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Distribution of clicks (Aug. 2019) G

1. The first rank has average click rate of 31.7%.
2. Only 0.78% of Google searchers clicked from the second page.
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Introduction

1. The learning to rank problem is how to learn an ordering.
2. Application in very large datasets

> search engines,

> information retrieval

» fraud detection
» movie recommendation

Motivation for ranking

The main motivation for ranking over classification in the binary case is the
limitation of resources.

1. it may be impractical or even impossible to display or process all items labeled
as relevant by a classifier.

2. we need to show more relevant ones or prioritize them.
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Introduction

1. In applications such as search engines, ranking is more desirable than classification.
2. Problem: Can we learn to predict ranking accurately?

3. Ranking scenarios

> score-based setting
> preference-based setting
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Score-based setting




Score-based setting

General supervised learning problem of ranking,

> the learner receives labeled sample of pairwise preferences,

> the learner outputs a scoring function h: X — R.

Drawbacks
» hinduces a linear ordering for full set X

» does not match a query-based scenario.

Advantages
» efficient algorithms
» good theory,
» VC bounds,

» margin bounds,

» stability bounds

6/42



Score-based setting

1. The score-based setting is defined as
» X is input space.
» D is unknown distribution over X' x X.
» X x X~ {=1,0,41} is arget labeling function or preference function, where

-1 if X' <prer X
fx,x)=<¢ 0 if X' =pref X
+1 if X <prer X'
2. No assumption is made about the transitivity of the order induced by f.
f(x,xX')=+1 and f(xX,x")=+1 and f(x",x)=+1

3. No assumption is made about the antisymmetry of the order induced

f(x,x)=+1 and f(x';x)=+1 and x#X
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Score-based setting

Definition (Learning to rank (score-based setting))
1. Learner receives
S={(x1, X1, y1)s s (Xmy Xy, Ym) } € (X x X = {—=1,0,+1})™, where
(xi,x}) ~ D and y; = f(x;,x}).
2. Given a hypothesis set H = {h : X — R}, ranking problem consists of selecting
a hypothesis h € H with small expected pairwise misranking or generalization
error R(h) with respect to the target f

R = P [(70x) #0) A (70 X))~ h(x)) < 0)

3. The empirical pairwise misranking or empirical error of h is defined by

m

R(h) = >"1[(y # 0) A (v(hxs) — h(x})) < 0]

i=1
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Ranking by linear classification

N =

. A simple approach is to project instances into a vector w
. Let to define the ranking function as

h((X1, -y %Xm)) = ((W,x1) ..., (W, X))

Then use the distance of the point to classifier (w, x) as the score of x.
We assume that y; # 0, then the empirical error is defined as

R() = S 1 [((h(xs) — h(x)) < 0)]

i=1

if we define h(x) = (w, x), we have
R(E) = S 1 [ (w, (xi — X)) < 0)]

i=1

Then, we can use the following ERM algorithm to rank items.

w = arg r;nin % ZH [(y,- <w’, (xi — xf)> < 0)}
w i=1
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Confidence margin in ranking

1. Assume that labels are chosen from {—1,+1}.

2. Homework: Generalize the result to the label set {—1,0,+1}.

3. Same as classification, for any p > 0, empirical margin loss of a hypothesis h for
pairwise ranking is

where
1 ifu<o0
¢>p(u): 1—% fo<u<p
0 ifp>u

4. The parameter p > 0 can be interpreted as the confidence margin demanded from
a hypothesis h.
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Confidence margin in ranking

The upper bound of empirical margin loss of a hypothesis h is

D1 yi(h(x}) = h(x;) < p]
i=1

Let

1. Dy be marginal distribution of the first element of pairs X x X derived from D,
2. D, be marginal distribution of the second element of pairs X x X derived from D,

3. S ={(x1,%1),---, Xm, ¥m)} and RE1(H) be the Rademacher complexity of H
with respect to Ds,

4. Sy ={(x},y1),---, (%, ym)} and RE2(H) be the Rademacher complexity of H
with respect to D,
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Margin bound for ranking

1. We also have RP1(H) = E {ﬁsl(H)} and RD2(H) =E {ﬁsz(H)].
2. If D is symmetric, then RD1(H) = RD2(H).

Theorem (Margin bound for ranking)

Let H be a set of real-valued functions. Fix p > 0, then, for any 6 > 0, with

probability at least (1 — ) over the choice of a sample S of size m, each of the
following holds for all h € H

~
(=9
~

R(h) < R,(h) + i (RD:(H) + RD2(H)) + log(1

R(R) < Ry(h) + 2 (Rs,(H) + R () + 3/ L)
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Margin bound for ranking

Proof (Margin bound for ranking).
1. Consider the family of functions H = {®, 0 h| f € H}.

