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Motivation




Introduction

» How do you separate these two classes?

» Most of learning algorithms are linear and are not able to classify non-linearly-separable data.

> Linear separation impossible in most problems.

> Non-linear mapping from input space to high-d

» Generalization ability: independent of dim(H), depends only on p and m.
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Kernel methods




Ideas of kernels

> Most datasets are not linearly separable, for example

+1 -1 +1
o
-1 0 1
> Instances that are not linearly separable in R, may be linearly separable in R? by using mapping
¢(x) = (x,x%).
X,
X2
[ 1 [

> In this case, we have two solutions

> Increase dimensionality of data set by introducing mapping ¢.
> Use a more complex model for classifier.
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Ideas of kernels

> To classify the non-linearly separable dataset, we use mapping ¢.

» For example, let x = (xl,xz)T, z= (21,22.23)T, and ¢ : R? — RS,

> If we use mapping z = ¢(x) = (x%, v2xix2, x2) 7, the dataset will be linearly separable in R>.

» Mapping dataset to higher dimensions has two major problems.
> In high dimensions, there is risk of over-fitting.

> In high dimensions, we have more computational cost.

» The generalization capability in higher dimension is ensured by using large margin classifiers.
» The mapping is an implicit mapping not explicit.
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Kernels

» Kernel methods avoid explicitly transforming each point x in the input space into the mapped
point ¢(x) in the feature space.

> Instead, the inputs are represented via their m X m pairwise similarity values.

» The similarity function, called a kernel, is chosen so that it represents a dot product in some
high-dimensional feature space.

> The kernel can be computed without directly constructing ¢.

» The pairwise similarity values between points in S represented via the m x m kernel matrix,

defined as
k(x1,x1)  k(x1,x2) -+ k(x1,%Xm)
k(x2,x1)  k(x2,%x2) -+ k(x2,Xm)
K = ) . :
k(Xm,x1)  k(Xm,%2) -+ k(Xm,Xm)

» Function K(x;,x;) is called kernel function and defined as

Definition (Kernel)

Function K : X X X +— R is a kernel if
1. 3¢ : X — RN such that K(x,y) = (¢(x), 4(y))-
2. Range of ¢ is called the feature space.

3. N can be very large.
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Kernels (example)

> Let ¢ : R? — R? be defined as ¢(x) = (xZ, X3, v2x1x2).
> Then (¢(x), ¢(z)) equals to

(6(x), 6(2)) = (8, V2xx), (2,3, V2222))

= (X1Z1 + X2Z2)2

2
=({x,2))
= K(x,z).
» The above mapping can be described
X2
X X X
X
X Lo X
X X/,/ 0 (o] \\\ X
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x 177« X
X
X X X
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Kernels (example)

v

Let ¢1 : R? — R® be defined as ¢(x) = (x7, x5, v2x1x2).
Then (¢1(x), ¢1(2)) equals to

<¢1(X) 1 Z) <(X127X227 \@Xle), (2127222, \62122)>

v

(X121+X222)
= ((x,2))" = K(x,2).

Let ¢ : R? — R* be defined as ¢(x) = (x2, X3, x1X2, Xax1).
Then (¢2(x), ¢2(z)) equals to

v

v

(¢2(x), ¢2(2)) = <(X12ﬂx227X1X27X2X1)7 (2127222,212272221)>
=((x,2))" = K(x,2).

> Feature space can grow really large and really quickly.

> Let K be a kernel K(x,2) = ((x,2))9 = (#(x), #(z)) é: -
> The dimension of feature space equals to (d+2—1)_ § :
> Let n=100,d = 6, there are 1.6 billion terms. ; m
% : d=3
E - ]d=2

number of input dimensions
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Mercer’s condition

> The kernel methods have the following benefits.
Efficiency: K is often more efficient to compute than ¢ and the dot product.
Flexibility: K can be chosen arbitrarily so long as the existence of ¢ is guaranteed (Mercer’s
condition).

Theorem (Mercer’s condition)

For all functions c that are square integrable (i.e., [ c(x)’dx < cc), other than the zero function, the
following property holds:

/ / c(x)K(x, z)c(z)dxdz > 0.

> This Theorem states that K : X x X — R is a kernel if matrix K is positive semi-definite (PSD).
» Suppose x,z € R" and consider the following kernel

K(X’ Z) = (<X7 Z>)2

(320) (520)

DD aix) (ziz) = (6(x), 6(2))

i=1 j=1

> It is a valid kernel because

K(x,z)

where the mapping ¢ for n =2 is

d(x) = (axi, x1x2, xex1, xsz)T 8/23



Polynomial kernels (example)

» Consider the polynomial kernel K(x,z) = ((x,z) + ¢)? for all x,z € R".
» Forn=2and d =2,

K(X, Z) = (X]_Z]_ + X2Y2 =+ C)2
= < |:X12,X22, \/§X1X27 \/iCXl, \/ECXz, C:| 5 [212, 222, \/521227 \/ECZ1, \/5C22, C:| >

» Using second-degree polynomial kernel with ¢ = 1:

o \/§$1$2
-1,1) 1 (1,1) (L1222 D) | (1,1, 42, +v2, +v2, 1)
o ) ) )
> > /21,
€1
@ @ ® o
(—1,-1) (1,-1) (1,1, —v2,—V2,+v2,1) | (1,1,-v2,+v2,-v2,1)

