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Linear classifier




Introduction

1. In this session, we will study the family of linear classifiers, one of the most useful families of
hypothesis classes.

2. Many learning algorithms that are being widely used in practice rely on linear predictors because
of
> the ability to learn them efficiently in many cases,
> linear predictors are intuitive,
> are easy to interpret, and
> fit the data reasonably well in many natural learning problems.

3. A linear classifier separates different classes by a linear separator.
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Binary classification problem

ok~ w N

. Training data: sample drawn iid from set X C R" according to some distribution D.

S= {(Xlayl)w . ~7(Xm7}/m)} € X x {—1,+1}.

Problem: find hypothesis h: X — {—1,+1} in H, with small generalization error R(h).
Hypothesis space: H, = {x — sgn ({(w,x) + b) | w € R", b € R}.
A linear classifier is defined as h(x) = sgn ({w, x) + b).

Vector w is orthogonal to the separator.

w + |,7

6. We shown that VC(H,) = n+ 1.

7. This shows that we can learn this space using the ERM paradigm, as long as the sample size is

(n+1) +log(1/6)

c .

. Implementing the ERM rule in the nonseparable case is known to be computationally hard.
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Linear programming

1. Linear programs are problems that can be expressed as maximizing a linear function subject to
linear inequalities. That is
max (u, w
weR”n < ’ >

subject to Aw > v.

where

» w € R" is the vector of variables we wish to determine.
> Ais an m X n matrix.
» u € R"and v € R” are vectors.

2. Linear programs can be solved efficiently.
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Linear programming for designing linear classifiers

sl

Suppose that the training data is linearly separable.
We are interested to find w and b that results in zero training error.
Let w = (b, wi,wo,...,wp) and x = (1, x1,...,Xn).

Hence, we are looking for w € R™?! such that for all i

sign({w,x;)) = yi

Equivalently, we are looking for w € R"*! such that for all i

y,'<W, X,'> > 0.

6. Let w* be a vector that satisfies this condition.

5
w

7. Define v = min;(yi (w",x;)) and let w = “~. Therefore, for all i we have

~

1
yilw, xi) = —yi(w", x;) > 1.
Y

. We have thus shown that there exists a vector that for all / satisfies

yilw,x;) > 1.

5/37



Linear programming for designing linear classifiers

1. We have thus shown that there exists a vector that for all i satisfies
y,'<W, X,'> > 1.

2. To find a vector that satisfies the above inequality,

> Set A to be m x (n+ 1) matrix whose rows are the instances multiplied by y;: Aj = y; x Xj,.
> Set v to be (1,1,...,1) € R™1L,

3. Then the above inequality becomes
Aw > v.

4. The LP form requires a maximization objective, thus, we set a dummy objective,
u=(0,...,0) e R",

5. There are other algorithm for finding the linear classifier such as Perceptron.
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Support vector machine




Support vector machines

1. Consider the problem of finding a separating hyperplane for a linearly separable dataset
S ={(x1,%1), (2, ¥2), -, (Xm,ym)} with x; € R" and y; € {—1,+1}.
2. Which of the infinite hyperplanes should we choose?

— X5

v
’
’

> Hyperplanes that pass too close to the training examples will be sensitive to noise and, therefore, less
likely to generalize well for data outside the training set.
> It is reasonable to expect that a hyperplane that is farthest from all training examples will have better
generalization capabilities.
3. We can find the maximum margin linear classifier by first identifying a classifier that correctly
classifies all the examples and then increasing the geometric margin until we cannot increase the
margin any further.

4. We can also set up an optimization problem for directly maximizing the geometric margin.
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1. What is the margin of a classifier?

2. The goal of SVM is to maximize the margin.

3. The closest examples are called support vectors.

8/37



Support vector machines (cont.)

1. We will need the classifier to be correct on all the training examples (yx (w, xx) >  for all

k=1,2,...,m) subject to these constraints, we would like to maximize the geometric margin
(m) Hence, we have (Let b = 0)
Maximizem subject to yk (w,xk) >~ forall k=1,2,...,m
2

2. We can alternatively minimize the inverse”%‘| or the inverse squared ”:2“ subject to the same

constraints.

1w .
Mm/mlzeET subject to yx (w,xx) >y forall k=1,2,...,m

Factor % is included merely for later convenience.

