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Motivation



Introduction

I Most of learning algorithms are linear and are not able to classify non-linearly-separable data.

I How do you separate these two classes?

I Linear separation impossible in most problems.

I Non-linear mapping from input space to high-dimensional feature space: φ : X 7→ H.

φ

I Generalization ability: independent of dim(H), depends only on ρ and m.
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Kernel methods



Ideas of kernels

I Most datasets are not linearly separable, for example

I Instances that are not linearly separable in R, may be linearly separable in R2 by using mapping
φ(x) = (x , x2).

I In this case, we have two solutions
I Increase dimensionality of data set by introducing mapping φ.
I Use a more complex model for classifier.
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Ideas of kernels

I To classify the non-linearly separable dataset, we use mapping φ.

I For example, let x = (x1, x2)T , z = (z1, z2.z3)T , and φ : R2 → R3.

I If we use mapping z = φ(x) = (x2
1 ,
√

2x1x2, x
2
2 )T , the dataset will be linearly separable in R3.

I Mapping dataset to higher dimensions has two major problems.
I In high dimensions, there is risk of over-fitting.
I In high dimensions, we have more computational cost.

I The generalization capability in higher dimension is ensured by using large margin classifiers.

I The mapping is an implicit mapping not explicit.
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Kernels

I Kernel methods avoid explicitly transforming each point x in the input space into the mapped
point φ(x) in the feature space.

I Instead, the inputs are represented via their m ×m pairwise similarity values.

I The similarity function, called a kernel, is chosen so that it represents a dot product in some
high-dimensional feature space.

I The kernel can be computed without directly constructing φ.

I The pairwise similarity values between points in S represented via the m ×m kernel matrix,
defined as

K =


k(x1, x1) k(x1, x2) · · · k(x1, xm)
k(x2, x1) k(x2, x2) · · · k(x2, xm)

...
...

. . .
...

k(xm, x1) k(xm, x2) · · · k(xm, xm)


I Function K(xi , xj) is called kernel function and defined as

Definition (Kernel)

Function K : X × X 7→ R is a kernel if

1. ∃φ : X 7→ RN such that K(x, y) = 〈φ(x), φ(y)〉.
2. Range of φ is called the feature space.

3. N can be very large.
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Kernels (example)

I Let φ : R2 7→ R3 be defined as φ(x) = (x2
1 , x

2
2 ,
√

2x1x2).

I Then 〈φ(x), φ(z)〉 equals to

〈φ(x), φ(z)〉 =
〈

(x2
1 , x

2
2 ,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2)
〉

= (x1z1 + x2z2)2

= (〈x, z〉)2

= K(x, z).

I The above mapping can be described

Example 

For n=2, d=2, the kernel K x, z ൌ x ⋅ z ୢ corresponds to  
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Kernels (example)

I Let φ1 : R2 7→ R3 be defined as φ(x) = (x2
1 , x

2
2 ,
√

2x1x2).
I Then 〈φ1(x), φ1(z)〉 equals to

〈φ1(x), φ1(z)〉 =
〈

(x2
1 , x

2
2 ,
√

2x1x2), (z2
1 , z

2
2 ,
√

2z1z2)
〉

= (x1z1 + x2z2)2

= (〈x, z〉)2 = K(x, z).

I Let φ2 : R2 7→ R4 be defined as φ(x) = (x2
1 , x

2
2 , x1x2, x2x1).

I Then 〈φ2(x), φ2(z)〉 equals to

〈φ2(x), φ2(z)〉 =
〈

(x2
1 , x

2
2 , x1x2, x2x1), (z2

1 , z
2
2 , z1z2, z2z1)

〉
= (〈x, z〉)2 = K(x, z).

I Feature space can grow really large and really quickly.

I Let K be a kernel K(x, z) = (〈x, z〉)d = 〈φ(x), φ(z)〉
I The dimension of feature space equals to

(d+n−1
d

)
.

I Let n = 100, d = 6, there are 1.6 billion terms.

Avoid explicitly expanding the features 

Feature space can grow really large and really TXickO\«. 

Crucial to think of ϕ as implicit, not explicit!!!! 