» The left data is not linearly separable but the right one is.
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Some valid kernels

» Some valid kernel functions
> Polynomial kernels consider the kernel defined by

K(X7Z) = (<x7 Z) + C)d

d is the degree of the polynomial and specified by the user and c is a constant.
> Radial basis function kernels consider the kernel defined by

lIx — 2|
K = L
(x,z) = exp < Y

The width o is specified by the user. This kernel corresponds to an infinite dimensional mapping ¢ .
> Sigmoid kernel consider the kernel defined by

K(x,z) = tanh (8o (x,2) + B1)
This kernel only meets Mercer's condition for certain values of 8y and Sj.

» Homework: Please prove VC-dimension of the above kernels.
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Reproducing kernel Hilbert space

» We give the crucial property of PDS kernels, which is to induce an inner product in a Hilbert
space.

Lemma (Cauchy-Schwarz inequality for PDS kernels)
Let K be a PDS kernel matrix. Then, for any x,z € X,

K(x,z)* < K(x,x)K(z,z)

Proof.

!
1. Consider the kernel matrx K = ( [((((;(,’72)) };(();7/;(/)) )

2. By definition, if K is PDS, then K is SPSD for all x,x’ € X.
3. Then, the product of the eigenvalues of K, det (K), must be non-negative.
4. Using K(x,x") = K(x’, x), we have det (K) = K(x, x)K(x'x") — K(x,x")? > 0.

Theorem (Reproducing kernel Hilbert space (RKHS))

Let K: X x X — R be a PDS kernel. Then, there exists a Hilbert space H and a mapping ¢ from X
to H such that for all x,y € X

K(Xv y) = <¢(X)7 ¢(y)> .

> This Theorem implies that PDS kernels can be used to implicitly define a feature space.
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Normalized kernel

» For any kernel K, we can associate a normalized kernel K, defined by
0 if (K(x,x)=0)V (K(z,z) =0))

Kn(x,2) = K(x,z)

—_— otherwise
K(x,x)K(z,z)

Lemma (Normalized PDS kernels)
Let K be a PDS kernel. Then, the normalized kernel K, associated to K is PDS.

Proof.

1. Let {x1,...,xm} C X and let c be an arbitrary vector in R".

2. We will show that 377", ciciKn(xi,x;) > 0.

3. By Lemma Cauchy-Schwarz inequality for PDS kernels, if K(x;,x;) =0, then K(x;,x;) = 0 and thus
Kn(xi,xj) =0 for all j € {1,2,..., m}.

4. We can assume that K(x;,x;) > 0 for all i € {1,2,..., m}.

5. Then, the sum can be rewritten as follows:

"L cip(xi)

™ g = S GOKEIR) SR ag (60).00g))
> ciciKa(xinxg) = > ~ Nlo(xi)

K(xi, x1)K(x7,%7) leCei)llsg - |60z

H

ij=1 ij=1 i,j=1
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Closure properties of PDS kernels

» The following theorem provides closure guarantees for all of these operations.

Theorem (Closure properties of PDS kernels)

PDS kernels are closed under
1. sum

. product

2

3. tensor product
4. pointwise limit
5

. composition with a power series Zfil ax® with ay > 0 for all k € N.

Proof.
We only proof the closeness under sum. Consider two valid kernel matrices K; and Ko.
1. For any ¢ € R™, we have ¢”Kic > 0 and ¢’ Kyc > 0.
2. This implies that ¢ Kic + ¢’ Kyc > 0.
3. Hence, we have ¢’ (K; + Kz)c > 0.
4. Let K = Kj + Kj, which is a valid kernel.

» Homework: Please prove other closure properties of PDS kernels.
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Basic kernel operations in feature space




Kernel operations in feature space

» Norm of a point: we can compute the norm of a point ¢(x) in feature space as

lo()II* = (6(x), $(x)) = K(x,x),
which implies that||¢(x)|| = /K(x, x).

» Distance between Points: the distance between two points ¢(x;) and ¢(x;) can be computed as

[6(xi) = (x)II* = l6(x)|I* + 16 (x) 1> = 2 (d(x:), $(x,))
= K(X,’, X,') + K(Xj,Xj) — 2K(X,’,Xj),

which implies that [|¢(x;) — (x;)|| = /K(xi, xi) + K(xj,x;) — 2K (xi, x;).
» Mean in feature space: the mean of the points in feature space is given as

Since we haven't access to ¢(x), we cannot explicitly compute the mean point in feature space
but we can compute the squared norm of the mean as follows.

l6l|* = (1o 1)
- <; Z¢(x,->,j,_§j¢(x,-)>
:%zm:zm: o(x))) = %Zm:zm:’(xwxj

i=1 j=1 i=1 j=1
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Kernel operations in feature space

» Total variance in feature space: the squared distance of a point ¢(x;) to the mean g in feature
space:

