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Introduction



Introduction

1. In classification, the goal is to find a mapping from inputs X to outputs t given a labeled

set of input-output pairs

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.

S is called training set.

2. In the simplest setting, each training input x is a D−dimensional vector of numbers.

3. Each component of x is called feature, attribute, or variable and x is called feature vector.

4. The goal is to find a mapping from inputs X to outputs t, where t ∈ {1, 2, . . . ,C} with C

being the number of classes.

5. When C = 2, the problem is called binary classification. In this case, we often assume that

t ∈ {−1,+1} or t ∈ {0, 1}.
6. When C > 2, the problem is called multi-class classification.
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Introduction (cont.)

1. Bayes theorem

p(Ck |X ) =
P(X |Ck)P(Ck)

P(X )

=
P(X |Ck)P(Ck)∑
Ck

p(X |Ck)p(Ck)

2. p(Ck) is called prior of Ck .

3. p(X |Ck) is called likelihood of data .

4. p(Ck |X ) is called posterior probability.

5. Since p(X ) is the same for all classes, we can write as

p(Ck |X ) ∝ P(X |Ck)P(Ck)

6. Approaches for building a classifier.

I Generative approach: This approach first creates a joint model of the form of p(x ,Ck) and

then to condition on x , deriving p(Ck |x).
I Discriminative approach: This approach creates a model of the form of p(Ck |x) directly.
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Bayes decision theory

1. Given a classification task of M classes, C1,C2, . . . ,CM , and an input vector x , we can

form M conditional probabilities

p(Ck |x) ∀k = 1, 2, . . . ,M

2. Without loss of generality, consider two class classification problem. From the Bayes

theorem, we have

p(Ck |x) ∝ P(x |Ck)P(Ck)

3. The Bayes classification rule is

if p(C1|x) > p(C2|x) then x is classified to C1

if p(C1|x) < p(C2|x) then x is classified to C2

if p(C1|x) = p(C2|x) then x is classified to either C1 or C2

Since p(x) is same for all classes, then it can be removed. Hence

p(x |C1)p(C1) ≶ p(x |C2)p(C2)

4. If p(C1) = p(C2) = 1
2 , then we have

p(x |C1) ≶ p(x |C2)
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Simple Example (Mitchell’s book)

1. Let C = {C1,C2}, with

I C1 = the patient has a certain disease,
I C2 = the patient has not a certain disease,

2. Prior : Over the entire population

I P(C1) = 0.008,
I P(C2) = 0.992,

3. Likelihoods (lab test result x ∈ {0, 1})
I P(x = 1|C1) = 0.98 (true positive),
I P(x = 0|C1) = 0.02 (false negative),
I P(x = 1|C2) = 0.03 (false positive),
I P(x = 0|C2) = 0.97 (true negative).

4. After observing positive test outcome x = 1, compute posteriors:

P(C1|x = 1) ∝ P(x = 1|C1)P(C1) = (0.98)0.008 = 0.0078,

P(C2|x = 1) ∝ P(x = 1|C2)P(C2) = (0.03)0.992 = 0.0298

5. Normalize to 1 to get the actual probabilities (divide by 0.0078 + 0.0298).
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Probability of error

1. If p(C1) = p(C2) = 1
2 , then we have

2. The coloured region may produce error. The probability of error equals to

Pe = p(error) = p(x ∈ R1,C2) + p(x ∈ R2,C1)

=
1

2

∫

R1

p(x |C2)dx +
1

2

∫

R2

p(x |C1)dx
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Minimizing the classification error probability

1. We now show that the Bayesian classifier is optimal with respect to minimizing the

classification probability.

2. Let R1(R2) be the region in the feature space in which we decide in favor of C1 (C2).

Then error is made if x ∈ R1 although it belongs to C2, or if x ∈ R2 but it may belongs

to C1. That is

Pe = p(x ∈ R2,C1) + p(x ∈ R1,C2)

= p(x ∈ R2|C1)p(C1) + p(x ∈ R1|C2)p(C2)

= p(C1)

∫

R2

p(x |C1) + p(C2)

∫

R1

p(x |C2)

3. Using the Bayes rule

Pe =

∫

R2

p(C1|x)p(x)dx +

∫

R1

p(C2|x)p(x)dx

4. Since R1 ∪R2 covers the space, from probability density function, we have

p(C1) =

∫

R1

p(C1|x)p(x)dx +

∫

R2

p(C1|x)p(x)dx

5. By combining these two equation, we obtain

Pe = p(C1)−
∫

R1

[p(C1|x)− p(C2|x)] p(x)dx
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Minimizing the classification error probability (cont.)

1. The probability of error equals to

Pe = p(C1)−
∫

R1

[p(C1|x)− p(C2|x)] p(x)dx

2. The probability of error is minimized if R1 is the region of the space in which

[p(C1|x)− p(C2|x)] > 0

3. Then R2 becomes the region where the reverse is true

[p(C1|x)− p(C2|x)] < 0

4. For classification task with M classes, x is assigned to class Ck with the following rule

if p(Ck |x) > p(Cj |x) ∀j 6= k

5. Show that this rule also minimizes the classification error probability for classification task

with M classes.
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Minimizing the average risk

1. The classification error probability is not always the best criterion to be adopted for

minimization. Why?

2. This because it assigns the same importance to all errors.

3. In some applications such as IDS, patient classification, and spam filtering some wrong

decisions may have more serious implications than others.

4. In some cases, it is more appropriate to assign a penalty term to weight each error.

5. In such case, we try to minimize the following risk.

r = λ12p(C1)

∫

R2

p(x |C1)dx + λ21p(C2)

∫

R1

p(x |C2)dx

6. In general, the risk/loss associated to class Ck is defined as

rk =
M∑

i=1

λki

∫

Ri

p(x |Ck)dx

7. The goal is to partition the feature space so that the average risk is minimized.

r =
M∑

k=1

rkp(Ck)

=
M∑

i=1

∫

Ri

(
M∑

k=1

λkip(x |Ck)p(Ck)

)
dx
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Minimizing the average risk (cont.)

1. The average risk is equal to

r =
M∑

i=1

∫

Ri

(
M∑

k=1

λkip(x |Ck)p(Ck)

)
dx

2. This is achieved if each integral is minimized, so that

x ∈ R if ri =
M∑

k=1

λkip(x |Ck)p(Ck) < rj =
M∑

k=1

λkjp(x |Ck)p(Ck) ∀j 6= i

3. When λki = 1 (for k 6= i), minimizing the average risk is equivalent to minimizing the

classification error probability.

4. In two–class case, we have

r1 = λ11p(x |C1)p(C1) + λ21p(x |C2)p(C2)

r2 = λ12p(x |C1)p(C1) + λ22p(x |C2)p(C2)

5. We assign x to C1 if r1 < r2, that is

(λ21 − λ22) p(x |C2)p(C2) < (λ12 − λ11) p(x |C1)p(C1)
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Minimizing the average risk (cont.)

1. In other words,

x ∈ C1(C2) if
p(x |C1)

p(x |C2)
> (<)

p(C2)

p(C1)

λ21 − λ22

λ12 − λ11

2. Assume that the loss matrix is in the form of

Λ =

[
0 λ12

λ21 0

]
.

3. Then, we have

x ∈ C1(C2) if
p(x |C1)

p(x |C2)
> (<)

p(C2)

p(C1)

λ21

λ12

4. When p(C1) = p(C2) = 1
2 , we have

x ∈ C1(C2) if p(x |C1) > (<)p(x |C2)
λ21

λ12

5. If λ21 > λ12, then x is assigned to C2 if

p(x |C2) > p(x |C1)
λ12

λ21

6. That is, p(x |C1) is multiplied by a factor less than one and the effect is the movement of

the threshold to left of x0.
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Minimizing the average risk (example)

1. In a two class problem with a single feature x , distributions of two classes are

p(x |C1) =
1√
π
exp

(
−x2

)

p(x |C2) =
1√
π
exp

(
−(x − 1)2

)

2. The prior probabilities of two class are p(C1) = p(C2) = 1
2 .

3. Compute x0 for minimum error probability classifier. x0 is the solution of

1√
π
exp

(
−x2

0

)
=

1√
π
exp

(
−(x0 − 1)2

)

4. x0 = 1
2 is the solution of the above equation.

