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Introduction



Introduction
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Clustering is the process of grouping a set of data objects into multiple groups or clusters
so that objects within a cluster have high similarity, but are very dissimilar to objects in
other clusters.

Dissimilarities and similarities are assessed based on the feature values describing the
objects and often involve distance measures.

Clustering is usually an unsupervised learning problem.

Consider a dataset X = {x,...,xn} ,x € R.

Assume there are K clusters Cy, ..., Ck.

The goal is to group the examples into K homogeneous partitions.
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(a) Input data (b) Desired clustering

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
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Introduction

> A good clustering is one that achieves:
> High within-cluster similarity
> Low inter-cluster similarity

» Applications of clustering

» Document/Image/Webpage Clustering

> |Image Segmentation

> Clustering web-search results

Clustering (people) nodes in (social) networks/graphs

v

> Pre-processing phase
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Comparing clustering methods

» The

clustering methods can be compared using the following aspects:

The partitioning criteria :  In some methods, all the objects are partitioned so that no
hierarchy exists among the clusters.

Separation of clusters : In some methods, data partitioned into mutually exclusive clusters
while in some other methods, the clusters may not be exclusive, that is, a data object may
belong to more than one cluster.

Similarity measure :  Some methods determine the similarity between two objects by the
distance between them; while in other methods, the similarity may be defined by
connectivity based on density or contiguity.

Clustering space :  Many clustering methods search for clusters within the entire data space.
These methods are useful for low-dimensionality data sets. With high- dimensional data,
however, there can be many irrelevant attributes, which can make similarity measurements
unreliable. Consequently, clusters found in the full space are often meaningless. It's often
better to instead search for clusters within different subspaces of the same data set.
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Types of Clustering

Hierarchical clustering (Partitions can be

Flat or Partitional clustering (Partitions are
visualized using a tree structure -a dendrogram)

independent of each other)

Possible to view partitions at different levels of

X
s Pung f, . P S . . .
Dk B . it granularities (i.e., can refine/coarsen clusters)
. L e -.. -
. * e *

. el TRl .. using different K.
o e g .
A< e et
P . . . ‘-..
o. . " . :@._l
. s
. L I

5/35



K-means clustering



Flat Clustering: K-means algorithm (Lloyd, 1957)

» Associate a prototype ux, k =1,..., K with each cluster.
» Let ry be the indicator of x, € Cy.

» The goal is to minimize

K
J= ZZ Fok|[Xn — NkH2

n=1 k=1

» Goal is to find {rn} and {u«}.

» Optimization is performed by alternating minimization

> Optimize over {ry} for a fixed {p«}.
> Optimize over {yu} for a fixed {rn}.

> Initialize with arbitrary choices of {1}
> lterative updates continue till convergence

» Guaranteed to converge, as objective is monotonic decreasing
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Flat Clustering: K-means algorithm (Lloyd, 1957)

» Input: N examples {xi,...,xn}; X, € RP; the number of partitions K

» Initialize: K cluster means f1,. .., uk, each uy € RP.
Usually initialized randomly, but good initialization is crucial; many smarter initialization
heuristics exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)

» Repeat:

> (Re)-Assign each example x, to its closest cluster center (based on the smallest Euclidean
distance)

1 if k= argmin||x, — >
rok = J
0 otherwise.

Let Cx is the set of examples assigned to cluster k with center .
» Update the cluster means

_ Z;’:’:l FnkXn

1
Me=Tea Z Xn = "N
|Ck‘ xp € Cye Zn:l Fnk

» Stop: when cluster means or the “loss” (defined later) doesn’'t change by much
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Kmeans Example
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Kmeans Example

600
2 3 4 10 11 12
(a) Initial dataset

2 3 4 10 11 12 20 25 30

(b) Iteration: r = 1
=25 1y =16

2 3 4 10 11 12 20 25 30
(c) Iteration: r =2

=3 n =18

2 3 4 10 11 12 20 25 30
(d) Iteration: r =3

=475 2 =19.60
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2 3 4 10 11 12 20 25 30
(e) Iteration: t =4
w=7 r2=25
2 3 4 10 11 12 20 25 30

(f) Iteration: r = 5 (converged)
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Kmeans Example

