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Introduction



Introduction

1. PAC (Probably Approximately Correct) learning provides guarantees on the
expected error (approximately) of prediction rules that hold with high probability
(probably) with respect to representativeness of the observed sample.

2. In PAC approach, we choose hypothesis class H as the prior knowledge.

3. The PAC approach has the advantage that one can prove guarantees for
generalization error without assuming the truth of the prior.

4. How to incorporate more complicated prior knowledge.
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Introduction

1. The Bayesian approach has the advantage of using arbitrary domain knowledge in
the form of a Bayesian prior.

2. A PAC-Bayesian approach to machine learning attempts to combine the
advantages of both PAC and Bayesian approaches.

3. A PAC-Bayesian approach bases the bias of the learning algorithm on an arbitrary
prior distribution, thus allowing the incorporation of domain knowledge, and yet
provides a guarantee on generalization error that is independent of any truth of
the prior.
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Bayesian methods



Maximum likelihood

1. Let the data is drawn from a distribution that comes from some parametric family.

Example (Gaussian distribution)

Let σ be a known fixed parameter. Then,

P [y | x; w] = N
(
〈w, x〉 , σ2

)
= 〈w, x〉+N

(
0, σ2

)
is a parametric family.

2. Given a sample S = {(x1, y1), . . . , (xm, ym)}, we define the likelihood of w as

L(w,S) = log (P [y1, . . . , ym | x1, . . . , xm; w]) =
m∑
i=1

log (P [yi | xi ; w])

3. The maximum likelihood maximizes L(w,S) given value of S

w = argmax
w′

L(w′,S)
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Maximum likelihood

Example (Gaussian distribution)

1. Let σ be a known fixed parameter. Then,

P [y | x; w] = N
(
〈w, x〉 , σ2

)
= 〈w, x〉+N

(
0, σ2

)
is a parametric family.

2. This means that P [yi | xi ; w] = 1√
2πσ2

exp
(
− (yi−〈w,x〉)2

σ2

)
and the likelihood is

L(w,S) = −
∑m

i=1
1
σ2

(yi−〈w,x〉)2
σ2 + C , where C is a normalization factor that

does not depend on w.

3. This means that maximum likelihood is equivalent to minimizing square loss.

4. We want to maximize P [w | x, y ].
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Maximum a posteriori

1. To find P [w | x, y ], we need to a prior distribution P [w].

2. We have P [y | x,w] and P [w] from Bayes Theorem, hence, we have

P [w | x, y ] =
P [y | x,w]P [w]

P [y | x]

∝ P [y | x,w]P [w] .

3. The maximum a posteriori (MAP) model is

w = argmax
w′

P
[
y
∣∣ X,w′

]
P
[
w′
]

= argmax
w′

L(w′, S) + logP
[
w′
]
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Maximum a posteriori

Example (Gaussian distribution (cont.))

1. Let P [w] = N (0, σ2wI) be prior distribution on w.

2. Now, we have

w = argmax
w′

−
m∑
i=1

1

σ2
(yi − 〈w′, x〉)2

σ2
− 1

σ2
∥∥w′
∥∥2
2

= arg min w′
m∑
i=1

1

σ2
(yi − 〈w′, x〉)2

σ2
+

1

σ2
∥∥w′
∥∥2
2

3. This is equivalent to doing regularized ERM with L2 regularization.

4. If we use Laplacian distribution instead of Gaussian, we will get L1 regularization.
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Bayesian inference

1. MAP picks the best model, given our model and data.

2. Why do we have to pick one model?

3. We have seen that the optimal classifier can be calculated given P [y | x].

4. The Bayesian approach does exactly that, so we get

P [y | x, S ] =

∫
w
P [y | x,w]P [w | S ] d P [w]

5. In some cases (such as Guassian), this as an analytic solution, but most of the
time there isn’t any.
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Introduction

1. In agnostic PAC learning, this prior is defined as selecting the hypothesis class H.

2. In SRM learning, this prior is defined as the weights assigned to different
hypothesis class Hn.

3. In MDL, this prior is defined as the description length of hypothesis h.

4. In the above models, the output of the learning algorithm is a single hypothesis h,
i.e h = A(S).

5. In PAC-Bayes, algorithms return a distribution Q on H.

6. The learning algorithm is
I Define prior distribution P on H.
I Get sample S ∼ Dm.
I Define/find posterior distribution Q on H.