5. If the following loss matrix is given, compute x0 for the minimum average risk classifier.

Λ =

[
0 0.5

1.0 0

]
.

6. x0 must satisfy the following equation.

1√
π
exp

(
−x2

0

)
=

2√
π
exp

(
−(x0 − 1)2

)

7. x0 = 1−ln 2
2 < 1

2 is the solution of the above equation.
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Discriminant function and decision surface

1. As discussed, minimizing either the risk or the error probability is equivalent to partitioning

the feature space into M regions for M classes.

2. If two regions Ri and Rj happen to be continuous, then they are separated by a decision

surface in the multi-dimensional feature space.

Classification

Assign input vector     to one of two or more classes

Any decision rule divides input space into decision regions separated 
by decision boundaries

x Ck

Example: two class decision depending on a 2D vector measurement

Also, would like a confidence measure (how sure are we that the 
input belongs to the chosen category?)

Classification

Assign input vector     to one of two or more classes

Any decision rule divides input space into decision regions separated 
by decision boundaries

x Ck

Example: two class decision depending on a 2D vector measurement

Also, would like a confidence measure (how sure are we that the 
input belongs to the chosen category?)
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Discriminant function and decision surface(cont.)

1. For the minimum error probability case, this surface described by

p(Ci |x)− p(Cj |x) = 0.

2. This difference from one side of the surface is positive and from other side, it is negative.

3. Sometimes, instead of working directly with probabilities (or risks), it is more convenient

to work with an equivalent function of them such as

gi (x) = f (p(Ci |x))

Function f (.) is monotonically increasing. (why?)

4. Function gi (x) is known as a discriminant function.

5. Now, the decision test is stated as

Classify x in Ci if gi (x) > gj(x) ∀j 6= i

6. The decision surfaces, separating continuous regions are stated as

gij(x) = gi (x)− gj(x) ∀i , j = 1, 2, . . . ,M, and j 6= i
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Discriminant function for Normally distributed classes

1. The one dimensional Gaussian distribution with mean of µ and variance σ2 is given by

p(x) = N (µ, σ2) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)

The D−dimensional Gaussian distribution with mean of µ and covariance matrix Σ is

p(x) = N (µ,Σ) =
1

|Σ|D/2(2π)D/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

2. What is the optimal classifier when the involved pdfs are N (µ,Σ)?

3. For Gaussian densities, it is preferable to work with the following discriminant functions.

gi (x) = ln[p(x |Ci )p(Ci )]

= ln p(x |Ci ) + ln p(Ci )

4. Or

gi (x) = −1

2
(x − µi )

TΣ−1
i (x − µi ) + wi0

wi0 = −D

2
ln(2π)− D

2
ln |Σi |+ ln p(Ci )

5. By expanding the above equation, we obtain the following quadratic form.

gi (x) = −1

2
xTΣ−1

i x +
1

2
xTΣ−1

i µi −
1

2
µT
i Σ−1

i µi +
1

2
µT
i Σ−1

i x + wi0
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Discriminant function for Normally distributed classes(example)

1. For Normally distributed classes, we have the following quadratic form classifier.

gi (x) = −1

2
xTΣ−1

i x +
1

2
xTΣ−1

i µi −
1

2
µT
i Σ−1

i µi +
1

2
µT
i Σ−1

i x + wi0

2. Assume

Σi =

[
σ2
i 0

0 σ2
i

]

Thus we have

gi (x) = − 1

2σ2
i

(
x2

1 + x2
2

)
+

1

2σ2
i

(µi1x1 + µi2x2)− 1

2σ2
i

(
µ2
i1 + µ2

i2

)
+ wi0

3. Obviously the associated decision curves gi (x)− gj(x) = 0 are quadratics.

4. In this case the Bayesian classifier is a quadratic classifier, i.e. the partition of the feature

space is performed via quadratic decision surfaces.
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Discriminant function for Normally distributed classes (cont.)

1. The discriminant functions for optimal classifier when the involved pdfs are N (µ,Σ) have

the following form

gi (x) = −1

2
(x − µi )

TΣ−1
i (x − µi ) + wi0

wi0 = −1

2
ln(2π)− 1

2
ln |Σi |+ ln p(Ci )

2. By expanding the above equation, we obtain the following quadratic form.

gi (x) = −1

2
xTΣ−1

i x +
1

2
xTΣ−1

i µi −
1

2
µT
i Σ−1

i µi +
1

2
µT
i Σ−1

i x + wi0

3. Based on the above equations, We distinguish three distinct cases:

I When Σi = σ2I , where σ2 is a scalar and I is the identity matrix;
I Σi = Σ, i.e. all classes have equal covariance matrices;
I Σi is arbitrary.
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Discriminant function for Normally distributed classes (Σi = σ2I )

1. The discriminant functions for optimal classifier when pdfs are N (µ,Σ) have form

gi (x) = −1

2
(x − µi )

TΣ−1
i (x − µi ) + wi0

2. By replacing Σi = σ2I in the above equation, we obtain

gi (x) = −1

2
(x − µi )

T (σ2)−1(x − µi ) + wi0

= −||x − µi ||2
2σ2

+ wi0

= − 1

2σ2

(
xT x − 2µT

i x + µT
i µi

)
+ wi0

3. Terms xT x and other constants are equal for all classes so they can be dropped.

gi (x) =
1

σ2

(
µT
i x −

1

2
µT
i µi

)
+ wi0

4. This is a linear discriminant function gi (x) = wT
i x + wi0 with

wi =
µi

σ2

wi0 = −µ
T
i µi

2σ2
+ ln p(Ci )
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Discriminant function for Normally distributed classes (Σi = σ2I )

1. For this case, the discriminant functions are equal to

gi (x) =
1

σ2
µT
i x + wi0

2. The corresponding hyperplanes can be written as

gij(x) = gi (x)− gj(x) =
1

σ2
µT
i x + wi0 −

1

σ2
µT
j x + wj0

=
1

σ2
(µi − µj)

T x + wi0 − wj0

= wT (x − x0) = 0

w = µi − µj

x0 =
1

2
(µi + µj)− σ2 ln

(
p(Ci )

p(Cj)

)
µi − µj

||µi − µj ||2

3. This implies that the decision surface is a hyperplane passing through the point x0.

4. For any x on the decision hyperplane, vector (x − x0) also lies on the hyperplane and

hence (µi − µj) is orthogonal to the decision hyperplane.
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Discriminant function for Normally distributed classes( Σi = σ2I )

1. When p(Ci ) = p(Cj), then x0 = 1
2 (µi + µj) and the hyperplane passes through the average

of µi and µj .