3. The above problem can be written as
1wl
M,-n,'mizeE H;H subject to yx <(%) ,Xk> >1forall k=1,2,...,m

w

4. This problem tells the dependency on the ratio ¥ not w or ~y separately.

5. Scaling w by a constant also doesn’t change the decision boundary. We can therefore fix vy = 1
and solve for w.
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Support vector machines (cont.)

1. By fixing v = 1 and solving for w, we obtain
..o 1 .
Mm/mlzei [|w|? subject to yx (w,xx) > 1forall k=1,2,...,m

2. This optimization problem is in the standard SVM form and is a quadratic programming problem.

3. We will modify the linear classifier here slightly by adding an offset term so that the decision
boundary does not have to go through the origin. In other words, the classifier that we consider
has the form

h(x) = sgn({w,x)+ b)

w is the weight vector b is the bias of the separating hyperplane. The hyperplane is shown by
(w, b).

4. The bias parameter changes the optimization problem to
P .
M/n/mlzei [|w||? subject to yx ((w,xx) + b) >1forall k=1,2,...,m
5. Note that the bias only appears in the constraints. This is different from simply modifying the

linear classifier through origin by feeding it with examples that have an additional constant
component, i.e., x’ = [1; x].
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Support vector machines (cont.)

1. The optimization problem for SVM is defined as
1
I\/IinimizeE [|w||? subject to yx ((w,xk) + b) > 1forall k=1,2,....m

2. In order to solve this constrained optimization problem, we introduce Lagrange multipliers o, > 0,
with one multiplier ax for each of the constraints giving the Lagrangian function

1 m
L(w,b,a) = 3 lwil* = o Ik ((w, x¢) + b) — 1]
k=1
where a = (a1, a2, . . ., am)T.

3. Note the minus sign in front of the Lagrange multiplier term, because we are minimizing with
respect to w and b, and maximizing with respect to . please read Appendix E of Bishop!.

4. Setting the derivatives of L(w, b, &) with respect to w and b equal to zero, we obtain the
following two equations

oL Z"‘

87 =0=w = 2 Ol Yk Xk
oL Zm
% =0=0 = £ Yk
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Support vector machines (cont.)

1. L has to be minimized with respect to the primal variables w and b and maximized with respect
to the dual variables a. Eliminating w and b from L(w, b, a) using these conditions then gives
the dual representation of the problem in which we maximize

Pla) = o %ZZ Uyiyj (X, Xj)
k=1 k=1 j=1

2. We need to maximize 1(«) subject to the following constraints

ar > 0 Vk

Zakyk = 0
k=1

3. The constrained optimization of this form satisfies the Karush-Kuhn-Tucker (KKT) conditions,
which in this case require that the following three properties hold

a, > 0

yig(xx) ;
ak [ykg(x) — 1]

I
o
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Support vector machines (cont.)

1. For optimal ax's,
ouc [1 =y ({w, xc) + b)] = 0

2. a is non-zero only if xi lies on one of the two margin boundaries, i.e., for which
Vi ((w, xi) + b) =1

3. These examples are called support vectors.

4. To classify a data x using the trained model, we evaluate the following function

h(x) = sgn (Z akyk (Xk, X>>

k=1
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Leave-one-out analysis of SVM

1. Leave-one-out is a method to estimate true error of a classifier and is defined as

Definition (Leave-one-out error)

Let h be the hypothesis output by learning algorithm A after receiving sample S of size m. Then,the
leave-one-out error of A over S is:

m

Rioo(A) = % Z]I [hs— (3 (x1) # vi]

i=1

2. Thus, for each i € {1,2,...,m}, Ais trained on all the points in S except for x;, and its error is
then computed using x;. The leave-one-out error is the average of these errors.

3. In general, computing the leave-one-out error may be costly since it requires training m times on
samples of size m — 1.
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Leave-one-out analysis of SVM

Leave-one-out error has the following property.

Lemma

The average leave-one-out error for samples of size m > 2 is an unbiased estimate of the average
generalization error for samples of size m — 1:

LE [Rioo(a)] = L E R(hs)]

where D denotes the distribution according to which points are drawn.

Proof.
By the linearity of expectation, we can write

siom [QLOO(A)} :% ; JE. (I [hs— (3 (x1) # yi]]

= E [[[hs- 1 (0) # yi]]

— E [ [hs' (x1) # yl]

S'~DM=1 3~

= E [R(hs)].
S/ ~pm=1
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Leave-one-out analysis of SVM

Theorem

Let hs be the optimal hyperplane for a sample S and let Nsv(S) be the number of support vectors
defining hs. Then,
Nsy (S )]

R(hs)] <
N]ED"’[ ( S)]_SNDm+1 |: m—l—l

S

Proof.
1. Let S be a linearly separable sample of m + 1.