2. From margin-loss bounds we have

08(1/9)

2m

E [®,(y[h(x) — h(x))] < Rp(h) + 2R m(®, 0 H) +
3. Since for all u € R, we have [[u < 0] < ®,(u), then we have
R(h) = E [1 [y(h(x) — h(x)) < 0]] < E [&,(y[A(x) — h(x))]
4. Hence, we can write

R(h) < R,(h) 4+ 2Rm(®, 0 H) + '°g2(’1n/5).

~ 1
5. Since ®, is 1/p — Lipschitz, by Talagrand’s lemma R, (®, 0 H) < =Rn(H).

hs
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Margin bound for ranking

Proof (Margin bound for ranking)(cont.).
6. Here, Rm(H) can be upper bounded as

Rm(H) = ,1750' :EE’ZUI% h(x ))]

=— E |su oi(h xf- — h(x; oiy; and o; : same distribution
= hegz (h(x}) — h( ))]

ms.o | heH 5

< 1 E |sup Za, )+ sup Z oih(x;) ] by sub-additivity of sup
<E [ﬁsl(H) +R52(H)} definition of S; and S,

S
< RpH(H) + Rp2(H).

7. The second inequality, can be derived in the same way.

These bounds can be generalized to hold uniformly for any p > 0 at cost of an
additional term +/(loglog,(2/p))/m.
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Margin bound for ranking

Corollary (Margin bounds for ranking with kernel-based hypotheses)

Let K: X x X — R be a PDS kernel with r = sup,cy K(x,x). Let also ® : X — H
be a feature mapping associated to K and let H = {x — (w, ®(x)) | ||wl|y < A} for
some N > 0. Fix p > 0. Then, for any § > 0, the following pairwise margin bound
holds with probability at least (1 — &) for any h € H:

R(h) < R,(h) +4\/ ,2,\;/ L \/ log(1/9)

2m

1. This bound can be generalized to hold uniformly for any p > 0 at cost of an
additional term /(loglog,(2/p))/m.
2. This bound suggests that a small generalization error can be achieved

» when 2 is large (small second term),
» while the empirical margin loss is relatively small (first term).
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Ranking with SVM

From the generalization bound for SVM, Corollary Margin bounds for ranking with
kernel-based hypotheses can be expressed as

Corollary (Margin bounds for ranking with SVM)

Let K: X x X — R be a PDS kernel with r = sup,cy K(x,x). Let also ® : X — H
be a feature mapping associated to K and let H = {x — (w, ®(x)) | [|w||y < A} for
some N > 0. Then, for any § > 0, the following pairwise margin bound holds with
probability at least (1 — §) for any h € H:

<Z@+4\/ r2A2 \/Iog(l/(S

where £ = max (1 — y; [®(x}) — ®(x/)],0)
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Ranking with SVMs

1. Margin bounds for ranking with SVM

h)<Z€,+4\/ r2\2 \/Iog 1/6)

2. Minimizing the right-hand side of this inequality is
minimizing an objective function with a term corresponding to the sum of the
slack variables ¢;, and another one minimizing ||w|| or equivalently ||w]|?.

3. This optimization problem can thus be formulated as

min 5 ieye

i=1
subject to y; [(w, (®(x}) — ®(x;)))] > 1—-¢
>0 vVi<i<m.
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Ranking with SVMs

1. This optimization problem coincides exactly with the primal optimization problem
of SVMs, with a feature mapping

V: X xX—H

defined by

for all
(x,x') e X x X

and with a hypothesis set of functions of the form

(x,X") = (w, W(x,x)) .