2. When p(Ci ) < p(Cj), the hyperplane located closer to µi .

3. When p(Ci ) > p(Cj), the hyperplane located closer to µj .

4. If σ2 is small with respect to ||µi − µj ||, the location of the hyperplane is insensitive to the

values of p(Ci ) and p(Cj).
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Discriminant function for Normally distributed classes (Σi = Σ)

1. The discriminant functions for optimal classifier when the pdfs are N (µ,Σ) have form

gi (x) = −1

2
(x − µi )

TΣ−1
i (x − µi ) + wi0

2. By replacing Σi = Σ in the above equation, we obtain

gi (x) = −1

2
(x − µi )

TΣ−1(x − µi ) + wi0

= −1

2
xTΣ−1x +

1

2
xTΣ−1µi −

1

2
µT
i Σ−1µi +

1

2
µT
i Σ−1x + wi0

= −1

2
xTΣ−1x + µT

i Σ−1x − 1

2
µT
i Σ−1µi + wi0

3. Terms xT x and other constants are equal for all classes and can be dropped. This gives

gi (x) =
1

2

(
2µT

i Σ−1x − µT
i Σ−1µi

)
+ ln p(Ci )

4. This is a linear discriminant function with

gi (x) = wT
i x + w ′i0

5. with the following parameters

wi = µiΣ
−1

w ′i0 = −1

2
µT
i Σ−1µi + ln p(Ci )
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Discriminant function for Normally distributed classes ( Σi = Σ)

1. For this case, the discriminant functions are equal to

gi (x) =
1

2

(
2µT

i Σ−1x − µT
i Σ−1µi

)
+ ln p(Ci )

2. The corresponding hyperplanes can be written as

gij(x) = gi (x)− gj(x) = wT (x − x0) = 0

w = Σ−1 (µi − µj)

x0 =
1

2
(µi + µj)− ln

p(Ci )

p(Cj)

µi − µj

||µi − µj ||2Σ−1

=
1

2
(µi + µj)− ln

p(Ci )

p(Cj)

µi − µj

(µi − µj)TΣ−1(µi − µj)

3. The decision function is no longer orthogonal to vector (µi − µj) but to its linear

transformation Σ−1(µi − µj).
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Discriminant function for Normally distributed classes (any Σi)

1. The discriminant functions for optimal classifier when the pdfs are N (µ,Σ) have form of

gi (x) = −1

2
(x − µi )

TΣ−1
i (x − µi ) + ln p(Ci )−

D

2
ln(2π)− D

2
ln |Σi |

2. The discriminant functions cannot be simplified much further. Only the constant term
D
2 ln(2π) can be dropped.

3. Discriminant functions are not linear but quadratic.

4. They have much more complicated decision regions than the linear classifiers of the two

previous cases.
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Discriminant function for Normally distributed classes (any Σi)

1. The discriminant functions for optimal classifier when the pdfs are N (µ,Σ) have form of

gi (x) = −1

2
(x − µi )

TΣ−1
i (x − µi ) + ln p(Ci )−

D

2
ln(2π)− D

2
ln |Σi |

2. Now, decision surfaces are also quadratic and the decision regions do not have to be even

connected sets.

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 25

2.6.3 Case 3: Σi = arbitrary

In the general multivariate normal case, the covariance matrices are different for each
category. The only term that can be dropped from Eq. 47 is the (d/2) ln 2π term,
and the resulting discriminant functions are inherently quadratic:

gi(x) = xtWix + wt
ix + wi0, (64)

where

Wi = −1

2
Σ−1

i , (65)

wi = Σ−1
i µi (66)

and

wi0 = −1

2
µt

iΣ
−1
i µi − 1

2
ln |Σi| + ln P (ωi). (67)

The decision surfaces are hyperquadrics, and can assume any of the general forms hyper-
quadric— hyperplanes, pairs of hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids,

and hyperhyperboloids of various types (Problem 29). Even in one dimension, for
arbitrary covariance the decision regions need not be simply connected (Fig. 2.13).
The two- and three-dimensional examples in Fig. 2.14 & 2.15 indicate how these
different forms can arise. These variances are indicated by the contours of constant
probability density.

The extension of these results to more than two categories is straightforward
though we need to keep clear which two of the total c categories are responsible for
any boundary segment. Figure 2.16 shows the decision surfaces for a four-category
case made up of Gaussian distributions. Of course, if the distributions are more com-
plicated, the decision regions can be even more complex, though the same underlying
theory holds there too.

-5 -2.5 2.5 5 7.5

0.1

0.2

0.3

0.4

x

p(x|ωi)

R2 R1R1

ω2

ω1

Figure 2.13: Non-simply connected decision regions can arise in one dimensions for
Gaussians having unequal variance.

24/76



Bayes decision theory

Minimum distance classifier



Minimum distance classifier

1. Assume that we have p(Ci ) = p(Cj) with the same covariance matrix, then gi (x) equals to

gi (x) = −1

2
(x − µi )

TΣ−1(x − µi )

2. For diagonal covariance matrix (Σ = σ2I ), the maximum gi (x) implies minimum Euclidean

distance.

dε = ||x − µi ||
Feature vectors are assigned to classes according to their Euclidean distance from their

respective mean points.

3. For non-diagonal covariance matrix, the maximum gi (x) is equivalent to minimizing

Mahalanobis distance (Σ−1−norm).

dm = (x − µi )
TΣ−1(x − µi )
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Bayesian classifiers for independent binary features

1. Let features be binary-valued and independent.

2. Let the class conditional density for each feature be the Bernoulli distribution. This yields

p(x |Ci ) =
D∏

j=1

q
xj
ij (1− qij)

(1−xj )

qij (for j = 1, 2, . . . ,D) are parameters for the class conditional density of the class Ci .

3. The discriminant function is

gi (x) = ln p(Ci |x) = ln p(x |Ci )p(Ci ) = ln
D∏

j=1

q
xj
ij (1− qij)

(1−xj ) p(Ci )

=
D∑

j=1

[xj ln qij + ln (1− qij)− xj ln (1− qij)] + ln p(Ci )

4. These are linear discriminant functions

gi (x) = W T
i x + wi0 =

D∑

j=1

wijxj + wi0

wi0 = ln p(Ci )− ln(1− qij)

wij =
D∑

j=1

ln(1− qij) + ln qij
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Supervised learning of the Bayesian classifiers

I We assumed that the class conditional pdfs p(x |Ci ) and the prior probabilities p(Ci ) were

known. In practice, this is never the case and we study supervised learning of class

conditional pdfs.

I For supervised learning we need training samples. In the training set there are feature

vectors from each class and we re-arrange training samples based on their classes.

Si = {(xi1, ti1) , (xi2, ti2) , . . . , (xiNi , tiNi )}

Ni is the number of training samples from the class Ci .

I We assume that the training samples in the sets Si are occurrences of the independent

random variables.
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Supervised learning of the Bayesian classifiers (cont.)

I We assume that the training samples in the sets Si are occurrences of the independent

random variables.

I The training data may be collected in two distinct ways. These are meaningful when we

need to learn the prior probabilities.

I In mixture sampling, a set of objects are randomly selected, their feature vectors extracted

and then they hand-classified to the most appropriate classes. The prior probability of each

class is estimated as

p(Ci ) =
Ni

N

I In separate sampling, the training data for each class is collected separately. In this case, the

prior probabilities cannot be deduced and it is most reasonable to assume that they are

known (If they are unknown, we usually assume that the prior probabilities for all classes are

equal.)
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Supervised learning of the Bayesian classifiers (Cont.)

I We assumed that the probability density functions are known. In most cases, these

probability density functions are not known and the underlying pdf will be estimated from

the available data.

I There are various ways to estimate the probability density functions.

I If we know the type of the pdf, we can estimate the parameters of the pdf such as mean

and variance from the available data. These methods are known as parametric methods.

I In the estimative approach to parametric density estimation, we use an estimate of the

parameter θj in the parametric density.

p(x |Cj) = p(x |Cj ; θ̂j)

θ̂j is an estimate of the parameter θj based on the data samples.
I In the Bayesian/predictive approach, we assume that we don’t know the true value of

parameter θj . This approach treats θj as an unknown random variable.

I In many cases, we may not have the information about the type of the pdf, but we may

know certain statistical parameters such as the mean and the variance. These methods are

known as nonparametric methods.
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Parametric methods for density estimation

I In parametric methods, we assume that the sample is drawn from some known distribution

(for example Gaussian). But the parameters of this distribution are not known and our

goal is to estimate these parameters from the data.

I Parametric methods are advantageous in that the model is defined by a small number of

parameters, and when these parameters are estimated, the distribution as a whole is

known.

I The following methods usually are used to estimate the parameters of the distribution

I Maximum likelihood estimation
I Bayesian estimation
I Maximum a posteriori probability estimation
I Maximum entropy estimation
I Mixture Models
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Maximum likelihood parameter estimation

I Consider an M−class problem with feature vectors distributed according to p(x |Ci ) (for

i = 1, 2, . . . ,M).