Original image
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Decrease in objective function
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500
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K-means objective function

» Consider the K-means objective function

J(X, p,r) ZZrnkan — /l,kH

n=1 k=1

> It is a non-convex objective function, so may have many local minima.
» Also NP-hard to minimize in general (note that r is discrete)
» The K-means algorithm is a heuristic to optimize this function

» K-means algorithm alternated between the following two steps

> assign points to closest centers
> recompute the center means

» The algorithm usually converges to a local minima. Multiple runs with different
initializations are usually tried to find a good solution.
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K-means (choosing K)

» Try different values of K, plot the K-means objective versus K.
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K-means objective
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Number of clusters

» We can also use information criterion such as AIC (Akaike Information Criterion) or BIC
(Bayesian Information Criterion) and choose K that gives smallest AIC/BIC (both penalize
large K values)
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K-means (limitations)

» Makes hard assignments of points to clusters

> A point either completely belongs to a cluster or doesn't belong at all
> No notion of a soft assignment.

» Works well only is the clusters are roughly of equal sizes.

» Probabilistic clustering methods such as Gaussian mixture models can handle both these
issues

» K-means also works well only when the clusters are round-shaped and does badly if the
clusters have non-convex shapes

» Kernel K-means or Spectral clustering can handle non-convex
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Kernel K-means

> The idea is to replace the Euclidean distance/similarity computations in K-means by the

kernelized versions

d?(xn, k) = [l 6(xa) — S II?
= K(xn, xn) + K (e, i) — 2K (puie, xn)

KMeans Kernel KMeans
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Kernel K-means

» Computing K(xn, x,) is easy: Simply compute this kernel function.
» Compute K(uk, k) as follows (assume N is the no. of points in cluster k)

1
m ; qs(xn)]

;
K (b, i) = &7 (1)

quxn
= N2ZZ¢ Xn)(Xm)

nNkl mN_k
= N;% ; mzl K (Xn, Xm)
> K(k, xn) can be computed as
N T
K (o x0) = 07 (1) d(xn) = | 17 D ¢(xn)1 (%n)
1 Ne N " 1 Ny
=3 2 2 9T 0a)élm) = = D K xm)
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Hierarchical Clustering

» A hierarchical clustering method works by grouping data objects into a hierarchy or “tree”
of clusters.

Agglomerative
(AGNES)

Step 0 Step 1 Step 2 Step 3 Step 4
1 1 1 1 1

\/

Divisive
(DIANA)

<<
<

T T T T T
Step 4 Step 3 Step 2 Step 1 Step 0

» Hierarchical clustering methods

> Agglomerative hierarchical clustering
> Divisive hierarchical clustering

17/35



Distance measures (linkage measures) in hierarchical methods

» How measure the distance between two clusters, where each cluster is generally a set.
» Four widely used measures for distance between clusters are as follows

» Minimum distance
dmin(ci; CJ) = minpeC;,qGCj{‘p - q|}

» Maximum distance
dmax(Ci, G) = maxpeC,-,qujﬂP —ql}
» Mean distance

dimean(Cis Gj) = [ui —

> Average distance

1
dnin( G, G) = D Ip—adl

J PECi,qeC;

!

/™M (f s VLN

A ) O e e

'L\ .%ﬂ — ,,\. } l\ .4
Lo \JJ/ Lt

18/35



Hierarchical methods
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Model-based clustering




Model-based clustering

» K-means is closely related to a probabilistic model known as the Gaussian mixture model.

pOx) =D mN (xlpk, Ze)

k=1
> Tk, [k, Lk are parameters. 7y are called mixing proportions and each Gaussian is called a
mixture component.
> The model is simply a weighted sum of Gaussian. But it is much more powerful than a
single Gaussian, because it can model multi-modal distributions.

P(@A

x

> Note that for p(x) to be a probability distribution, we require that ", mx = 1 and that for
all kK we have 7, > 0. Thus, we may interpret the 7 as probabilities themselves.

» Set of parameters 6 = {{m«}, {pk}, {Zk}}
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Model-based clustering (cont.)

> Let use a K-dimensional binary random variable z in which a particular element zx equals
to 1 and other elements are 0.