2. If x is not a support vector for hs, removing it does not change the SVM solution. Thus,
hs_{xy = hs and hs_(,y correctly classifies x.

3. By contraposition, if hs_y,; misclassifies x, x must be a support vector, which implies

- Nsv(S)
< —.
Rioo(SVM) < 1

4. Taking the expectation of both sides and using the previous lemma yields the result.
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Leave-one-out analysis of SVM

1. This Theorem gives a sparsity argument in favor of SVMs: the average error of the algorithm is
upper bounded by the average fraction of support vectors.

2. We hope that for many distributions seen in practice, a relatively small number of the training
points will lie on the marginal hyperplanes.

3. The solution will then be sparse in the sense that a small fraction of the dual variables a; will be
non-zero.

4. This bound is relatively weak since it applies only to the average generalization error of the
algorithm over all samples of size m.

5. It provides no information about the variance of the generalization error.
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Support vector machines (cont.)

1. We have assumed that the training data are linearly separable in the feature space.
2. The resulting SVM will give exact separation of the training data.

3. In the practice, the class-conditional distributions may overlap, in which the exact separation of
the training data can lead to poor generalization.

4. We need a way to modify the SVM so as to allow some training examples to be miss-classified.

5. To do this, we introduce slack variables (&« > 0) (distance by which it violates the margin); one
slack variable for each training example.

6. The slack variables are defined by £ = 0 for examples that are inside the correct boundary margin
and & = |yx — g(x«)| for other examples, where g(x) = (w, x) + b.

7. Thus for data point that is on the decision boundary g(xx) = 0 will have & =1 and the data
points with & > 1 will be misclassified.
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Support vector machines (cont.)

1. The exact classification constraints will be
yeg(xk) > 1 — & for k=1,2,...,m

2. Our goal is now to maximize the margin while softly penalizing points that lie on the wrong side
of the margin boundary. We therefore minimize

“ 1
CZ& t5 [[w]®
k=1

C > 0 controls the trade-off between the slack variable penalty and the margin.

3. We now wish to solve the following optimization problem.
o1 = :
I\/Ilnlmlzei lw|* + CZ& subject to ykg(xk) > 1—¢&c forall k=1,2,...,m
k=1
4. The corresponding Lagrangian is given
1 m m m
L(w,b,a) = 3 Wl +C> =D aulyeg(x) — 1+ &l — Y Brée
k=1 k=1 k=1

where ax > 0 and Sk > 0 are Lagrange multipliers.
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Margin theory




Margin

1. The geometric margin of a point for a linear classifier is defined as

Definition (Geometric margin of a point)

The geometric margin (margin) of a point x for a linear classifier h: x — (w, x) 4+ b, denoted by
p(x), is its distance to the hyperplane (w,x) + b =0,

2. The geometric margin of a linear classifier is defined as

Definition (Geometric margin of a classifier)

The geometric margin (margin) of a linear classifier h : x — (w, x) + b for a sample

S={(x1,%1),---,(xm, ym)}, denoted by p,, is the minimum margin of the points in that sample:
o wex) £ b
/ e wll
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Bound on VC dimension of SVM

1. The VC-dimension of the family of hyperplanes or linear hypotheses in R" is n 4 1.
2. This result yields that for any 6 > 0, with probability at least 1 — d, for any h € H, we have

2(n+ 1) log [ -2
R(h) < R(h) + <”+ 1> n \/log(1/5)

m 2m
3. When the dimension of the feature space n is large compared to the sample size m (n>> m), this
bound is uninformative.

4. The theorem (VC-dimension of canonical hyperplanes) presents a bound on the VC-dimension
of canonical hyperplanes.

5. This bound does not depend on the dimension of feature space n, but only on the margin and the
radius r of the sphere containing the data.
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Bound on VC dimension of SVM

Lemma (Cauchy-Schwarz inequality)

For all x,y € RT,
[ < Hxl Dyl

with equality iff x and y are collinear.