I We assume that p(x |Ci ) belongs to some family of parametric distributions. For example,

we assume that p(x |Ci ) is a normal density with unknown parameters θi = (µi ,Σi ).

I To show the dependence on θi , we denote p(x |Ci ) = p(x |Ci ; θi ). The class Ci defines the

parametric family, and the parameter vector θi defines the member of that parametric

family.

I The parametric families do not need to be same for all classes.

I Our goal is to estimate the unknown parameters using a set of known feature vectors in

each class.

I If we assume that data from one class do not affect the parameter estimation of the

others, we can formulate the problem independent of classes and simplify our notation

(p(x ; θ)). Then solve the problem for each class independently.

I Let X = {x1, x2, . . . , xN} be random samples drawn from pdf p(x ; θ). We form the joint

pdf p(X ; θ).

I Assuming statistical independence between the different samples, we have

p(X ; θ) = p(x1, x2, . . . , xN ; θi ) =
N∏

k=1

p(xk ; θ)

31/76



Maximum likelihood parameter estimation (cont.)

I p(X ; θ) is a function of θ and is known as likelihood function.

I The maximum likelihood (ML) method estimates θ so that the likelihood function takes

its maximum value, that is,

θ̂ML = argmax
θ

N∏

k=1

p(xk ; θ)

I A necessary condition that θ̂ML must satisfy in order to be a maximum is the gradient of

the likelihood function with respect to θ to be zero.

∂
∏N

k=1 p(xk ; θ)

∂θ
= 0

I It is more convenient to work with the logarithm of the likelihood function than with the

likelihood function itself. Hence, we define the log likelihood function as

LL(θ) = ln
N∏

k=1

p(xk ; θ)

=
N∑

k=1

ln p(xk ; θ)
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Maximum likelihood parameter estimation (cont.)

I In order to find θ̂ML, it must satisfy

∂LL(θ)

∂θ
=

∑N
k=1 ∂ ln p(xk ; θ)

∂θ

=
N∑

k=1

1

p(xk ; θ)

∂p(xk ; θ)

∂θ

= 0

I The single unknown parameter case
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Maximum likelihood estimation for normal distribution

I Let x1, x2, . . . , xN be vectors sampled from a normal distribution with known covariance

matrix and unknown mean, that is,

p(x ;µ) = N (µ,Σ) =
1

|Σ|D/2(2π)D/2
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)

Obtain ML-estimate of the unknown mean vector.

I For N available samples, we have

LL(µ) = ln
N∏

k=1

p(xk ;µ) = −N

2
ln[(2π)D |Σ|D ]− 1

2

N∑

k=1

(xk − µ)TΣ−1(xk − µ)

I Taking the gradient with respect to µ, we obtain

∂LL(µ)

∂µ
=




∂LL(µ)
∂µ1

∂LL(µ)
∂µ2

...
∂LL(µ)
∂µD




=
N∑

k=1

Σ−1(xk − µ) = 0

µ̂ML =
1

N

N∑

k=1

xk

That is, the ML estimate of the mean, for Gaussian densities, is the sample average.
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Maximum likelihood estimation for normal distribution

I Assume x1, x2, . . . , xN have been generated by a one-dimensional Gaussian pdf of known

mean, µ, but of unknown variance, that is,

p(x ;σ2) =
1

σ
√

2π
exp

(
− (x − µ)2

2σ2

)

Obtain ML-estimate (MLE) of the unknown variance.

I For N available samples, we have

LL(σ2) = ln
N∏

k=1

p(xk ;σ2) = −N

2
ln(2πσ2)− 1

2σ2

N∑

k=1

(xk − µ)2

I Taking the derivative of the above with respect to σ2 and equating to zero, we obtain

dLL(σ2)

dσ2
= − N

2σ2
+

1

2σ4

N∑

k=1

(xk − µ)2 = 0

I Solving the above equation with respect to σ2, results in

σ̂2
ML =

1

N

N∑

k=1

(xk − µ)2
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Evaluating an estimator

I Let x be a sample from a pdf with parameter θ, and θ̂ be an estimator of θ.

I To evaluate the quality of this estimator, we can measure how much it is different from θ,

that is (θ̂ − θ)2.

I But since it is a random variable (it depends on the sample), we need to average mean

square error over possible x and consider r(θ̂, θ), the mean square error of estimator θ̂

defined as

r(θ̂, θ) = E
[
(θ̂ − θ)2

]

I The bias of an estimator is given as

biasθ(θ̂) = E
[
θ̂
]
− θ

I If biasθ(θ̂) = 0 for all values of θ, then we say that θ̂ is an unbiased estimator.
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Evaluating an estimator: bias and variance (cont.)

I If biasθ(θ̂) = 0 for all values of θ, then we say that θ̂ is an unbiased estimator.

Example (Sample average)

Assume that N samples xk are drawn from some density with mean µ, the sample average, µ̂,

is an unbiased estimator of the mean, µ, because

E [µ̂] = E
[∑

k xk
N

]
=

1

N

∑

k

E [xk ] =
Nµ

N
= µ

I An estimator θ̂ is consistent estimator if

lim
N→∞

Var(θ̂)→ 0

Example (Sample average)

Assume that N samples xk are drawn from some density with mean µ, the sample average, µ̂,

is a consistent estimator of the mean, µ, because

Var(µ̂) = Var

(∑
k xk
N

)
=

1

N2

∑

k

Var [xk ] =
Nσ2

N2
=
σ2

N

I As N gets larger, µ̂ deviates less from µ.
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Evaluating an estimator (cont.)

Example (Sample variance)

Assume that N samples xk are drawn from some density with variance σ2, the sample

variance, σ̂2, is a biased estimator of the variance, σ2, because

σ̂2 =

∑
k(xk − µ̂)2

N
=

∑
k x

2
k − Nµ̂2

N

E
[
σ̂2
]

=

∑
k E
[
x2
k

]
− N E

[
µ̂2
]

N

Given that E
[
x2
]

= Var(x) + E [x ]2, we can write

E
[
x2
k

]
= σ2 + µ2

E
[
µ̂2
]

=
σ2

N
+ µ2

Replacing back, we obtain

E
[
σ̂2
]

=
N(σ2 + µ2)− N(σ2/N + µ2)

N
=

(
N − 1

N

)
σ2 =

(
1− 1

N

)
σ2 6= σ2

This is an example of an asymptotically unbiased estimator whose bias goes to 0 as N goes

to ∞.
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Properties of maximum likelihood estimation

I If θ0 is the true value of the unknown parameter in p(x ; θ), it can be shown that under

generally valid conditions the following are true

I The ML estimate is asymptotically unbiased, that is

lim
N→∞

E
[
θ̂ML

]
= θ0

I The ML estimate is asymptotically consistent, that is, it satisfies

lim
N→∞

Prob
[
||θ̂ML − θ0||2 ≤ ε

]
= 1

for arbitrarily small ε. A stronger condition for consistency is also true

lim
N→∞

E
[∥∥∥θ̂ML − θ0

∥∥∥2
]

= 0

I The ML estimate is asymptotically efficient; that is, this achieves the lowest value of

variance, which any estimate can achieve (Cramer-–Rao lower bound).
I The pdf of the ML estimate as N →∞ approaches the Gaussian distribution with mean θ0.

I In summary, the ML estimator is unbiased, is normally distributed, and has the minimum

possible variance. However, all properties are valid only for large values of N (Why? check

it.).

I If N is small, little can be said about the ML-estimates in general.
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Maximum a posteriori estimation (MAP)

I In MLE, we considered θ as an unknown parameter.

I In MAP estimation, we consider θ as a random vector, and we will estimate its value

based on sample X .

I From the Bayes theorem, we have

p(θ|X ) =
p(X |θ)p(θ)

p(X )

I The MAP estimation, θ̂MAP is defined at the point where p(θ|X ) becomes maximum.

