a file is always represented by a full binary tree, in which
every nonleaf node has two children (see Exercise 16.3-2). The fixed-length code
in our example is not optimal since its tree, shown in Figure 16.4(a), is not a full bi-
nary tree: it contains codewords beginning 10. . . , but none beginning 11. . . . Since
we can now restrict our attention to full binary trees, we can say that if C is the
alphabet from which the characters are drawn and all character frequencies are pos-
itive, then the tree for an optimal prefix code has exactly jC j leaves, one for each
letter of the alphabet, and exactly jC j " 1 internal nodes (see Exercise B.5-3).

Given a tree T corresponding to a prefix code, we can easily compute the number
of bits required to encode a file. For each character c in the alphabet C , let the
attribute c: freq denote the frequency of c in the file and let dT .c/ denote the depth

20/42

Minimum description length

1. Prefix-free collections of strings enjoy the following combinatorial property:

Lemma (Kraft Inequality)

If S ⊆ {0, 1}∗ is a prefix-free set of strings,then∑
σ∈s

1

2|σ|
≤ 1.

Proof.

I Define a probability distribution over the members of S as follows:

I Repeatedly toss an unbiased coin, with faces labeled 0 and 1, until the sequence of outcomes is a

member of S, at that point, stop.

I For each σ ∈ S , let P(σ) be the probability that this process generates the string σ.

I Note that since S is prefix-free, for every σ ∈ S, if the coin toss outcomes follow the bits of σ then we

will stop only once the sequence of outcomes equals σ.

I We therefore get that, for every σ ∈ S , P(σ) =
1

2|σ|
.

I Since probabilities add up to at most 1, our proof is concluded.

21/42

Minimum description length

From Kraft’s inequality, any prefix-free description language of a hypothesis class, H, gives rise to a

weighting function w over that hypothesis class. We will simply set w(h) =
1

2|h|
.

Theorem

Let H be a hypothesis class and let d : H 7→ Σ∗ be a prefix-free description language for H. Then,

for every sample size, m, every confidence parameter, δ > 0, and every probability distribution, D,

with probability greater than 1− δ over the choice of S ∼ Dm, we have that,

R(h) ≤ R̂(h) +

√
|h|+ ln(2/δ)

2m

where |h| is the length of d(h).

Proof.

1. Choose w(h) =
1

2|h|
.

2. Note that ln(2|h|) = |h| ln(2) < |h|.

3. Apply Theorem of SRM bound, with εn(m, δ) =
log(2/δ)

2ε2

22/42

Minimum description length

1. This Theorem result suggests a learning paradigm for H given a training set, S , search for a

hypothesis h ∈ H that minimizes the bound R(h) ≤ R̂(h) +
√
|h|+ln(2/δ)

2m
.

2. This suggests trading off empirical risk for saving description length.

3. This yields the Minimum Description Length learning paradigm as

arg min
h∈H

[
R̂(h) +

√
|h|+ ln(2/δ)

2m

]

23/42

Occam’s Razor

Occam’s Razor

1. The last Theorem suggests that, having two hypotheses sharing the same empirical risk, the true

risk of the one that has shorter description can be bounded by a lower value.

2. Thus, this result can be viewed as conveying a philosophical message.

Occam’s Razor

A short explanation (that is, a hypothesis that has a short length) tends to be more valid than

a long explanation.

3. This Theorem shows that the more complex a hypothesis h is, the larger the sample size it has to

fit to guarantee that it has a small true risk, R(h).

4. How do we choose the description language? (after/before seeing data?)

5. From the Hoeffding’s bound, if we commit to any hypothesis before seeing the data, then we are

guaranteed a rather small estimation error term R(h) ≤ R̂(h) +
√
|h|+ln(2/δ)

2m
.

6. As long as description language is chosen independently of the training sample, the generalization

bound holds.

24/42

Decision trees

Decision trees

A decision tree is a predictor, h : X 7→ Y, that predicts the label associated with an instance x by

traveling from a root node of a tree to a leaf.
Decision Trees

Color?

not-tasty

other

Softness?

not-tasty

other

tasty

gives slightly to palm pressure

pale green to pale yellow

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 24 / 39

Lemma (VC dimension of decision trees)

Let H be the class of decision trees over X with k leaves. Then, VC(H) = k.

Proof.

1. A set of k instances that arrive to the different leaves can be shattered.

2. A set of (k + 1) instances can’t be shattered since 2 instances must arrive to the same leaf.

25/42

Decision trees

Lemma (VC dimension of decision trees)

Let X = {0, 1}n and splitting rules are according to I [xi = 1] for some i ∈ {1, . . . , n}. Let also H be

the class of decision trees over X . Then, VC(H) = 2n.