2. Clearly, all the properties already presented for SVMs apply in this instance.
3. In particular, the algorithm can benefit from the use of PDS kernels.
4. This can be used with kernels

K'((xi,x7), (%, %7)) = (W(xi,x7), ¥(x;, %))
= K(X,’,Xj)‘l‘K(X:-,X})—K(X:-,XJ')— K(X,’,Xj’). 18/42
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Boosting for ranking

vV v vV VY

Use weak ranking algorithm and create stronger ranking algorithm:
Ensemble method: combine base rankers returned by weak ranking algorithm
Finding simple relatively accurate base rankers often not hard.
How should base rankers be combined?
Let H defined as

H={h:X—{0,1}}

where H is the hypothesis set from which the base rankers are selected.
For any s € {—1,0,+1}, we define

& =Y De(i) L [yi(he(xt) = he(x)) =s] = E[1[yi(he(x}) = he(x;)) = 5]

i=1 in~D

Hence, we have
e tep +ed=1

» We assume that y; # 0.
» Homework: Show that the derivation of the algorithm.
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Boosting for ranking

RankBoost Algorithm

1: function RANKBooOST(S, H, T)
2 for i < 1to T do
3 Dl(l) — E
4: end for
5 for t < 1to T do
6 Let hy = argmin,y (et_ — ef)
> € : pairwise ranking error

> e’ : pairwise ranking accuracy
+

€t
7. at < = log —
2 €

t
8: Zy &+ 2\/efer
o: for i <~ 1to mdo .
De (i) exp [—aeyi (he(x}) — he(xi))]

10: Dy y1(i)

Zy
11: end for
12: end for
13: return f = Zthl aih:

14: end function
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Bound on the empirical error of RankBoost

Theorem (Bound on the empirical error of RankBoost)

The empirical error of the hypothesis H = {h : X — {0,1}} returned by RankBoost

verifies:
o+ 2
R(h) < exp [ 2 Z ( t ) ]

Furthermore, if there exists v such that for all 1 < t < T, condition

Jr_f
Ogvg%,then

R(h) < exp [-292T].
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Bound on the empirical error of RankBoost

Proof of (Bound on the empirical error of RankBoost).

A 1
1. The empirical error equals to R(h) = p SE L Ii(F(xE) — f(xi)) <0].

2. On the other hand, for all v € R, we have [[u < 0] < exp(—u).

— Zero-one
— Exponential (¢ )

loss
v w s

1
0

-4 -3 -2 -1 0 1 2 3 4
x

3. Hence, we can write
N 1 <&
R(h) = — D T yi(F(x) = f(xi)) < 0]
i=1

< > e [nlFx) — (x0)]
i=1

IA
3|~
]
3
—
N
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Bound on the empirical error of RankBoost

Proof of (Bound on the empirical error of RankBoost) (cont.).

4. From definition of

Zy = Z Dy(i)exp [_Yi(ht(xf‘) - ht(xi))}

i=1
5. By grouping together the indices i for which y;(h:(x}) — he(x;)) take values in
—1, 0, or +1, Z; can be written as

Zi =¢fe @ f et 4 €0
[~ [+
€; _ €
=€ T tE& =+ e?
€t €t
=2/efe; + eg

6. Since, ¢/ =1 —¢; — €2, we have

46?‘6; = (6;F + et_)2 — (e?‘ — et_)z = (1 — 6?)2 — (ef — et_)z

23/42



Bound on the empirical error of RankBoost

Proof of (Bound on the empirical error of RankBoost) (cont.).

7. Thus, assuming that ¢ < 1, Z; can be upper bounded as

+ - 2
Zt:\/(1—69)2—(6;"—6;)2—#6?:(1—6?) 1—(6t7€t)+6?

(1-¢9)?
< (1 — e?) exp | — (Ej — 6;)2 + 6? By using inequality 1 — x < e~
2(1-€?)
+ - 2
< exp <—(6t26t)) exp is concave and 0 < (1 — e?) <1
2
(e — )
<exp| -2 [ >

+ - ~
8. By setting 0 < v < % we obtain R(h) < exp [-272T].

X
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Margin bound for ensemble methods in ranking

1. Assume that the pairwise labels are in {—1,+1}.
2. We showed that Rs(conv(H)) = Rs(H).

Corollary (Margin bound for ensemble methods in ranking)

Let H be a set of real-valued functions. Fix p > Q; then, for any 6 > 0, with
probability at least (1 — &) over the choice of a sample S of size m, each of the
following ranking guarantees holds for all h € conv(H)

R(h) < R,(h) + i (RE:(H) + RE:(#)) + [ 2ELL/2)
R 2 (5 |0g(2/5
R(h) < R,(h) + F (R (H) + Rs,(H !