I A necessary condition that θ̂MAP must satisfy in order to be a maximum is its gradient

with respect to θ to be zero.

∂p(θ|X )

∂θ
= 0

∂p(X |θ)p(θ)

∂θ
= 0

I The difference between ML and MAP estimates lies in the involvement of p(θ) in the

MAP.

I If p(θ) is uniform, then both estimates yield identical results.
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Maximum a posteriori estimation (example)

I Let x1, x2, . . . , xN be vectors drawn from a normal distribution with known covariance

matrix Σ = σ2I and unknown mean, that is

p(xk ;µ) =
1

(2π)D/2|Σ|D/2
exp

(
−1

2
(xk − µ)Tσ−1(xk − µ)

)

I Assume that the unknown mean vector µ is known to be normally distributed as

p(µ) =
1

(2π)D/2σD
µ

exp

(
−1

2

||µ− µ0||2
σ2
µ

)

I The MAP estimate is given by the solution of

∂

∂µ
ln

(
N∏

k=1

p(xk |µ)p(µ)

)
= 0

I For Σ = σ2I , we obtain

µ̂MAP =
µ0 +

σ2
µ

σ2

∑N
k=1 xk

1 +
σ2
µ

σ2 N

I When
σ2
µ

σ2 � 1, then µ̂MAP ≈ µ̂ML.

I MLE and MAP find a specific point estimate of unkown parameter.
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Bayesian estimation

I Both MLE and MAP compute a specific estimate of the unknown parameter vector θ.

I Sometimes, before looking at dataset, we may have some prior information on the possible

value range that a parameter, θ, may take.

I This information is quite useful and should be used, especially when the dataset is small.

I The prior information doesn’t tell us exactly what the parameter value is (otherwise we

would not need the dataset), and we model this uncertainty by viewing θ as a random

variable and by defining a prior density for it, p(θ).

I For example, we are told that θ is approximately normal and with 90 percent confidence, θ

lies between 5 and 9, symmetrically around 7.
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Bayesian estimation

I The prior density p(θ) tells the likely values that θ may take before looking at the sample.

I This is combined with what the sample data tells (p(X |θ)) using Bayes rule and get the

posterior density of θ, which tells the θ values after looking at the sample.

p(θ|X ) =
p(X |θ)p(θ)

p(X )

=
p(X |θ)p(θ)∫

p(X |θ′)p(θ′)dθ′

I Given the set of X and the prior information p(θ), the goal is to compute the conditional

pdf p(x |X ).
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Bayesian estimation (cont.)

I For estimating the density at x , we have

p(x |X ) =

∫
p(x , θ|X )dθ

=

∫
p(x |θ,X )p(θ|X )dθ

=

∫
p(x |θ)p(θ|X )dθ

p(x |θ,X ) = p(x |θ), because once we know θ, the sufficient statics, we know everything

about the distribution.

I Evaluating the integrals may be quite difficult, except in case where the posterior has a

nice form.

I When the full integration is not feasible, we reduce it to a single point.

I If we can assume that p(θ|X ) has a narrow peak around its mode, then using maximum

posteriori (MAP) estimate will make the calculation easier.

I If p(θ|X ) is known, then p(x |X ) is average of p(x |θ) with respect to θ, that is

p(x |X ) = E
θ

[p(x |θ)]
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Bayesian estimation (example)

I Let x ∼ N (µ, σ2) with unknown mean µ ∼ N (µ0, σ
2
0). Hence, we have

p(µ|X ) =
p(X |µ)p(µ)

p(X )
=

1

α

N∏

k=1

p(xk |µ)p(µ)

I p(X ) is a constant denoted as α, or

p(µ|X ) =
1

α

N∏

k=1

1√
2πσ

exp

(
− (xk − µ)2

2σ2

)
1√

2πσ0

exp

(
− (µ− µ0)2

2σ2
0

)

I When N samples are given, p(µ|X ) turns out to be a Gaussian (show it), that is

p(µ|X ) =
1√

2πσN
exp

(
−1

2

(µ− µN)2

σ2
N

)

µN =
Nσ2

0 x̄N + σ2µ0

Nσ2
0 + σ2

σ2
N =

σ2σ2
0

Nσ2
0 + σ2

I By some algebraic simplification, we obtain the following Gaussian pdf

p(x |X ) =
1√

2π(σ2 + σ2
N)

exp

(
−1

2

(x − µN)2

σ2 + σ2
N

)
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Mixture models for density estimation

Example (Coin toss )

1. We have three biased coins.

2. The probability of landing coins at heads is λ, p, q, respectively.

3. The tossing scenario is

I Toss coin 0;
I If head, we toss coin 1 another 4 times;
I Otherwise, we toss coin 2 another 4 times;
I We can only observe the sequence produced by coins 1 and/or coin 2, which are data yj

for j ∈ {1, 2, 3, 4}: HHHT, HTHT, HHHT, HTTH;
I The goal is to estimate most likely values for θ = (λ, p, q)>.

4. Thus, we have no idea which data points came from coin 1 and which from coin 2.

I Let θn = (λn, pn, qn)> be the current estimate of parameters, for simplicity, we just write

as (λ, p, q)>

I Let z be the hidden indicator variable, which coin was tossed at the beginning of each
attempt.

I If z = 1, coin 1 was tossed;
I If z 6= 1, coin 2 was tossed;

I Suppose there were m coin tosses and hj heads in the jth coin toss yj .
I What is the probability P(z) given θ = (λ, p, q)T and y?
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Mixture models for density estimation

I An alternative way to model an unknown density function p(x) is via linear combination of

M density functions in the form of

p(x) =
M∑

m=1

πmp(x |m)

where

M∑

m=1

πm = 1

∫

x

p(x |m)dx = 1

I This modeling implicitly assumes that each point x may be drawn from any M model

distributions with probability πm (for m = 1, 2, . . . ,M).

I It can be shown that this modeling can approximate closely any continuous density

function for a sufficient number of mixtures M and appropriate model parameters.
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Mixture models(cont.)

I First, we select a set of density components p(x |m) in the parametric form p(x |m, θ).

p(x ; θ) =
M∑

m=1

πmp(x |θm)

I Then, we compute parameters θ1, θ2, . . . , θM and π1, π2, . . . , πM based on training data.

I The parameter set is defined as θ = {π1, π2, . . . , πM, θ1, θ2, . . . , θM} and
∑

i π1 = 1.

I Given data X = {x1, x2, . . . , xN}, and assuming mixture model

p(x ; θ) =
M∑

m=1

πmp(x |θm)

we want to estimate parameters.

I In order to estimate each πm, we can count how many points from X coming from each of

M components then normalize by N.

π̂m =
Nm

N

Each Nm can be obtained from Nm =
∑N

n=1 zmn and

zmn =

{
1 if the nth point was drawn from component m

0 otherwise.
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Mixture models(cont.)

I What are the values parameters of each component θ̂m?

I We need to estimate θ̂m which maximizes the likelihood of the data points that are drawn

from component m under the parametric form p(x |θm).

I If the mixture components were Gaussian, then MLE for the component mean vectors

would be

µ̂m =

∑N
n=1 zmnxn∑N
n=1 zmn

I The estimation for covariance matrix for each component would be

Σ̂m =
1

∑N
n=1 zmn

N∑

n=1

zmn(xn − µ̂m)(xn − µ̂m)T

I The difficulty is that we do not know zmn. This is a major difficulty because the variables

zmn are hidden or latent then our ML estimates cannot follow in the straightforward

manner we had anticipated.

I The problem is that we assumed knowledge of the values for indicator variables zmn.
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Expectation maximization (cont.)

I EM algorithm has two steps: Expectation & Maximization

I Let p(m|xn) be zmn = 1 and p(m) be zmn = 1 for any n.