Lemma (Jensen’s inequality)

Let x be a random variable taking values in a non-empty convex set C C R" with a finite expectation
E [x], and f a measurable convex function defined over C. Then, E [x] is in C, E [f(x)] Is finite, and
we have f(E [x]) < E[f(x)].

Theorem (VC-dimension of canonical hyperplanes)

Let S C {x | ||x|| < r}. Then, the VC-dimension d of the set of canonical hyperplanes
{x = sgn ((w, x)) | minkes [{w, x)| = 1A [Jw|| < A} verifies

d < (rN)?
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Bound on VC dimension of SVM

d d
d< <W,Zy,-x,-> < wll|]> yixi
i1 i-1

d
d<AE ixil|| <A

d

=Ay| D E byl (xi, )
ij=1
d

=Ay| D (X, xi)
i=1

=AVdr2 = Arv/d

Thus vd < Ar and d < (Ar)2.

<A

d
E YiXi
i=1

Taking the expectation over y ~ U (uniform) yields

| |

E

y~U

d
E YiXi
i=1

Proof.
Let {xi,...,xq} be a set fully shattered.Then, for all y € {—1,41} , there exists w such that for all
i€{1,2,...,m}, we have 1 < (w, x;). Summing up the inequalities gives

By using Cauchy-Schwarz ineq.

By using Jensen’s ineq.
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Margin theory

1. In this session, learning guarantees are presented, which are independent of dimension n.

2. These guarantees are the notion of confidence margin and hold for real-valued functions.

Definition (Confidence margin)

The confidence margin of a real-valued function h at (x,y) € X x Y is pn(x, y) = yh(x).

> When yh(x) > 0, h classifies x correctly but we interpret the magnitude of |h(x)| as the confidence of
the prediction made by h.

> The relationship with geometric margin for linear functions h: x — (w,x) + b is

lon(x, ¥)| > pg llwl| .
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Margin loss function

1. In view of definition of confidence margin, for any parameter p > 0, we will define a p—margin
loss that,
> penalizes h with the cost of 1 when it misclassifies point x i.e. yh(x) <0

> penalizes h (linearly) when it correctly classifies h with confidence less than or equal to p i.e.
yh(x) < p.

Definition

Margin loss function For any p > 0, the p—margin loss is the function L, : R x R — R, defined for
ally,y" € Rby Ly(y,y") = ®p(yy’) with,

1 if x<0
X .
¢p(x):min(1,max(0,1f§)): 1—; if0<x<p
p
0 if p>x

The parameter p > 0 can be interpreted as the confidence margin demanded from a hypothesis h.
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Margin loss function

1. The empirical margin loss is similarly defined as the margin loss over the training sample.

Definition (Empirical margin loss function)

Given a sample S = {(x1,%1), ..., (xm, ¥m)} and a hypothesis h, the empirical margin loss is defined
by

Ry(h) = - > ®,(ih(x))

2. It is clear that ®,(x) is 1/p — Lipschitz.
3. Note that, for any i € {1,2,..., m}, we have ®,(yih(x;)) <I[yih(xi) < p] and we have

% Z ®,(yih(x)) < % Z Iyih(xi) < p]

4. In generalization bounds, the empirical margin loss can be replaced by this upper bound.

0
n L=
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General margin bound

Lemma (Talagrand’s Lemma)

Let ® : R — R be an L—Lipschitz function. Then, for any hypothesis set H of real-valued functions,

Rs(® o H) <L x Rs(H)

Proof.

Please read the proof of Lemma 5.7 of Mehryar Mohri and Afshin Rostamizadeh and Ameet
Talwalkar Book?. O

?Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine Learning. Second Edition.
MIT Press.
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General margin bound

The proof of the following Theorem given in class.

Theorem (Generalization bound based on Rademacher complexity)

Let G be a family of functions mapping from Z to [0,1]. Then, for any § > 0, with probability at
least 1 — & over the draw of an IID sample S of size m, each of the following holds for all g € G:

i=1

Elg(2)] < =Y 8() +2Rn(@) + O ( 'm>

El()] < = g(z) +2R5(G) + O ( 'nf>

i=1

Theorem (General margin bound for linear classifiers )

Let H be a set of real-valued functions. Fix p > 0. For any § > 0, with probability at least 1 — §, the
following hold for all h € H:

R(R) <R,(h) + 2R () + / PE210)

R(D) <Ry () + 2 Rs () + 3y 2520
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General margin bound

Proof of general margin bound for linear classifiers.
Let H = {z = (x,y) + yh(x) | h € H}. Consider the family of functions taking values in [0, 1]
A={®,0h|heH}.