– ଵݔ
ௗ, ݔଵ ଶݔ … ଵݔ ,ௗݔ

ଶ ଶݔ …  ௗିଵݔ
² Total number of such feature is 

𝑑 ൅ ݊ െ 1
𝑑 ൌ

𝑑 ൅ ݊ െ 1 !
𝑑! ݊ െ 1 !  

– 𝑑 ൌ 6, ݊ ൌ 100, there are 1.6 billion terms 

� Polynomial kernel degreee 𝑑, 𝑘 ,ݔ ݖ ൌ ݖୃݔ ௗ ൌ ߶ ݔ ⋅ ߶ ݖ  
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Mercer’s condition

I The kernel methods have the following benefits.
Efficiency: K is often more efficient to compute than φ and the dot product.
Flexibility: K can be chosen arbitrarily so long as the existence of φ is guaranteed (Mercer’s

condition).

Theorem (Mercer’s condition)

For all functions c that are square integrable (i.e.,
∫
c(x)2dx <∞), other than the zero function, the

following property holds: ∫ ∫
c(x)K(x , z)c(z)dxdz ≥ 0.

I This Theorem states that K : X × X 7→ R is a kernel if matrix K is positive semi-definite (PSD).
I Suppose x, z ∈ Rn and consider the following kernel

K(x, z) = (〈x, z〉)2

I It is a valid kernel because

K(x, z) =

(
n∑

i=1

xizi

)(
n∑

j=1

xjzj

)

=
n∑

i=1

n∑
j=1

(xixj) (zizj) = 〈φ(x), φ(z)〉

where the mapping φ for n = 2 is

φ(x) = (x1x1, x1x2, x2x1, x2x2)T 8/23



Polynomial kernels (example)

I Consider the polynomial kernel K(x , z) = (〈x, z〉+ c)d for all x, z ∈ Rn.

I For n = 2 and d = 2,

K(x, z) = (x1z1 + x2y2 + c)2

=
〈[

x2
1 , x

2
2 ,
√

2x1x2,
√

2cx1,
√

2cx2, c
]
,
[
z2

1 , z
2
2 ,
√

2z1z2,
√

2cz1,
√

2cz2, c
]〉

I Using second-degree polynomial kernel with c = 1:

6.2 Positive definite symmetric kernels 109
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Figure 6.3
Illustration of the XOR classification problem and the use of polynomial kernels. (a) XOR problem
linearly non-separable in the input space. (b) Linearly separable using second-degree polynomial
kernel.

dimension 6:

8x,x0 2 R2, K(x,x0) = (x1x
0
1 + x2x

0
2 + c)2 =

2
6666666664

x2
1

x2
2p

2 x1x2p
2c x1p
2c x2

c

3
7777777775

·

2
6666666664

x02
1

x02
2p

2 x0
1x

0
2p

2c x0
1p

2c x0
2

c

3
7777777775

. (6.4)

Thus, the features corresponding to a second-degree polynomial are the original

features (x1 and x2), as well as products of these features, and the constant feature.

More generally, the features associated to a polynomial kernel of degree d are all

the monomials of degree at most d based on the original features. The explicit

expression of polynomial kernels as inner products, as in (6.4), proves directly that

they are PDS kernels.

To illustrate the application of polynomial kernels, consider the example of fig-

ure 6.3a which shows a simple data set in dimension two that is not linearly sep-

arable. This is known as the XOR problem due to its interpretation in terms of

the exclusive OR (XOR) function: the label of a point is blue i↵ exactly one of

its coordinates is 1. However, if we map these points to the six-dimensional space

defined by a second-degree polynomial as described in (6.4), then the problem be-

comes separable by the hyperplane of equation x1x2 = 0. Figure 6.3b illustrates

that by showing the projection of these points on the two-dimensional space defined

by their third and fourth coordinates.

I The left data is not linearly separable but the right one is.
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Some valid kernels

I Some valid kernel functions
I Polynomial kernels consider the kernel defined by

K(x, z) = (〈x, z〉+ c)d

d is the degree of the polynomial and specified by the user and c is a constant.
I Radial basis function kernels consider the kernel defined by

K(x, z) = exp

(
−
‖x− z‖2

2σ2

)
The width σ is specified by the user. This kernel corresponds to an infinite dimensional mapping φ .