I In E-step, the missing data are estimated given the observed data and the current

estimate of the model parameters.

p(m|xn) =
p(xn|θm)p(m)

∑M
m′=1 p(xn|θ′m)p(m′)

I In the M-step, the likelihood function is maximized under the assumption that the missing

data are known. The estimate of missing data from E-step is used instead of the actual

missing data.

µ̂m =

∑N
n=1 zmnxn∑N
n=1 zmn

Σ̂m =

∑N
n=1 p(m|xn)(xn − µ̂m)T (xn − µ̂m)

∑N
n=1 p(m|xn)

πm =
1

N

N∑

n=1

p(m|xn)
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Nonparametric methods for density estimation

I Parametric methods assume that samples are drawn from some known distribution (for

example Gaussian). But the parameters of this distribution is not known and our goal is to

estimate these parameters from the data.

I The main advantage of the parametric methods is the model is defined up to a small

number of parameters and when these parameters are estimated, the whole distribution is

known.

I Methods used to estimate the parameters of the distribution are maximum likelihood

estimation and Bayesian estimation.

I Why nonparametric methods for density estimation?

I Common parametric forms do not always fit the densities encountered in practice.
I Most of the classical parametric densities are unimodal, whereas many practical problems

involve multi-modal densities.
I Non-parametric methods can be used with arbitrary distributions without assumption of

knowing the forms of the underlying densities.

I In nonparametric estimation, we assume that similar inputs have similar outputs. This is a

reasonable assumption because the world is smooth and functions, whether they are

densities, discriminants, or regression functions, change slowly.
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Nonparametric methods for density estimation (cont.)

I Let X = {x1, x2, . . . , xN} be random samples drawn i.i.d. from probability density function

p(x).

I PR is probability that a vector x will fall in a region R and is given by

PR =

∫

x∈R
p(x)dx

I The probability that k of N samples will fall in R is given by the binomial law.

P
(k)
R =

(
N

k

)
Pk
R (1− PR)N−k

I The expected value of k is equal to E [k] = NPR and MLE for PR equals to k
N .

I If p(x) is continuous and R is small enough so that p(x) does not vary significantly in it,

then for all x ∈ R, we can approximate PR with

PR =

∫

x′∈R
p(x ′)dx ′ ≈ p(x)V

V is the volume of R
I Then the density function can be estimated as

p(x) ≈ k/N

V
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Nonparametric methods for density estimation (example)

I Let x be a univariate feature vector and R(x) be the region given by

R(x) = {x ′|x ′ ≤ x}

I The nonparametric estimator for the cumulative distribution function, P(x), at point x is

the proportion of sample points that are less than or equal to x .

P̂(x) =
|R(x)|
N

I The nonparametric estimate for the density function can be calculated as

p̂(x) =
1

h

[ |R(x + h)| − |R(x)|
N

]

h is the length of the interval and instances x that fall in this interval are assumed to be

close enough.

I Different heuristics are used to determine the instances that are close and their effects on

the estimate.
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Histogram estimator

I The oldest and most popular method is the histogram where the input space is divided

into equal-sized intervals called bins.

I Given an origin x0 and a bin width h, the mth bins denoted by Rm(x) is the interval

[x0 + mh, x0 + (m + 1)h) for positive and negative integers m and the estimate is given as

p̂(x) =
|Rm(x)|

Nh

I In constructing the histogram, we have to choose both an origin and a bin width.

I The estimate is 0 if no instance falls in a bin and there are discontinuities at bin

boundaries.

I One advantage of the histogram is that once the bin estimates are calculated and stored,

we do not need to retain the training set.
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Histogram estimator (cont)

I A histogram density model is dependent on
I The choice of origin.
I The choice of bin width.

I The choice of origin is much less significant than the value of bin width.
I The choice of origin affects the estimate near boundaries of bins, but it is mainly the bin

width that has an effect on the estimate
I When bins are small, the estimate is spiky.
I When bins become larger, the estimate becomes smoother.
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Figure 2.24 An illustration of the histogram approach
to density estimation, in which a data set
of 50 data points is generated from the
distribution shown by the green curve.
Histogram density estimates, based on
(2.241), with a common bin width ∆ are
shown for various values of ∆.
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In Figure 2.24, we show an example of histogram density estimation. Here
the data is drawn from the distribution, corresponding to the green curve, which is
formed from a mixture of two Gaussians. Also shown are three examples of his-
togram density estimates corresponding to three different choices for the bin width
∆. We see that when ∆ is very small (top figure), the resulting density model is very
spiky, with a lot of structure that is not present in the underlying distribution that
generated the data set. Conversely, if ∆ is too large (bottom figure) then the result is
a model that is too smooth and that consequently fails to capture the bimodal prop-
erty of the green curve. The best results are obtained for some intermediate value
of ∆ (middle figure). In principle, a histogram density model is also dependent on
the choice of edge location for the bins, though this is typically much less significant
than the value of ∆.

Note that the histogram method has the property (unlike the methods to be dis-
cussed shortly) that, once the histogram has been computed, the data set itself can
be discarded, which can be advantageous if the data set is large. Also, the histogram
approach is easily applied if the data points are arriving sequentially.

In practice, the histogram technique can be useful for obtaining a quick visual-
ization of data in one or two dimensions but is unsuited to most density estimation
applications. One obvious problem is that the estimated density has discontinuities
that are due to the bin edges rather than any property of the underlying distribution
that generated the data. Another major limitation of the histogram approach is its
scaling with dimensionality. If we divide each variable in a D-dimensional space
into M bins, then the total number of bins will be MD. This exponential scaling
with D is an example of the curse of dimensionality. In a space of high dimensional-Section 1.4
ity, the quantity of data needed to provide meaningful estimates of local probability
density would be prohibitive.

The histogram approach to density estimation does, however, teach us two im-
portant lessons. First, to estimate the probability density at a particular location,
we should consider the data points that lie within some local neighbourhood of that
point. Note that the concept of locality requires that we assume some form of dis-
tance measure, and here we have been assuming Euclidean distance. For histograms,
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Histogram estimator (cont)

I The histogram is useful for visualization of data in one or two dimensions.

I This technique is unsuited to most density estimation applications because

I The estimated density has discontinuities due to the bin edge.
I The histogram approach is not scalable with dimensionality.

I This density estimation approach teaches us two important lessons:

I For estimating the probability density at x , we should consider its local neighboring points.

The locality defines a natural smoothing parameter. In our example bin width.
I For obtaining good results, value of the smoothing parameter should be neither too large nor

too small.

I The density estimate has the following form

p(x) ≈ K/N

V

I We can find density using

I Fix V and determine K from the data (kernel density).
I Fix K and determine V from the data (K -nearest-neighbor ).
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Naive estimator

I A generalization of histogram (naive estimator), addresses the choice of bin locations.

I This method adaptively determines the bin locations, thus the origin is eliminated.

I For bin width h, bin denoted by R(x) is interval
[
x − h

2 , x + h
2

)
and the estimate is

p̂(x) =
|R(x)|
Nh

I This equals to the histogram estimate where x is always at the center of a bin of size h.

I The estimator can also be written as

p̂(x) =
1

Nh

N∑

k=1

w

(
x − xk

h

)

w is weight function and defined as

w(u) =

{
1 if |u| ≤ 1

2

0 otherwise
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FIGURE 16.8
Parzen window method.

appropriately to improve the accuracy of approximation (16.3). In the following
sections, two methods to determine region R based on training samples {xi}ni=1 are
introduced. In Section 16.3, the volume V of region R is fixed, and the number of
training samples k that fall into R is determined from data. On the other hand, in
Section 16.4, k is fixed, and the volume V of region R is determined from data.

16.3 KDE
In this section, the volume V of region R is fixed, and the number of training samples
k that fall into R is determined from data.