By the theorem given in the previous slide (generalization bound based on Rademacher
complexity), with probability at lease 1 — ¢ for all g € H, we have

E[g(2)] < %Zg(z,-) + %Rm(H) I %

Thus
R 25 (A log(1/6)
E[@(vh())] < Ro(h) + “Rn(H) + 4/ =25 =

1
Since @, is ;—Lipschitz by Talagrand's lemma, Then

~ 1 1 “ 1
Rin(H) < ~Rm(H) = —— E_|sup > _oih(x))| = ~Rum(H
(H) p (H) om & [hegi_l ( )] p (H)

Since I[yh(x) < 0] < ®,(yh(x)), this shows the first statement, and similarly the second one. O
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General margin bound

1. This generalization bounds | R(h) < R,(h) + ng(H) + % suggest a trade-off:
p

a larger value of p decreases the complexity term, but tends to increase the empirical margin-loss
R,(h) by requiring from a hypothesis h a higher confidence margin.

2. If for a relatively large value of p the empirical margin loss of h remains relatively small, then h
benefits from a very favorable guarantee on its generalization error.

3. For the above theorem, the margin parameter p must be selected beforehand. But, the bounds of
the theorem can be generalized to hold uniformly for all p € (0, 1] at the cost of a modest

log log(2/p)

additional term as shown in the following Theorem.

Theorem

Let H be a set of real-valued functions. Fix r > 0. Then, for any § > 0,with probability at leastl — §,
each of the following hold for all h € H and p € (0, r]

~ 4 log log(2r/p) log(1/4)
R(D) <R, () + FRo(H) + J o/

m 2m
. 4 log log(2r/p) log(1/9)
R(h) <R,(h) + ;Rs(H) + \/ m * 3\/ 2m
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Rademacher complexity of linear hypotheses

Theorem (Rademacher complexity of linear hypotheses)
Let S C {x | ||x|| < r} be a sample of size m and let H = {x — (w,x) | ||w| < A}. Then

[ ,2p2
ﬁs(H)S r<A
m

Proof.

-4}

ij=1
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Margin bound (linear classifier)

Corollary (Margin bound (linear classifier))

Let p>0and H= {x+— (w,x) | |lw|| <A}. Let also S C {x | ||x|| < r} be a sample of size m.
Then for any 6 > 0O with probability at least 1 — § for any h € H,

R(h) <R,(h) + 2\/f2/\;/p2 N 3\//og2(r2n/5)

Proof.

Follows directly general margin bound and bound on ’IA€5(H) for linear classifiers. O

1. This bound for linear hypotheses is remarkable, it does not depend directly on n, but only on p.

2. R(h) can be small when % is large; while R,,(h) is relatively small.

3. ﬁp(h) is small when few points are either classified incorrectly or correctly, but with margin < p.

4. When S is linearly separable, for a linear hypothesis with geometric margin p; and the choice of
the confidence margin parameter p = p, , R,(h) is zero.

5. Thus, if pg is relatively large, this provides a strong guarantee for the generalization error of the
corresponding linear hypothesis.
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Summary

Generalization bound does not depend on the dimension but on the margin.

This suggests seeking a large-margin separating hyperplane in a higher-dimensional feature space.
Taking dot products in a high-dimensional feature space can be very costly.

For any p > 0, the p-margin loss function is upper bounded by the p-hinge loss.

®,(x) = min (17 max (O, 1- i)) < max (0, 1- i)
P p

Zero-one

z- 1<

3 Hinge

z - max(0,1—x)
Quadratic hinge

b S

a 2 z - max(0,1 —z)?
o

1 \

0 I

-2 -1 0 1

5. The bounds given in these slides can be extended for other loss functions such as hinge loss
function. Hence,

R(A) S%imax <0’1_M) +i\/r2,/np2 +\/Ioglogn()2r//)) +\/Iogz(rln/é)

p p
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Summary

1. Since for any p > 0, h/p admits the same generalization error as h with probability of at least
(1 —9), then the following holds for all h € {x — (w,x) | [[w|] < 1/p} and for all p > 0:

R(h) S%Zm:max(ml_yi<W7Xi>)_i_4\/r2r/npz_~_\/I0g|ogn(12r/,0)_’_\/|Og(1/5)