3. These bounds apply to h/ ||a||;, where h and h/ ||a||; induce the same ordering.

4. Then, or any § > 0, the following holds with probability at least (1 — §)

R(h) < R,(h/ lall,) + (R“(HHR%(H)HW

5. Note that T does not appear in this bound.
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Bipartite ranking

1. Bipartite ranking problem is an important ranking scenario within score-based
setting.
2. In this scenario, the set of points X is partitioned into
> the class of positive points X
» the class of negative points A_
3. In this setting, positive points must rank higher than negative ones and the
learner receives
» asample S} = (x{,...,x},) drawn i.i.d. according to some distribution D over X ,
» asample S_ = (xg,...,X,) drawn i.i.d. according to some distribution D_ over X_.
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Bipartite ranking

1. The learning problem consists of selecting a hypothesis h € H with small expected
bipartite misranking or generalization error R(h) :

R(h) = P [h(x') < h(x)]

x’~'D+
x~D _

2. The empirical pairwise mis-ranking or empirical error of h is

3. The learning algorithm must typically deal with mn pairs.

27/42



Boosting for bipartite ranking

[

. A key property of RankBoost leading to an efficient algorithm for bipartite ranking
is exponential form of its objective function.
. The objective function can be decomposed into the product of two functions,
» one depends on only the positive points.
» one depends on only the negative points.

Similarly,
Diig) = —
= D" ()Dy (/)
1 1
“mh
Similarly,
Dt+l(i7j) — Dt(”./) exp (_agtht(xi') - hf(x.l)])
_ Di(i)exp (—ashe(x)))  Dp () exp (ache(x)))
zt Z:
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Boosting for bipartite ranking

1. The pairwise misranking of a hypothesis h

(6 —et) = B [H6) = A

= B | B [h6) - h(xj)]]
i~Dy" | j~Dy

= B [M)] - E [h(x)]
Jj~D} i~Dy;

2. The time and space complexity of BipartiteRankBoost is O(m + n).
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Boosting for bipartite ranking

BipartiteRankBoost Algorithm
1: function BIPARTITERANKBOOST(S, H, T)
1
2: D+()<—; Viel,2,....,m
1
3: Dl’(j)<—E Vjel,2,...,n
4: fort < 1to T do
5: Let hy = arg min,cyy (6; — e?“)
€t
6: ap ¢ = log —
2 €;
7: Z 11— +Velfer
8: for/<—1tomd2 )
D/ (i —aghe (X,
0 D;:_:l( ) — t (I) eXpZ[+ At t(xl)]
t
10: end for
11: Z: —1—¢ +/efer
12: for j < 1 to ndo
— (. D (j)expach(x;)]
13: Dia(j) + —* b= i
t
14: end for
15: end for
16: return f £ 2;1 achy
17: end function
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RankBoost vs. AdaBoost

1. The objective function of RankBoost can be expressed as

FRankBoost Oé) Z Z exp - f(XJ)])

Jj=1i=1
m T n T
= (Z exp <—Zatht(x,{)>> ZGXP <Z atht(’ﬁ))
i=1 t=1 j=1 t=1
= Fi(a)F_(a)

where F («) denotes function defined by the sum over positive points and F_(«)
function defined over negative points.
2. The objective function of AdaBoost can be expressed as

FAdaBoost(a) = Z exp (_)/J,f(le)) + Zexp (_yif(Xi))
=1 i=1

m T n T
= Z exp (— Z Oétht(X,{)> + Z exp (Z atht(xj)>
- j=1 t=1
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Area under the ROC curve

1. Performance of a bipartite ranking algorithm is reported in terms of area ROC
curve, or AUC.
2. Let U be a test sample used for evaluating the performance of h

» m positive points z},...,z/,

-
—

> n negative points z1,...,2,

» AUC(h, u) equals to

3

True positive rate

AUC(h, U) = ZZH[h(z ) > h(z))]

= P [h(z) = h(a)] N

b= False positive rate
z~
u

2/ ~D}

o

3. The average pairwise misranking of h over U denoted by R(h, U)
R(h, U) =1 — AUC(h, U).

4. AUC can be computed in time of O(m + n) from a sorted array h(z;) and h(z;).
5. Homework: Design an algorithm for computing AUC in time of O(m + n).
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Preference-based setting

1. Assume that you receive a list X C X as a result of a query g.
2. The goal is to rank items in list X not all items in X.