16.3.1 PARZEN WINDOW METHOD
As region R, let us consider the hypercube with edge length h centered at x in region
R (Fig. 16.8(a)). Its volume V is given by

V = hd , (16.5)

where d is the dimensionality of the pattern space. The number of training samples
falling into region R is expressed as

k =
nX

i=1

W
✓ x � xi

h

◆
, (16.6)

where W (x) is called the Parzen window function defined for

x = (x(1), . . . , x(d))>

as follows (Fig. 16.8(b)):

W (x) =
8>>>><>>>>:

1 max
i=1, ...,d

|x(i) |  1
2
,

0 otherwise.

h is called the bandwidth of the Parzen window function.
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appropriately to improve the accuracy of approximation (16.3). In the following
sections, two methods to determine region R based on training samples {xi}ni=1 are
introduced. In Section 16.3, the volume V of region R is fixed, and the number of
training samples k that fall into R is determined from data. On the other hand, in
Section 16.4, k is fixed, and the volume V of region R is determined from data.

16.3 KDE
In this section, the volume V of region R is fixed, and the number of training samples
k that fall into R is determined from data.

16.3.1 PARZEN WINDOW METHOD
As region R, let us consider the hypercube with edge length h centered at x in region
R (Fig. 16.8(a)). Its volume V is given by

V = hd , (16.5)

where d is the dimensionality of the pattern space. The number of training samples
falling into region R is expressed as

k =
nX

i=1

W
✓ x � xi

h

◆
, (16.6)

where W (x) is called the Parzen window function defined for

x = (x(1), . . . , x(d))>

as follows (Fig. 16.8(b)):

W (x) =
8>>>><>>>>:

1 max
i=1, ...,d

|x(i) |  1
2
,

0 otherwise.

h is called the bandwidth of the Parzen window function.
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Kernel estimator

I To get a smooth estimate, we use a smooth weight function, called kernel function, and in

this context is also called Parzen window.

p̂(x) =
1

Nh

N∑

i=1

w

(
x − xi
h

)

w(.) is some kernel (window) function and h is the bandwidth (smoothing parameter).
I The most popular kernel function is Gaussian kernel function with mean 0 and variance 1.

w(u) =
1√
2π

exp

(
−u2

2

)

I Function w(.) determines the shape of influences and h determines the window width.
I The kernel estimator can be generalized to D−dimensional data.

p̂(x) =
1

NhD

N∑

k=1

w

(
x − xk

h

)

w(u) =

(
1√
2π

)D

exp

(
−||u||

2

2

)

I The total number of data points lying in this window (cube) equals to (drive it.)

k =
N∑

i=1

w

(
x − xi
h

)
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(a) Each Parzen window function (b) Parzen window estimator

FIGURE 16.9
Example of Parzen window method.

Substituting Eq. (16.5) and Eq. (16.6) into Eq. (16.3) gives the following density
estimator:

DpParzen(x) =
1

nhd

nX

i=1

W
✓ x � xi

h

◆
.

This estimator called the Parzen window method and its numerical behavior are
illustrated in Fig. 16.9. The result resembles that of the histogram method, but
the bin widths are determined adaptively based on the training samples. However,
discontinuity of estimated densities across di↵erent bins still remains in the Parzen
window method.

16.3.2 SMOOTHING WITH KERNELS
The problem of discontinuity can be e↵ectively overcome by KDE, which uses a
smooth kernel function K(x) instead of the Parzen window function:

DpKDE(x) =
1

nhd

nX

i=1

K
✓ x � xi

h

◆
.

Note that the kernel function should satisfy

8x 2 X, K(x) � 0, and
⌅

X
K(x)dx = 1.

The Gaussian kernel is a popular choice as a kernel function:

K(x) = 1

(2⇡) d
2

exp
 
� x
>x
2

!
,
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(a) Each Gaussian kernel function (b) Kernel density estimator

FIGURE 16.10
Example of Gaussian KDE. Training samples are the same as those in Fig. 16.9.

where the bandwidth h corresponds to the standard deviation of the Gaussian density
function. An example of Gaussian KDE is illustrated in Fig. 16.10, showing that a
nice smooth density estimator is obtained.

A generalized KDE,

DpKDE(x) =
1

n det(H)
nX

i=1

K
⇣
H�1(x � xi)

⌘
, (16.7)

may also be considered, where H is the d ⇥ d positive definite matrix called
the bandwidth matrix. If K(x) is the Gaussian function, HH> corresponds to the
variance-covariance matrix of the Gaussian density function.

16.3.3 BANDWIDTH SELECTION
The estimator DpKDE(x) obtained by KDE depends on the bandwidth h (Fig. 16.11).
Here, data-driven methods to choose h are introduced.

For generalized KDE (16.7), let us consider a diagonal bandwidth matrix H :

h = diag
⇣
h(1), . . . ,h(d)

⌘
,

where d denotes the dimensionality of input x. When the true probability distribution
is Gaussian, the optimal bandwidth is given asymptotically as follows [90, 93]:

Dh( j) =  
4

(d + 2)n

! 1
d+4

�( j),
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Parzen classifier

1. In Parzen classifier, the following steps are done.

I Estimating probability density for each class using a non-parametric approach based on

stored training examples.
I Classifying the test points by the label that corresponds to the maximum density.

2. The decision surface for a parzen classifier depends upon the choice of window function.
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k−Nearest neighbor estimator

I One difficulty with the kernel approach is that the parameter h is fixed for all kernels.

I Large value of h may lead to over-smoothing.

I Reducing value of h may lead to noisy estimates.

I The optimal choice of h may be dependent on location within the data space.
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k−Nearest neighbor estimator (cont.)

I Instead of fixing h and determining the value of k from the data, we fix the value of k and

use the data to find an appropriate value of h.

I To do this, we consider a small sphere centered on the point x at which we wish to

estimate the density p(x) and allow the radius of the sphere to grow until it contains

precisely k data points.

p̂(x) =
k

NV

V is the volume of the resulting sphere.

I Value of k determines the degree of smoothing and there is an optimum choice for k that

is neither too large nor too small.

I Note that: The model produced by k nearest neighborhood is not a true density model

because the integral over all space diverges.

Theorem

It can be shown that both the K-NN and the kernel density estimators converge to the true

probability density in the limit N →∞ provided V shrinks suitably with N , and K grows

with N (Duda and Hart, 1973).
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Figure 2.26 Illustration of K-nearest-neighbour den-
sity estimation using the same data set
as in Figures 2.25 and 2.24. We see
that the parameter K governs the degree
of smoothing, so that a small value of
K leads to a very noisy density model
(top panel), whereas a large value (bot-
tom panel) smoothes out the bimodal na-
ture of the true distribution (shown by the
green curve) from which the data set was
generated.
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density p(x), and we allow the radius of the sphere to grow until it contains precisely
K data points. The estimate of the density p(x) is then given by (2.246) with V set to
the volume of the resulting sphere. This technique is known as K nearest neighbours
and is illustrated in Figure 2.26, for various choices of the parameter K, using the
same data set as used in Figure 2.24 and Figure 2.25. We see that the value of K
now governs the degree of smoothing and that again there is an optimum choice for
K that is neither too large nor too small. Note that the model produced by K nearest
neighbours is not a true density model because the integral over all space diverges.Exercise 2.61

We close this chapter by showing how the K-nearest-neighbour technique for
density estimation can be extended to the problem of classification. To do this, we
apply the K-nearest-neighbour density estimation technique to each class separately
and then make use of Bayes’ theorem. Let us suppose that we have a data set com-
prising Nk points in class Ck with N points in total, so that

∑
k Nk = N . If we

wish to classify a new point x, we draw a sphere centred on x containing precisely
K points irrespective of their class. Suppose this sphere has volume V and contains
Kk points from class Ck. Then (2.246) provides an estimate of the density associated
with each class

p(x|Ck) =
Kk

NkV
. (2.253)

Similarly, the unconditional density is given by

p(x) =
K

NV
(2.254)

while the class priors are given by

p(Ck) =
Nk

N
. (2.255)

We can now combine (2.253), (2.254), and (2.255) using Bayes’ theorem to obtain
the posterior probability of class membership

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

Kk

K
. (2.256)
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k−Nearest neighbor classifier

I k−NN classifier first uses k−NN density estimation for each class and then use Bayes

theorem.