> The values of z therefore satisfy z, € {0,1} and }°, zx =1
» We define the joint distribution p(x, z) in terms of a marginal distribution p(z) and a
conditional distribution p(x|z).

» The marginal distribution over z is specified in terms of my, such that
plzc =1) = m,

» We can write this distribution in the form of

Zk = 1 H 7T
» The conditional distribution of x given a particular value for z is a Gaussian

p(X|zx = 1) = N (x|, Zk)

» This can also be written in the form of
K

p(xlze = 1) = [T NV (xlpa, £4)*

k=1
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Model-based clustering (cont.)

» The marginal distribution of x equals to

p(x) = 3 pl(2)p(xl2) = Zwv laks T)

z

» We can write p(zx = 1|x) as

Pz = 1)p(x|z = 1)
p(x)
p(zi = 1)p(x|zx = 1)
Y Pz = 1)p(x|z = 1)
TN (x| e i)
> N (X, E))

Y(zk) = p(z = 1]x) =

» We shall view 7, as the prior probability of zx = 1, and the quantity y(zx) as the
corresponding posterior probability once we have observed x.
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Gaussian mixture model (example)

(b)

23/35



Model-based clustering (cont.)

> Let X = {x1,...,xn} be drawn i.i.d. from mixture of Gaussian. The log-likelihood of the
observations equals to

In p(x|p, 7, ) Zln lZmJ\/’ Xn ks k)
n=1

» Finding the derivatives of In p(x|u, 7, X) with respect to py and setting it equal to zero,

we obtain N
ol ok, 2
0=y e Bt
n=1 WJN(XHMJ’J? )
"/(an)

> Multiplying by Z;l and then simplifying, we obtain
T

M = MZ’Y(znk)Xn

n=1

N
D ()
n=1
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Model-based clustering (cont.)

» Finding the derivatives of In p(x|u,m, X) with respect to X, and setting it equal to zero,

we obtain

N
1
Yy = m >~ (zok) (0 — 1) (e — i) "
n=1

» We maximize In p(x|u, 7, ) with respect to m, with constraint Zle mk = 1. This can be
achieved using a Lagrange multiplier and maximizing the following quantity

K
In p(x|p, m, L) + A (Z Tk — 1) .

k=1

which gives
N

Z WkN(Xan, Yk)
K

n=1 2j=1 TN (Xl X))

> If we now multiply both sides by 7, and sum over k making use of the constraint
Zle m, = 1, we find A = —N. Using this to eliminate A and rearranging we obtain

_ Ne
’/Tk—N

25/35



EM for Gassian mixture models

1. Initialize gk, Xk, and 7k, and evaluate the initial value of the log likelihood.

2. E step Evaluate y(zn«) using the current parameter values
TN (Xnl 1k, X))
K

Zj:l N (X1, )

3. M step Re-estimate the parameters using the current value of ()

Y(znk) =

1 N
Hk = Ny ;7(znk)xn
1 N
Yo = Ny ZV(an)(Xn — k) (X0 — Mk)T
n=1
— Nk
Tk N

where N, = Z,’Ll Y(2nk)-

4. Evaluate the log likelihood In p(x|p, 7, X) = Z,Iy:l In [Zle 77;(./\/’(x,,|/1,k,2k)} and check
for convergence of either the parameters or the log likelihood. If the convergence criterion
is not satisfied return to step 2.

Please read section 9.2 of Bishop.
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Model-based clustering (GMM vs K-means)

1. consider a dataset clustered by K-means and GMM..

Original Data k-Means Clustering EM Clustering
0.9 0.9
0.8 1 ;"*g&{x x 0.8
A %* I‘%ﬁ b
BB 000 3
0.7 #}?‘; %, (g‘%q%;’o ot fﬁf‘ 0.7
+, > @9 o ;Oxw(x
06 %g)oo 'g%g"’coé’@%g 06
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05 o 054 x
0, ® o8
&d% (%70 [} 0&)0
04 0% % 04
o
o%% 939 %%°
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o % O%o)%?o
02 02
01 0.1 - 0.1 -
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1

2. For the GMM clustering, the most probable cluster for each point has been labeled.

3. K-means, unlike GMM, tends to learn equi-sized clusters.

4. In what situation, the results of GMM is equivalent to the results of K-means? (do it.)
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Cluster validation and assessment




Cluster validation and assessment

» How good is the clustering generated by a method?
» How can we compare the clusterings generated by different methods?