3. The advantage of preference-based setting over score-based setting is:
The learning algorithm is not required to return a linear ordering of all
points of X, which may be impossible.

4. The preference-based setting consists of two stages.

» A sample of labeled pairs S is used to learn a preference function
h: X x X w—[0,1].
» Given list X C X, the preference function h is used to determine a ranking of X.

5. How can h be used to generate an accurate ranking?
6. The computational complexity of the second stage is also crucial.

7. We will measure the time complexity in terms of the number of calls to h.
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Second-stage ranking problem

1. Assume that a preference function h is given.
2. his not assumed to be transitive.

3. We assume that h is pairwise consistent, that is
h(u,v) + h(v,u) =1, Vu,ve X

4. Let D be an unknown distribution according to which pairs (X, c*) are drawn,
where

» X C X is a query subset.
» o is a target ranking.

5. The objective of a second-stage algorithm A is using function h to return an
accurate ranking A(X) for any query subset X.

6. The algorithm A may be deterministic or randomized.
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Second-stage ranking problem

1. Loss function / is used to measure disagreement between target ranking ¢* and
ranking o for set X with n > 1 elements.

t(o,0") ZH[U VIT[o"(v) <o (u)]
u;év

2. Loss between target ranking ¢* and ranking h equals to

((h,0*) = Z (u, V) T[o"(v) < o™ (u)]

u;év
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Second-stage ranking problem

» The expected loss for a deterministic algorithm A is

E [((A(X),0")].
(X,0*)~D

» Regret of algorithm A is the difference between its loss and loss of the best fixed
global ranking.

Regret(A)= E  [((A(X),0")] —min E [e(a,'x,a*)}
(X,0%)~D o' (X,0*)~D

> Regret of the preference function is

. ] / *
Regret(h) = (X,aI*E)ND [¢(hx,0™)] min (x,aI*E)~D V(qu, o )}
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Second-stage ranking problem

1. For sort by degree algorithm A, we can prove

Regret(A) < 2Regret(h)

Theorem (Lower bound for deterministic algorithms)

For any deterministic algorithm A, there is a bipartite distribution for which

Regret(A) > 2Regret(h)

2. Homework: Prove the above theorem.
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Second-stage ranking problem

1. The second stage use a straightforward extension of the randomized QuickSort
algorithm.

v
()

}LV W')
u
@
random
pivot

left recursion right recursion

2. For randomized quick sort(RQS), we can prove
Regret(Arqgs) < Regret(h)

3. Homework: Prove the above bound.

4. Homework: Calculate the computation time of this algorithm.
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Extension to other loss functions

1. All of the results just presented hold for a broader class of loss functions L,
defined in terms of a weight function w.
Lw(o,0") = Y w(o"(v) = o () 1[o(u) < o(V)]Ile*(v) < o™ ()]

n(n—1) =

2. Function w is assumed to satisfy the following three natural axioms:
Symmetry w(i,j) = w(j,i) for all i,j.
Monotonicity w(i,j) < w(i, k) if either i <j < k ori > j> k.
Triangle inequality w(i,j) < w(i, k) + w(k,j).
3. Using different functions w, the family of functions L,, can cover several familiar
and important losses.
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Summary




Summary

» We defined ranking problem.
» We extend this by using other loss functions defined in terms of a weight function.

» We can extend this by using other criteria have been introduced in information
retrieval such as NDCG, PQn.
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Readings

1. Sections 17.4 and 17.5 of Shai Shalev-Shwartz and Shai Ben-David (2014).
Understanding machine learning: From theory to algorithms. Cambridge
University Press.

2. Chapter 10 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2018).
Foundations of Machine Learning. Second Edition. MIT Press.

3. The interested reader is referred to Hang Li (2011). Learning to Rank for

Information Retrieval and Natural Language Processing. Morgan & Claypool
Publishers .
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