I Sigmoid kernel consider the kernel defined by

K(x, z) = tanh (β0 〈x, z〉+ β1)

This kernel only meets Mercer’s condition for certain values of β0 and β1.

I Homework: Please prove VC-dimension of the above kernels.
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Reproducing kernel Hilbert space

I We give the crucial property of PDS kernels, which is to induce an inner product in a Hilbert
space.

Lemma (Cauchy-Schwarz inequality for PDS kernels)

Let K be a PDS kernel matrix. Then, for any x, z ∈ X ,

K(x, z)2 ≤ K(x, x)K(z, z)

Proof.

1. Consider the kernel matrx K =

(
K(x , x) K(x , x ′)
K(x ′, x) K(x ′x ′)

)
.

2. By definition, if K is PDS, then K is SPSD for all x , x ′ ∈ X .

3. Then, the product of the eigenvalues of K, det (K), must be non-negative.

4. Using K(x , x ′) = K(x ′, x), we have det (K) = K(x , x)K(x ′x ′)− K(x , x ′)2 ≥ 0.

Theorem (Reproducing kernel Hilbert space (RKHS))

Let K : X ×X 7→ R be a PDS kernel. Then, there exists a Hilbert space H and a mapping φ from X
to H such that for all x, y ∈ X

K(x, y) = 〈φ(x), φ(y)〉 .

I This Theorem implies that PDS kernels can be used to implicitly define a feature space.
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Normalized kernel

I For any kernel K, we can associate a normalized kernel Kn defined by

Kn(x, z) =


0 if ((K(x, x) = 0) ∨ (K(z, z) = 0))

K(x, z)√
K(x, x)K(z, z)

otherwise

Lemma (Normalized PDS kernels)

Let K be a PDS kernel. Then, the normalized kernel Kn associated to K is PDS.

Proof.

1. Let {x1, . . . , xm} ⊆ X and let c be an arbitrary vector in Rn.

2. We will show that
∑m

i,j=1 cicjKn(xi , xj ) ≥ 0.

3. By Lemma Cauchy-Schwarz inequality for PDS kernels, if K(xi , xi ) = 0, then K(xi , xj ) = 0 and thus
Kn(xi , xi ) = 0 for all j ∈ {1, 2, . . . ,m}.

4. We can assume that K(xi , xi ) > 0 for all i ∈ {1, 2, . . . ,m}.
5. Then, the sum can be rewritten as follows:

m∑
i,j=1

cicjKn(xi , xj ) =
m∑

i,j=1

cicjK(xi , xj )√
K(xi , xi )K(xj , xj )

=
m∑

i,j=1

cicj
〈
φ(xi ), φ(xj )

〉
‖φ(xi )‖H .

∥∥φ(xj )
∥∥
H

=

∥∥∥∥∥
m∑
i=1

ciφ(xi )

‖φ(xi )‖H

∥∥∥∥∥
2

H

≥ 0.
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Closure properties of PDS kernels

I The following theorem provides closure guarantees for all of these operations.

Theorem (Closure properties of PDS kernels)

PDS kernels are closed under

1. sum

2. product

3. tensor product

4. pointwise limit

5. composition with a power series
∑∞

k=1 akx
k with ak ≥ 0 for all k ∈ N.

Proof.

We only proof the closeness under sum. Consider two valid kernel matrices K1 and K2.

1. For any c ∈ Rm, we have cT K1c ≥ 0 and cT K2c ≥ 0.

2. This implies that cT K1c + cT K2c ≥ 0.

3. Hence, we have cT (K1 + K2)c ≥ 0.

4. Let K = K1 + K2, which is a valid kernel.

I Homework: Please prove other closure properties of PDS kernels.
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Basic kernel operations in feature space



Kernel operations in feature space

I Norm of a point: we can compute the norm of a point φ(x) in feature space as

‖φ(x)‖2 = 〈φ(x), φ(x)〉 = K(x, x),

which implies that‖φ(x)‖ =
√

K(x, x).
I Distance between Points: the distance between two points φ(xi ) and φ(xj) can be computed as

‖φ(xi )− φ(xj)‖2 = ‖φ(xi )‖2 + ‖φ(xj)‖2 − 2 〈φ(xi ), φ(xj)〉
= K(xi , xi ) + K(xj , xj)− 2K(xi , xj),

which implies that ‖φ(xi )− φ(xj)‖ =
√

K(xi , xi ) + K(xj , xj)− 2K(xi , xj).
I Mean in feature space: the mean of the points in feature space is given as

µφ =
1

m

m∑
i=1

φ(xi ).