7. Note that distributions play two different semantic roles:
I D is a model of the world;
I P and Q express our beliefs about the correct answer.
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Introduction

Example (Loss of posterior)

1. Let Q be a distribution on H, D a distribution on X × Y and S a finite sample.

2. Define

R(Q) = E
h∼Q

[R(h)] = E
h∼Q

[
E

z∼D
[`(h, z)]

]
R̂(Q) = E

h∼Q

[
R̂(h)

]
= E

h∼Q

[
1

m

m∑
i=1

`(h, z)

]
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Gibbs classifier

We can turn a posterior into a learning algorithm.

Definition (Gibbs classifier)

Let Q be a distribution on H. The Gibbs classifier is the following randomized
hypothesis

I Pick h ∈ H according to Q(h).

I Observe x.

I Return h(x).

It is straightforward to show that the expected loss Gibbs classifier equals to R(Q).

Example

1. Let H = {h1, . . . , hk}.
2. Let P be a uniform distribution over H.

3. Let Q be defined as

Q(h) =

{
1 if h = herm
0 if h 6= herm
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Gibbs classifier

Example

1. For w ∈ Rn, define

hw(x) =

{
+1 with probability 1

Z e
〈w,x〉

−1 with probability 1
Z e
−〈w,x〉

2. The prior P is N
(
0, σ2I

)
, i.e. P(hw) ∝ exp(−‖w‖2 /σ2).

3. Given sample S = {(x1, y1), . . . , (xm, ym)} ∼ Dm, obtain Q, sample h ∼ Q, and
output h(x). Then likelihood equals to

P [y1, . . . , ym | hw, x1, . . . , xm] =
∏
i

1

Z
e〈w,xi 〉 ∝ exp

(∑
i

yi 〈w, xi 〉

)
.

4. Using Bayes’ rule, we can form the posterior

P [hw | y1, . . . , ym, x1, . . . , xm] ∝

(
exp

(∑
i

yi 〈w, xi 〉

))(
exp

(
−‖w‖

2

σ2

))

∝

(
exp

(∑
i

yi 〈w, xi 〉

)
− ‖w‖

2

σ2

)
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KL divergence

1. We want to show that if Q is similar to P, the classifier generalizes well.

2. We will see that the critical factor determining the complexity of the learning
algorithm will become KL(Q||P), the Kullback-Liebler divergence from Q to P
instead of the Rademacher complexity.

3. Kullback-Leibler (KL) divergence is how to measure the similarity of two
distributions.

Definition (KL divergence)

Let P and Q be continuous or discrete distributions. Then, KL divergence of
distributions P and Q defined as

KL(Q||P) = E
x∼Q

[
ln

(
Q(x)

P(x)

)]
.

4. Note that KL divergence is not symmetric, i.e. KL(Q||P) 6= KL(P||Q).

5. The intuition behind this definition comes from information theory.
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KL divergence

1. Assume we have a finite alphabet and message x is sent with probability P(x).

2. Shannon’s coding theorem states that code of x with log2(1/P(x)) bits is an

optimal coding and the expected bits per letter is Ex∼P

[
log2

(
1

P(x)

)]
= H(P).

3. Consider now that we use the optimal code for P, but the letters where sent
according to Q.

4. The expected bits per letter is now

E
x∼Q

[
log2

(
1

P(x)

)]
= E

x∼Q

[
log2

(
Q(x)

P(x)

)
+ log2

(
1

Q(x)

)]
= H(Q) + KL(Q||P).

5. KL(Q||P) is the extra number of bits expected per letter from using P instead of
Q to create the codebook.

6. This shows that KL(Q||P) ≥ 0.
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KL Divergence

Example

Let P be a distribution on x1, . . . , xm and Q(xi ) = 1. Then, KL(Q||P) = ln
(

1
P(xi )

)
.

Example

Let P(xi ) = 0 and Q(xi ) > 0, then KL(Q||P) =∞.

Example

Let α, β ∈ [0, 1], then

KL(α||β) = KL(Ber(α)||Ber(β)) = α ln
(
α
β

)
+ (1− α) ln

(
1−α
1−β

)
.

Show the above equation.

Example

Let Q = N (µ0,Σ0) and P = N (µ1,Σ1) be two n-dimensional Gaussian distributions.
Then, (Show the following equation.)

KL(Q||P) =
1

2

(
Tr
[
Σ−11 Σ0

]
+ (µ1 − µ0)Σ−11 (µ1 − µ0)− n − det (Σ0)

det (Σ1)

)
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PAC Bayes bound

Lemma

If X is a real valued random number satisfying P [X ≤ x ] ≤ e−mf (x), then

E
[
e(m−1)f (x)

]
≤ m.