Proof.

1. The height of this tree is at most n + 1.

2. A full binary tree with height of n + 1 has 2n leaves.

3. Hence, a set of 2n instances that arrive to the different leaves can be shattered.

4. Then, VC(H) = 2n.

Check: Class H contains {0, 1}X and hence VC(H) = |X | = 2n.

26/42

Decision trees

1. A tree with n nodes can be described as (n + 1) blocks, each of size log2(d + 3) bits, indicating
(in depth-first order).

I An internal node of the form I [xi = 1] for some i ∈ {1, . . . , n}
I A leaf whose value is 1
I A leaf whose value is 0
I End of the code

2. Let internal nodes have two children, this is a prefix-free encoding of the tree.

3. The description length of a tree with n nodes is (n + 1) log2(d + 3).

4. Applying MDL learning rule to search tree with n nodes that minimizes

R̂(h) +

√
(n + 1) log2(d + 3) + log(2/δ)

2m

5. This belongs to the class of NP hard problems.

6. Hence, practical decision tree learning algorithms are based on heuristics.

7. For example, Iterative Dichotomizer 3 (ID3), proposed by J. Ross Quinlan, is a greedy

algorithm (Quinlan 1986).

8. ID3 follows the MDL principle, attempts to create a small tree with low train error.

27/42

Consistency

Consistency

1. The notion of learnability can be further relaxed by allowing the needed sample sizes to depend

not only on ε, δ, and h but also on the underlying data-generating probability distribution D.

2. This type of performance guarantee is captured by the notion of consistency of a learning rule.

Definition (Consistency)

Let Z be a domain set, let P be a set of probability distributions over Z, and let H be a hypothesis

class. A learning rule A is consistent with respect to H and P if there exists a function

mCON
H : (0, 1)2 × H × P 7→ N such that, for every ε, δ ∈ (0, 1), every h ∈ H, and every D ∈ P, if

m ≥ mCON
H (ε, δ, h,D) then H with probability of at least 1− δ over the choice of S ∼ Dm it holds that

R(A(S)) ≤ R(h) + ε.

If P is the set of all distributions, we say that A is universally consistent with respect to H.

3. The notion of consistency is a relaxation of the previous notion of nonuniform learnability.

4. If an algorithm nonuniformly learns a class H, it is also universally consistent for that class.

5. The relaxation is strict in the sense that there are consistent learning rules that are not successful

nonuniform learners.

28/42

Consistency

1. The following algorithm is a universally consistent for the class of all binary classifiers over N this

class is not nonuniformly learnable.

Example (Memorize algorithm)

An algorithm memorizes the training examples, and, given a test point x , it predicts the majority

label among all labeled instances of x that exist in the training sample and some fixed default label if

no instance of x appears in the training set. Show that this algorithm is universally consistent for

every countable domain X and a finite label set Y w.r.t. the zero-one loss.

2. Intuitively, it is not obvious that this algorithm should be viewed as a learner, since it lacks the

aspect of generalization, namely, of using observed data to predict the labels of unseen examples.

3. The fact that this algorithm is a consistent algorithm for the class of all functions over any

countable domain set therefore raises doubt about the usefulness of consistency guarantees.

4. May this algorithm overfit?

5. For more information regarding consistency, please read chapters 6 and 11 of Devroye, Gyorfi, and

Lugosi Book1.

1Luc Devroye, Laszlo Gyorfi, and Gabor Lugosi (1996). A probabilistic theory of pattern recognition. Springer.

29/42

Nearest neighbor

Nearest neighbor

1. Memorize the training set S = {(x1, y1), . . . , (xm, ym)}.

2. Given new x , find the k closest points in S and return majority vote among their labels.

1-Nearest Neighbor: Voronoi Tessellation

Unlike ERM,SRM,MDL, etc., there’s no H
At training time: “do nothing”

At test time: search S for the nearest neighbors

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 33 / 39

3. Unlike ERM,SRM,MDL, there is no H.

4. At training time: do nothing.

5. At test time: search S for the nearest neighbors.

30/42

Nearest neighbor

1. Let
I X = [0, 1]n

I Y = {0, 1}
I D is a distribution over X × Y
I DX is the marginal distribution over X
I η : Rn 7→ R is the conditional probability over the labels, i.e. η(x) = P [y = 1 | x]

2. Bayes optimal rule

h?(x) = I
[
η(x) ≥ 1

2

]
3. Prior knowledge: η is c-Lipschitz. That is, for all x, x′ ∈ X , we have

|η(x)− η(x′)| ≤ c
∥∥x− x′

∥∥
Theorem

Let h be the k-NN rule, then

E
S∼Dm

[R(h)] ≤

(
1 +

√
8

k

)
R(h?) +

(
6c
√
n + k

)
m−

1
n+1

4. It seems that, we learn the class of all functions over [0, 1]n.

5. But this class is not learnable even in the non-uniform model.

6. There’s no contradiction: the number of required examples depends on the Lipschitzness of η

(the parameter c), which depends on D.