I Let data set with Ni points in class Ci and
∑

i Nk = N.

I To classify a new point x , we draw a sphere centered on x containing precisely k points

irrespective of their class.

I Suppose this sphere has volume V and contains ki points from class Ci .

I An estimate of the density associated with each class equals to

p(x |Ci ) =
ki

NiV

I The unconditional density is given by

p(x) =
k

NV

I The class priors equal to

p(Ci ) =
Ni

N

I Combining the above equations using Bayes theorem will results in

p(Ci |x) =
p(x |Ci )p(Ci )

p(x)
=

ki
NiV

Ni

N
k

NV

=
ki
k
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k−Nearest neighbor classifier (cont.)

I In k−NN classifier, the posterior probability of each class equals to

p(Ci |x) =
p(x |Ci )p(Ci )

p(x)
=

ki
NiV

Ni

N
k

NV

=
ki
k

I For minimizing the misclassification probability, assigning the test point x to the class

having the largest p(Ci |x), i.e. the largest value of ki/k.

I Thus to classify a new point, we identify the k nearest points from the training data set

and then assign the new point to the class having the largest number of representatives

amongst this set.

I The particular case of k = 1 is called the nearest-neighbor rule, because a test point is

simply assigned to the same class as the nearest point from the training set.

Theorem

When N →∞, the error rate NN (k = 1) classifier is never more than twice the minimum

achievable error rate of an optimal classifier.
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k−Nearest neighbor classifier (example)

I The parameter k controls the degree of smoothing, i.e. small k produces many small

regions of each class and large k leads to a fewer larger regions.
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k−Nearest neighbor classifier (cont.)

I k−NN classifier relies on a metric or a distance function, between points

I For all points , x , y , and z , a metric d(., .) must satisfy the following properties

I Non–negativity: d(x , y) ≥ 0.
I Reflexivity: d(x , y) = 0⇐⇒ x = y .
I Symmetry: d(x , y) = d(y , x).
I Triangle inequality : d(x , y) + d(y , z) ≥ d(x , z).

I A general class of metrics for D−dimensional feature vectors is Minkowski metric (also

referred to as Lp−norm)

Lp(x , y) =

(
D∑

i=1

|xi − yi |p
) 1

p

I When p = 1, the metric called Manhattan or city–block distance and is L1−norm .

I When p = 2, the metric called Euclidean distance and is L2−norm .

I When p =∞, the L∞−norm is the maximum of distance along individual coordinates

axes.

L∞(x , y) = max
i
|xi − yi |
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Conclusions

I Both the k−NN method, and the kernel density estimator, require the entire training data

set to be stored, leading to expensive computation if the data set is large.

I This effect can be offset, at the expense of some additional one-off computation, by

constructing tree-based search structures such as KD-tree to allow(approximate) nearest

neighbors to be found efficiently without doing an exhaustive search of the data set.

I These nonparametric methods are still severely limited.

I On the other hand, simple parametric models are very restricted in terms of the forms of

distribution that they can represent.

I We therefore need to find density models that are very flexible and yet for which the

complexity of the models can be controlled independently of the size of the training set.
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Naive Bayes classifier

I Bayesian classifiers estimate posterior probabilities based likelihood, prior, and evidence.

I These classifiers first estimate p(x |Ci ) and p(Ci ) and then classify the given instance.

I How much training data will be required to obtain reliable estimates of these distributions?

I Consider the number of parameters that must be estimated when C = 2 and x is a vector

of D boolean features.

I In this case, we need to estimate a set of parameters

θij = p(xi |Cj)

I Index i takes on 2D possible values, and j takes on 2 possible values.

I Therefore, we will need to estimate exactly 2(2D − 1) of such θij parameters.

I Unfortunately, this corresponds to two distinct parameters for each of the distinct

instances in the instance space for x .

I In order to obtain reliable estimates of each of these parameters, we will need to observe

each of these distinct instances multiple times! This is clearly unrealistic in most practical

learning domains.

I For example, if x is a vector containing 30 boolean features, then we will need to estimate

more than 3 billion parameters.
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Naive Bayes classifier (cont.)

I Given the intractable sample complexity for learning Bayesian classifiers, we must look for

ways to reduce this complexity.

I The Naive Bayes classifier does this by making a conditional independence assumption

that dramatically reduces the number of parameters to be estimated when modelling

P(xi |Cj), from our original 2(2D − 1) to just 2D.

Definition (Conditional Independence)

Given random variables x , y and z , we say x is conditionally independent of y given z , if and

only if the probability distribution governing x is independent of the value of y given z ; that is

p(xi , yj |zk) = p(xi |zk) ∀i , j , k

I The Naive Bayes algorithm is a classification algorithm based on Bayes rule, that assumes

the features x1, x2, . . . , xD are all conditionally independent of one another, given the class

label Ci . Thus we have

p(x1, x2, . . . , xD |Cj) =
D∏

i=1

p(xi |Cj)

I Note that when C and the xi are boolean variables, we need only 2D parameters to define

p(xik |Cj) for the necessary i , j , and k .
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Naive Bayes classifier (cont.)

1. The Bayes classifier can be defined as

h(x) = argmax
y

P(y |x)

= argmax
y

P(x|y)P(y)

P(x)

= argmax
y

P(x|y)P(y)

= argmax
y

D∏

k=1

P(xk |y)P(y)

= argmax
y

D∑

k=1

log(P(xk |y)) + log(P(y))

Credit: K. Weinberger
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Naive Bayes for discrete-valued inputs

I When each D input feature xi takes on J possible discrete values, and C is a discrete

variable taking on M possible values, the learning task is to estimate two sets of

parameters.

θijk = p(xi = x ′ij |C = Ck) Feature xi takes value xij

πk = p(C = Ck)

I We can estimate these parameters using either ML estimates or Bayesian/MAP estimates.

θijk =
|xi = x ′ij

∧
C = Ck |

|Ck |
I This maximum likelihood estimate sometimes results in θ estimates of zero, if the data

does not happen to contain any training examples satisfying the condition in the

numerator. To avoid this, it is common to use a smoothed estimate.

θijk =
|xi = x ′ij

∧
C = Ck |+ l

|Ck |+ lJ

I Value of l determines the strength of this smoothing.

I Maximum likelihood estimates for πk are

πk =
|Ck |
N

=
|Ck |+ l

N + lM
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Naive Bayes for continuous inputs

I When features are continuous, we must choose some other way to represent the

distributions p(xi |Ck).
I One common approach is to assume that for each possible Ck , the distribution of each

feature xi is Gaussian defined by mean and variance specific to xi and Ck .
I In order to train such a Naive Bayes classifier, we must therefore estimate the mean and

standard deviation of each of these distributions.

µik = E [xi |Ck ]

σ2
ik = E [(xik − µik)2|Ck ]

I We must also estimate the prior on C .

πk = p(C = Ck)

I We can use either maximum likelihood estimates (MLE) or maximum a posteriori (MAP)

estimates for these parameters.
I The maximum likelihood estimator for µik is

µ̂ik =

∑
j xijδ(tj = Ck)∑
j δ(tj = Ck)

I The maximum likelihood estimator for σ2
ik is

σ̂2
ik =

∑
j(xij − µ̂ik)2δ(tj = Ck)∑

j δ(tj = Ck)
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Naive Bayes is a linear classifier

I Let yi ∈ {−1,+1} and features are multinomial.

I As an exercise, show that

h(x) = argmax
y

P(y)
D∏

k=1

P(xk | y) = sign(w>x + b)

Credit: K. Weinberger
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Reading



Readings

1. Sections 1.5, 2.3, 2.5, & 4.2 of Pattern Recognition and Machine Learning Book (Bishop

2006).

2. Chapter 5 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?

cba
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