2m

2. This inequality can be used to derive an algorithm that selects w and p > 0 to minimize the
right-hand side.

3. The minimization with respect to p > 0 does not lead to a convex optimization, which may not be
optimal.

4. Thus, instead, p > 0 is left as a free parameter of the algorithm, typically determined via
cross-validation.
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Summary

N o o &

Only the first term of the right-hand side depends on w for any p > 0, Thus we have:

min Zmax(O 1— yi{w,x;))

[lw H2< L m

. Introducing a Lagrange variable\ > 0, we obtain

mln)\HwH + = Zmax(O 1—yi(w,x;))

For any p > 0, there exists an equivalent dual variable A > 0 that achieves the same optimal w, A
can be freely selected via cross-validation.

The resulting algorithm precisely coincides with SVMs using an alternative objective function.
The advantage of the hinge loss is that it is convex, while the margin loss is not.
This bound suggests seeking a large-margin hyperplane in a higher-dimensional feature space.

Taking dot products in a high-dimensional feature space can be very costly and solution is based
on kernels.
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Readings

1. Appendix E of Christopher M. Bishop Book (Bishop 2006)

2. Section 9.1 and Chapter 15 of Shai Shalev-Shwartz and Shai Ben-David Book (Shalev-Shwartz
and Ben-David 2014)

3. Chapter 4 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book (Mohri,
Rostamizadeh, and Talwalkar 2018).
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Lagrangian optimization

> Assume that we have a primal optimization problem of the form,

min ¢(x) subject to gi(x) >0 fori=1,2,...

> Assume that ¢ is convex and the constraints g; are linear.

» We can construct the Lagrangian optimization problem as follows,

I
maxmin L(x,a) = maxmin <qz$(x) — Z a,—g,-(x))
i=1
such that
a; >0 for i=1,2,...,1

> The values aq, ..., a; are called the Lagrangian multipliers.

» We call x the primal variable and « the dual variable.



Lagrangian optimization (cont.)

We have

v

I
maxminL(x,a) = maxmin <q§(x) - Z a,-g,-(x))
i=1
> Let x = x™ be an optimum then
l
max L(x",a) = max <¢(X*) - Zaigi(x*)>
i=1
» Let o = o be an optimum then
/
min L(x,a”) = min (¢(X) - Za?g;(x))
i=1

> This implies that our solutions are saddle points on the graph of the function L(x, «)
> An important observation is that at the saddle point the identity

oL

= =90

ox

v

Here, the point x™ represents an optimum of L with respect to x.



Lagrangian optimization (cont.)

> Let o™ and x™ be a solution to the Lagrangian such that,

maxmin L(x,a) = L(x",a") = ¢(x") Za gi(x

» Then x* is a solution to the primal objective function if and only if the following conditions hold

Efx (x*,a") =0,
ajgi(x*) =0,
gi(x7) >0,

aj >0,

fori=1,2,... 1.

> These conditions are collectively referred to as the Karush-Kuhn-Tucker (KKT) conditions and if
satisfied ensure that (Why? Please verify it.)

L(x",a") = ¢(x")

» The KKT conditions are always satisfied for convex optimization problems.



Lagrangian optimization (cont.)

v

Assume that x™ be an optimum, that is,

0 oy
aL(X ,a) =0,

> Then we can rewrite our Lagrangian as an objective function of only the dual variable,
L(x", a) = ¥(a),

the function 1 the Lagrangian dual.

» This gives us our new, dual optimization problem

max () subject to a;i >0 fori=1,2,...,1
[e3

v

If the KKT conditions are satisfied

msxz/)(a) =(a”) = L(a", x") = ¢(x7).



Lagrangian optimization (Example)

» Consider the convex optimization problem,

min ¢(a) = min %xz subject to g(x) =x—22>0

> The Lagrangian is
15
L(x,a) = X = a(x —2).

» This saddle point occurs where the gradient of the Lagrangian with respect to x is equal to zero,
oL
Ox

> Solving for x* gives x* = a.. Now, substituting x* = « into the Lagrangian gives

(,x)=x"—a=0

2

L(a,x™) = %a —a® 420 =20 — %aZ



> We can write dual optimization form with ¢(a) = L(a, x™) as
1, .
max¢(a) = max | 2a — 5a subject to a >0
> Since L(x,a) is convex, we can write
g_z(a*) =2-a=0

» This means that x* = o* = 2.



Questions?
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