7. Hence, it is learnable in consistency model.
31/42

Summary

What is the risk of the learned hypothesis?

1. The first possible goal of deriving performance guarantees on a learning algorithm is bounding the

risk of the output predictor.

2. Both PAC learning and nonuniform learning give us an upper bound on the true risk of the learned

hypothesis based on its empirical risk.

3. Consistency guarantees do not provide such a bound.

4. However, it is always possible to estimate the risk of the output predictor using a validation set.

32/42

How many examples are required for finding the best hypothesis in H?

1. How many examples we need to collect in order to learn it.
I PAC learning gives a crisp answer.
I For NUL and consistency, we do not know the number of examples required for learning H.
I In NUL this number depends on the best hypothesis in H.
I In consistency this number also depends on the underlying distribution.
I In this sense, PAC learning is the only useful definition of learnability.

2. If Rest(h) is small, its risk may still be large if H has a large Rapp(h).

3. How many examples are required to be as good as the Bayes optimal predictor?
I PAC guarantees do not provide us with a crisp answer.
I This reflects the fact that the usefulness of PAC learning relies on the quality of our prior knowledge.

33/42

How many examples are required for finding the best hypothesis in H?

1. PAC guarantees also help us to understand what we should do next if our learning algorithm

returns a hypothesis with a large risk.

2. We can bound Rest(h) and therefore know how much of the error is due to Rapp(h).

3. If Rapp(h) is large, we know that we should use a different hypothesis class.

4. If a NUL algorithm fails, we can consider a different weighting function.

5. When a consistent algorithm fails, we don’t know the reason is Rest(h) or Rapp(h).

6. If we are sure we have a problem with Rest(h), we do not know how many more examples are

needed to make Rest(h) small.

34/42

How to Learn? How to express prior knowledge?

1. The most useful aspect of learning theory is providing an answer to the question of how to learn?.
I PAC learning yields the limitation of learning (via NFL theorem) and the necessity of prior knowledge.
I PAC learning gives us a crisp way to encode prior knowledge by choosing a hypothesis class, and after

that, we have a generic learning rule (ERM).
I NUL learning also yields a crisp way to encode prior knowledge by specifying weights over (subsets

of) hypotheses of H and after that we have a generic learning rule (SRM).

2. Unlike the notions of PAC learnability and nonuniform learnability, the definition of consistency

does not yield a natural learning paradigm or a way to encode prior knowledge.

3. In fact, in many cases there is no need for prior knowledge at all.

4. As an example, we saw that even the Memorize algorithm, which intuitively should not be called a

learning algorithm, is a consistent algorithm for any class defined over a countable domain and a

finite label set.

5. This hints that consistency is a very weak requirement.

35/42

How to Learn? How to express prior knowledge?

1. The SRM rule is also advantageous in model selection when prior knowledge is partial.
I Consider the regression problem of learning a function, h : R 7→ R.
I As prior knowledge we consider the hypothesis class of polynomials.
I We are uncertain regarding which degree n would give the best results for our data set.
I A small degree might not fit the data well (large Rapp(h)).
I A high degree might lead to overfitting (large Rest(h)).

The cost of weaker prior knowledge

Suppose H = [nHn, where VCdim(Hn) = n

Suppose that some h⇤ 2 Hn has LD(h⇤) = 0

With this prior knowledge, we can apply ERM on Hn, and the sample
complexity is C n+log(1/�)

✏2

Without this prior knowledge, SRM will need C n+log(⇡2n2/6)+log(1/�)
✏2

examples

That is, we pay order of log(n)/✏2 more examples for not knowing n
in advanced

SRM for model selection:

Shai Shalev-Shwartz (Hebrew U) IML Lecture 5 MDL,SRM,trees,neighbors 22 / 39

n = 2 n = 3 n = 10

2. It is easy to see that the empirical risk decreases as we enlarge the degree.

3. if we choose H = {pn(x) | 0 ≤ n ≤ 10}, then the ERM rule with respect to this class would

output a p10(x) and would overfit.