» Clustering is an unupervised learning technique and it is hard to evaluate the quality of the
output of any given method.

> If we use probabilistic models, we can always evaluate the likelihood of a test set, but this
has two drawbacks:

1. It does not directly assess any clustering that is discovered by the model.
2. It does not apply to non-probabilistic methods.

» We discuss some performance measures not based on likelihood.

» The goal of clustering is to assign points that are similar to the same cluster, and to
ensure that points that are dissimilar are in different clusters.

> There are several ways of measuring these quantities
1. Internal criterion : Typical objective functions in clustering formalize the goal of attaining
high intra-cluster similarity and low inter-cluster similarity. But good scores on an internal
criterion do not necessarily translate into good effectiveness in an application. An alternative
to internal criteria is direct evaluation in the application of interest.
2. External criterion : Suppose we have labels for each object. Then we can compare the
clustering with the labels using various metrics. We will use some of these metrics later,

when we compare clustering methods.
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Purity

Purity is a simple and transparent evaluation measure. Consider the following clustering.

AAA ABB AA
AAB BBC cCC

Let /Vj; be the number of objects in cluster i that belongs to class j and ; = Zﬁl N be
the total number of objects in cluster /.

We define purity of cluster i as p; £ max <%> and the overall purity of a clustering as
; j

N:
purity £ Z N'p,-.
i

For the above figure, the purity is
65 64 53 54443
76 176 175 17

Bad clusterings have purity values close to 0, a perfect clustering has a purity of 1.

0.71

High purity is easy to achieve when the number of clusters is large. In particular, purity is
1 if each point gets its own cluster. Thus, we cannot use purity to trade off the quality of
clustering against the number of clusters.
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Rand index

> Let U={u1,...,ur} and V ={w,...,vc} be two different (flat) clustering of N data
points.

> For example, U might be the estimated clustering and V' is reference clustering derived
from the class labels.

» Define a 2 x 2 contingency table, containing the following numbers:

1. TP is the number of pairs that are in the same cluster in both U and V (true positives);

2. TN is the number of pairs that are in different clusters in bothU and V (true negatives);

3. FN is the number of pairs that are in different clusters in U but the same cluster in V (false
negatives);

4. FP is the number of pairs that are in the same cluster in U but different clusters in V (false
positives).

» Rand index is defined as

Rl 2 TP+ TN

TP+ FP+FN+ TN
Rand index can be interpreted as the fraction of clustering decisions that are correct.
Clearly RI € [0, 1].
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Rand index (example)

v

Consider the following clustering

AAA ABB AA
AAB BBC CCcC

The three clusters contain 6, 6 and 5 points, so we have

e ()90

The number of true positives

5 4 3 2
= (3)+()+(3)+ () -
Then FP = 40 — 20 = 20. Similarly, FN =24 and TN = 72.

Hence Rand index
20472

T 20+20+24+72
Rand index only achieves its lower bound of 0 if TP = TN = 0, which is a rare event. We

= 0.68.

can define an adjusted Rand index

index — E[index]
max index — E[index]

ARl &
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Mutual information

> Another measure of cluster quality is computing mutual information between U and V.

> Puv(i,j) =
Uand vjin V.

> Py(i) = L’l is the probability that a randomly chosen object belongs to cluster u; in U.

[0l i the probability that a randomly chosen object belongs to cluster u; in

> Py(j) = % is the probability that a randomly chosen object belongs to cluster v; in V.

» Then mutual information is defined
R C
Puv(i,J))
I(U, V) i,j)lo
ZZ w5718 B, )Py ()

> This lies between 0 and min{H(U),H(V)}.

» The maximum value can be achieved by using a lots of small clusters, which have low

entropy.

> To compensate this, we can use normalized mutual information (NMI)

NMI(U, V) &

» This lies between 0 and 1.

Please read section 25.1 of Murphy.
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Readings

1. Chapter 9 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Sections 11.2.3 & 1.4 & 25.1 & 25.5 of Machine Learning: A probabilistic perspective
(Murphy 2012).
3. Chapter 21 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?
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