Since we haven’t access to φ(x), we cannot explicitly compute the mean point in feature space
but we can compute the squared norm of the mean as follows.

‖µφ‖2 = 〈µφ, µφ〉

=

〈
1

m

m∑
i=1

φ(xi ),
1

m

m∑
i=1

φ(xi )

〉

=
1

m2

m∑
i=1

m∑
j=1

〈φ(xi ), φ(xj)〉 =
1

m2

m∑
i=1

m∑
j=1

K(xi , xj).
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Kernel operations in feature space

I Total variance in feature space: the squared distance of a point φ(xi ) to the mean µφ in feature
space:

‖φ(x)− µφ‖2 = ‖φ(xi )‖2 − 2 〈φ(xi ), µφ〉+ ‖µφ‖2

= K(xi , xi )−
2

m

m∑
j=1

K(xi , xj) +
1

m2

m∑
a=1

m∑
b=1

K(xa, xb).

The total variance in feature space is obtained by taking the average squared deviation of points
from the mean in feature space

σ2
φ =

1

m

m∑
i=1

‖φ(xi )− µφ‖2

=
1

m

m∑
i=1

(
K(xi , xi )−

2

m

m∑
j=1

K(xi , xj) +
1

m2

m∑
a=1

m∑
b=1

K(xa, xb)

)

=
1

m

m∑
i=1

K(xi , xi )−
2

m2

m∑
i=1

m∑
j=1

K(xi , xj) +
1

m2

m∑
a=1

m∑
b=1

K(xa, xb)

=
1

m

m∑
i=1

K(xi , xi )−
1

m2

m∑
i=1

m∑
j=1

K(xi , xj)

=
1

m
Tr [K]− ‖µφ‖2 .
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Kernel operations in feature space

I Centering in feature space:
I We can center each point in feature space by subtracting the mean from it

φ̂(xi ) = φ(xi )− µφ.
I We have not φ(xi ) and µφ, hence, we cannot explicitly center the points.
I However, we can still compute the centered kernel matrix K̂, that is, the kernel matrix over centered

points.

K̂(xi , xj ) =
〈
φ̂(xi ), φ̂(xj )

〉
=
〈
φ(xi )− µφ, φ(xj )− µφ

〉
=
〈
φ(xi ), φ(xj )

〉
−
〈
φ(xi ), µφ

〉
−
〈
φ(xj ), µφ

〉
+
〈
µφ, µφ

〉
= K(xi , xj )−

1

m

m∑
k=1

〈φ(xi ), φ(xk )〉 −
1

m

m∑
k=1

〈
φ(xj ), φ(xk )

〉
+
∥∥µφ∥∥2

= K(xi , xj )−
1

m

m∑
k=1

K(xi , xk )−
1

m

m∑
k=1

K(xj , xk ) +
∥∥µφ∥∥2

I In other words, we can compute the centered kernel matrix using only the kernel function.
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Kernel operations in feature space

I Normalizing in feature space:
I A common form of normalization is to ensure that points in feature space have unit length by

replacing φ(x) with the corresponding unit vector φn(x) =
φ(x)

‖φ(x)‖
.

I The dot product in feature space then corresponds to the cosine of the angle between the two
mapped points, because 〈

φn(xi ), φn(xj )
〉

=

〈
φ(xi ), φ(xj )

〉
‖φ(xi )‖ .

∥∥φ(xj )
∥∥ = cos θ.

I If the mapped points are both centered and normalized, then a dot product corresponds to the
correlation between the two points in feature space.

I The normalized kernel function, Kn, can be computed using only the kernel function K , as

Kn(xi , xj ) =

〈
φ(xi ), φ(xj )

〉
‖φ(xi )‖ .