4. If we choose H = {pn(x) | 0 ≤ n ≤ 2}, then the ERM would underfit (large Rapp(h)).

5. We can use SRM rule on H = {pn(x) | n ∈ N} and ordering subsets of H according to n. This

yields a h(x) = p3(x) since combination of its R̂(h) and bound on its Rapp(h) is the smallest.

6. The SRM rule enables us to select the right model on the basis of the data itself.

7. The price we pay for this flexibility is that we do not know in advance the number of examples to

compete with the best hypothesis in H.

36/42

Which learning algorithm should we prefer?

1. One may argue that even though consistency is a weak requirement, it is desirable that a learning

algorithm will be consistent with respect to the set of all functions from X to Y.

2. This gives us a guarantee that for enough training examples, we will always be as good as the

Bayes optimal predictor.

3. Therefore, if we have two algorithms, where one is consistent and the other one is not consistent,

we should prefer the consistent algorithm.

4. This argument is problematic for two reasons.
I First, maybe it is the case that for most natural distributions we will observe in practice that the

sample complexity of the consistent algorithm will be so large so that in every practical situation we

will not obtain enough examples to enjoy this guarantee.
I Second, it is not very hard to make any PAC or nonuniform learner consistent with respect to the

class of all functions from X to Y.

37/42

Which learning algorithm should we prefer?

1. Consider a countable domain, X , a finite label set Y, and a hypothesis class, H.

2. We can make any NUL learner for H be consistent with respect to the class of all classifiers from

X to Y using the following simple trick.

3. Upon receiving a training set S :
I First run the NUL learner over S , and then obtain a bound on the true risk of the learned predictor. If

this bound is small enough we are done.
I Otherwise, we revert to the Memorize algorithm.

4. This simple modification makes the algorithm consistent with respect to all functions from X to Y.

5. Since it is easy to make any algorithm consistent, it may not be wise to prefer one algorithm over

the other just because of consistency considerations.

38/42

Revisiting NFL Theorem

1. NFL implies that no algorithm can learn the class of all classifiers over an infinite domain.

2. However, we saw that the Memorize algorithm is consistent with respect to the class of all

classifiers over a countable infinite domain.

3. Why these two statements do not contradict each other?

Theorem (NFL theorem)

Let X be a countable infinite domain and let Y = {−1,+1}. For any algorithm, A, and a training

set size, m, there exist a distribution D over X and a function h∗ : X 7→ Y, such that if A will get a

sample S ∼ Dm, labeled by h∗, then A is likely to return a classifier with a larger error.

4. The consistency of Memorize implies the following:

Consistency of Memorize

For every distribution over X and a labeling function h∗ : X 7→ Y, there exists a training set size

m(D, h∗) such that if Memorize receives at least m examples it is likely to return a classifier with a

small error.

5. In NFL, we first fix m, and then find a D and a h∗ that are bad for this training set size.

6. In consistency guarantees, we first fix D and h∗, and then we find a m that suffices for learning

this particular D and h∗.

39/42

Comparison of notions for learning

1. The classes of infinite VC-dimension can be learnable, in some weaker sense of learnability.

2. For countable hypothesis classes, we can apply the MDL scheme, where hypotheses with shorter

descriptions are preferred.

3. We can implement the class of all predictors in C++, which is a powerful class of functions and

probably contains all that we can hope to learn in practice.

4. Even the implementation of the ERM paradigm with respect to all C++ programs of description

length at most 1000 bits requires an exhaustive search over 21000 hypotheses.

5. While the sample complexity of learning this class is just
1000 + log(2/δ)

ε2
, the runtime is ≥ 21000,

which is too computationally hard.

6. The notions of learnability can be summarized as

Bounds on R

based on R̂

Bounds on R(A(s)) compared to

infh∈H R(h) based on m

Encode prior knowl-

edge

(Agn) PAC X X (in advance) X (specifying H)

Nonuniform X X (depends on the best h ∈ H) X (weights)

Consistent × × ×

40/42

Reading

Readings

1. Chapters 7 & 18 & 19 of Understanding machine learning : From theory to

algorithms (Shalev-Shwartz and Ben-David 2014).

41/42

References i

Devroye, Luc, Laszlo Gyorfi, and Gabor Lugosi (1996). A probabilistic theory of pattern recognition.

Springer.

Quinlan, J. Ross (1986). “Induction of Decision Trees”. In: Machine Learning 1.1, pp. 81–106.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory to

algorithms. Cambridge University Press.

42/42

Questions?

cba

42/42

	Introduction
	Nonuniform learnability
	Structural risk minimization
	Homeworks
	Minimum description length
	Occam's Razor
	Decision trees
	Consistency
	Nearest neighbor
	Summary
	Reading