Lemma

With probability greater than (1− δ) over S,

E
h∼P

[
e(m−1)KL(R̂(h)||R(h))

]
≤ m

δ
.

Lemma (Shift of measure)

E
x∼Q

[f (x)] ≤ KL(Q||P) + ln E
x∼P

[
ef (x)

]
.
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PAC Bayes bound

Theorem (PAC Bayes bound)

Let Q and P be distributions on H and D be a distribution onX × Y. Also let
`(h, z) ∈ [0, 1] and S ∼ Dm be a sample of size m, then with probability greater or
equal to (1− δ) over S we have

KL(R̂(Q)||R(Q)) ≤
KL(P||Q) + ln

(
m+1
δ

)
m

.

1. The left-hand side is the KL divergence between two numbers; while the
right-hand side is the KL divergence between distributions.

2. We assume no connection between D and P (an agnostic analysis).
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PAC Bayes bound

Proof (PAC Bayes bound).

1. Define f (h) = KL(R̂(h)||R(h)). Using the Lemma Shift of measure and its
preceding lemma, we get

E
h∼Q

[mf (h)] ≤ KL(Q||P) + ln E
h∼P

[
emf (h)

]
≤ KL(Q||P) + ln

(
m + 1

δ

)
2. Since KL divergence is convex, so from the Jensen inequality

KL(R̂(Q)||R(Q)) = KL( E
h∼Q

[
R̂(h)

]
|| E
h∼Q

[R(h)])

≤ E
h∼Q

[
KL(R̂(h)||R(h))

]
= E

h∼Q
[f (h))]
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Generalization bounds

We bounded KL(R̂(Q)||R(Q)) and then bound R(Q)− R̂(Q).

Lemma

Let a, b ∈ [0, 1] and KL(a||b) ≤ x, then b ≤ a +
√

x
2 and b ≤ a + 2x +

√
2ax.

The second is much stronger if a is very small.

Theorem (Generalization bounds)

Let Q and P be distributions on H and D be a distribution on X × Y. Let also
`(h, z) ∈ [0, 1] and S ∼ Dm be a sample, then with probability greater or equal to
(1− δ) over S we have

R(Q) ≤ R̂(Q) +

√
KL(Q||P) + ln

(
m+1
δ

)
2m

R(Q) ≤ R̂(Q) + 2
KL(Q||P) + ln

(
m+1
δ

)
m

+

√
2R̂(Q)

KL(Q||P) + ln
(
m+1
δ

)
m
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Soft-ERM

Example (Soft-ERM)

1. In Soft-ERM, we have Q(h) = 1
ZQ

e−βR̂(h), where ZQ is the normalization
constant.

2. When β → 0, Q is uniform.

3. When β →∞, Q is concentrated on the ERM.

4. Its natural counterpart is the prior P(h) = 1
ZP

e−βR(h).

5. We do not know P, but we only use it for theoretical analysis.

Theorem

Let Q be the Soft-ERM posterior, then with probability greater or equal to (1− δ)
over S we have

KL(R̂(Q)||R(Q)) ≤
√

2β

m3/2

√
ln

(
2m + 2

δ

)
+

β2

2m2
+

ln
(
2m+2
δ

)
m

Homework: It seems like Soft-ERM is a universal learner! What doesn’t it contradict
the fundamental theorem in statistical learning?
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Summary

1. Shawe-Taylor et al. gave PAC analysis of Bayesian estimators.

2. McAllester gave PAC-Bayesian bound.

3. PAC-Bayes bounds hold even if prior incorrect;while Bayesian inference must
assume prior is correct.

4. PAC-Bayes bounds hold for all posteriors; while in Bayesian learning, posterior
computed by Bayesian inference, depends on statistical modeling

5. PAC-Bayes bounds can be used to define prior, hence no need to be known
explicitly; while in Bayesian learning, input effectively excluded from the analysis,
randomness lies in the noise model generating the output.

6. We analyzed Gibbs classifier. Another solution is to sample many hi ∼ Q i.i.d.
and output the majority vote.

7. PAC-Bayes theory gives the tightest known generalization bounds for SVMs, with
fairly simple proofs.

8. PAC-Bayesian analysis applies directly to algorithms that output distributions on
the hypothesis class, rather than a single best hypothesis.

9. However, it is possible to de-randomize the PAC-Bayes bound to get bounds for
algorithms that output deterministic hypothesis.
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Readings

1. Chapter 31 of Shai Shalev-Shwartz and Shai Ben-David (2014). Understanding
machine learning: From theory to algorithms. Cambridge University Press.

2. The papers given in References McAllester 1999, 2003a,b, 2013.
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Questions?

cba
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