16(x) = psl* = Nld(x)I* = 2 (D (x1), 1) + oI
:K(X,‘,X,’)—%ZK(XI,XJ')"' ZZK(X;,Xb
=1 a=1 b=1

The total variance in feature space is obtained by taking the average squared deviation of points
from the mean in feature space

R -

05 = — > llé(x:) — el

m “—

1 & 2 & 1 &
- K i Ri) — — K iy 5
m 2 ( (xiy xi) m; (xiy xj) mQZ

=1

72Kx,,x) %ZZK(X,,X,-H%
i=1 j=1

LS Kl x) Z K(x.%)

i=1 Jj=1

Mg

K( xa,xb)>
1

iK(xa,xb
—1

o
o
I

Ms

a=1

1 2
— Tr[K] — .
—TeIK] — o
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Kernel operations in feature space

» Centering in feature space:
> We can center each point in feature space by subtracting the mean from it
B(xi) = d(xi) — pg-
» We have not ¢(x;) and p4, hence, we cannot explicitly center the points.

> However, we can still compute the centered kernel matrix K, that is, the kernel matrix over centered
points.

R(xi, x;) = <¢A>(Xi):¢3(xj)>
= ((xi) = pgs d(x)) — 1g)
=(p(xi), d(x))) — (D(xi), gy — (B(Xj); ) + (s hp)

= K(xisx) = — D (606, 6lxk)) — %Z (605). #(xi)) + o
k=1 =

= K(xj,xj) — ZK X, Xk) — *ZK(Xﬂxk + ||“¢H

> In other words, we can compute the centered kernel matrix using only the kernel function.
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Kernel operations in feature space

» Normalizing in feature space:

> A common form of normalization is to ensure that points in feature space have unit length by
$(x)
o)l

> The dot product in feature space then corresponds to the cosine of the angle between the two
mapped points, because

replacing ¢(x) with the corresponding unit vector ¢,(x) =

x;), (X

(o) 0x))
loCx)Il - [ (x;) |

> If the mapped points are both centered and normalized, then a dot product corresponds to the

correlation between the two points in feature space.
> The normalized kernel function, K, can be computed using only the kernel function K, as

(¢(xi), ¢(%)) K(xi, %)
i)l - || (%)l K(xi, x;).K(x;,%;)

<¢n(xi)»¢n(xj)> =

Kﬂ(xh xj) =
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Kernel-based algorithms




SVMs with PDS Kernels

> The optimization problem for SVM is defined as
1 .
Minimizea [|w]|? subject to yx ((w,xx) + b) >1forall k=1,2,...,m

> In order to solve this constrained optimization problem, we use the Lagrangian function
1
L(w,b,a) =5 IIWH Zak [ ({w, xi) + b) — 1]

where a = (a1, a2, . . ., am)T.
> Eliminating w and b from L(w, b, a) using these conditions then gives the dual representation of
the problem in which we maximize

Y(a) = Z %ZZ kYY) (Xk, X))
k=1 k=1 j=1

> We need to maximize () subject to constraints » " ; cuyx = 0 and ax > 0 Vk.
» For optimal «x's, we have ay [1 — yk ({w,xx) + b)] = 0.
> To classify a data x using the trained model, we evaluate the following function

h(x) = sgn <Z akyk (Xk, X))

k=1

» This solution depends on the dot-product between two pints xx and x.
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SVMs with PDS Kernels

» By using kernel K, the dual representation of the problem in which we maximize
m 1 m m
Pla) = o — 5 D> akayykyiK(xi, x;)
k=1 k=1 j=1
» To classify a data x using the trained model, we evaluate the following function
m
h(x) = sgn (Z ouyr K (X, x))
k=1

» This solution depends on the dot-product between two pints x, and x.
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Learning guarantees

Theorem (Rademacher complexity of kernel-based hypotheses)

Let K: X x X — R be a PDS kernel and let ¢ : X — H be a feature mapping associated to K. Let
also S C {x | K(x,x) < r’} be a sample of size m and let H = {x — (w, ¢(x)) | [[wlly; < A} for

some AN > 0. Then
R A/Tr[K 272
Ro(H) < VI o JOAT

Proof.

B % ¢ Lsug/\ <w’ Z Ui(b(xj)ﬂ

> oig(xi) ] = % E [Z i) <¢(Xi)7¢(xj)>}

i=1 H ij=1

> oig(xi)

i=

S%« E [Z |¢(Xi)||2:| :% E [Z K(Xuxi)}

M /Tr[K] r’A?

- m m
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Learning guarantees

Theorem (Margin bounds for kernel-based hypotheses)

Let K: X x X — R be a PDS kernel with r* = sup,e v K(x,x). Let ¢ : X — H be a feature mapping
associated to K and let H = {x — (w, $(x)) ‘ lw||; <A} for some A > 0. Fix p > 0. Then for any
0 > 0, each of the following statements holds with probability at least (1 — &) for any h € H:

R(R) < Ro (1) + 2/ L2 0810

R(h) < Rs,,(h) +2 Tr[K]Az/” +3\/W
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Readings

1. Chapter 16 of Shai Shalev-Shwartz and Shai Ben-David Book?
2. Chapter 6 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book?.
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Questions?
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