∥∥φ(xj )
∥∥ =

K(xi , xj )√
K(xi , xi ).K(xj , xj )
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Kernel-based algorithms



SVMs with PDS Kernels

I The optimization problem for SVM is defined as

Minimize
1

2
‖w‖2 subject to yk (〈w, xk〉+ b) ≥ 1 for all k = 1, 2, . . . ,m

I In order to solve this constrained optimization problem, we use the Lagrangian function

L(w, b, α) =
1

2
‖w‖2 −

m∑
k=1

αk [yk (〈w, xk〉+ b)− 1]

where α = (α1, α2, . . . , αm)T .
I Eliminating w and b from L(w, b, a) using these conditions then gives the dual representation of

the problem in which we maximize

ψ(α) =
m∑

k=1

αk −
1

2

m∑
k=1

m∑
j=1

αkαjykyj 〈xk , xj〉

I We need to maximize ψ(α) subject to constraints
∑m

k=1 αkyk = 0 and αk ≥ 0 ∀k.
I For optimal αk ’s, we have αk [1− yk (〈w, xk〉+ b)] = 0.
I To classify a data x using the trained model, we evaluate the following function

h(x) = sgn

(
m∑

k=1

αkyk 〈xk , x〉

)
I This solution depends on the dot-product between two pints xk and x.
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SVMs with PDS Kernels

I By using kernel K , the dual representation of the problem in which we maximize

ψ(α) =
m∑

k=1

αk −
1

2

m∑
k=1

m∑
j=1

αkαjykyjK(xi , xj)

I To classify a data x using the trained model, we evaluate the following function

h(x) = sgn

(
m∑

k=1

αkykK(xk , x)

)
I This solution depends on the dot-product between two pints xk and x.
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Learning guarantees

Theorem (Rademacher complexity of kernel-based hypotheses)

Let K : X × X 7→ R be a PDS kernel and let φ : X 7→ H be a feature mapping associated to K. Let
also S ⊆

{
x
∣∣ K(x, x) ≤ r 2

}
be a sample of size m and let H =

{
x 7→ 〈w, φ(x)〉

∣∣ ‖w‖H ≤ Λ
}
for

some Λ ≥ 0. Then

R̂S(H) ≤
Λ
√

Tr [K]

m
≤
√

r 2Λ2

m
.

Proof.

R̂S(H) =
1

m
E
σ

[
sup
‖w‖≤Λ

m∑
i=1

σi 〈w, φ(xi )〉

]
=

1

m
E
σ

[
sup
‖w‖≤Λ

〈
w,

m∑
i=1

σiφ(xi )

〉]

≤ Λ

m
E
σ

[∥∥∥∥∥
m∑
i=1

σiφ(xi )

∥∥∥∥∥
H

]
≤ Λ

m

√√√√E
σ

[∥∥∥∥∥
m∑
i=1

σiφ(xi )

∥∥∥∥∥
2

H

]
=

Λ

m

√√√√E
σ

[
m∑

i,j=1

σiσj 〈φ(xi ), φ(xj)〉

]

≤ Λ

m

√√√√E
σ

[
m∑
i=1

‖φ(xi )‖2

]
=

Λ

m

√√√√E
σ

[
m∑
i=1

K(xi , xi )

]

≤
Λ
√

Tr [K]

m
=

√
r 2Λ2

m
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Learning guarantees

Theorem (Margin bounds for kernel-based hypotheses)

Let K : X ×X 7→ R be a PDS kernel with r 2 = supx∈X K(x, x). Let φ : X 7→ H be a feature mapping
associated to K and let H =

{
x 7→ 〈w, φ(x)〉

∣∣ ‖w‖H ≤ Λ
}
for some Λ ≥ 0. Fix ρ > 0. Then for any

δ > 0, each of the following statements holds with probability at least (1− δ) for any h ∈ H:

R(h) ≤ R̂S,ρ(h) + 2

√
r 2Λ2/ρ2

m
+

√
log(1/δ)

2m

R(h) ≤ R̂S,ρ(h) + 2

√
Tr [K]Λ2/ρ2

m
+ 3

√
log(2/δ)

2m
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Readings

1. Chapter 16 of Shai Shalev-Shwartz and Shai Ben-David Book1

2. Chapter 6 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book2.
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Questions?
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