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Probability



Probability

» Probability theory is the study of uncertainty.
» Elements of probability

» Sample space €2 : The set of all the outcomes of a random experiment.

> Event space F : A set whose elements A € F (called events) are subsets of €.

> Probability measure : A function P : F — R that satisfies the following properties,
1. P(A)>0, forall Ac F.
2. P(Q) =1.
3. If A1, Az, ... are disjoint events (i.e.,A; N A; = () whenever i # j) then

P(UiA)) = > P(A)

> Consider the following example.

Example (Tossing two coins)
In tossing two coins, we have
> The sample space equals to Q = {HH,HT, TT, TH}
> An event space F that only one head is a subset of Q such as F = {TH,HT}
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Properties of probability

» If AC B= P(A) < P(B).

» P(AN B) < min(P(A), P(B)).

» P(AU B) < P(A) + P(B). This property is called union bound.
» P(Q\A)=1- P(A).

> If A, Ay, ..., Ax are disjoint events such that UX_; A; = Q,then

This property is called law of total probability.
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Probability

Conditional probability and independence

> Let B be an event with non-zero probability. The conditional probability of any event A
given B is defined as,
P(AN B)
P(A|B)= ———
(A18)= =55
In other words, P(A | B) is the probability measure of the event A after observing the
occurrence of event B.

» Two events are called independent if and only if
P(AN B) = P(A)P(B),

or equivalently, P(A | B) = P(A).
Therefore, independence is equivalent to saying that observing B does not have any effect
on the probability of A.
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What is probability?

> Classical definition (Laplace, 1814)

_ Na

P(A) =

where N mutually exclusive equally likely outcomes, N4 of which result in the occurrence

of A.

» Frequentist definition

or relative frequency of occurrence of A in infinite number of trials.

> Bayesian definition(de Finetti, 1930s)
P(A) is a degree of belief.

5/27



What is probability? (example)

» Suppose that you have a coin that has an unknown probability 6 of coming up heads.
» We must determine this probability as accurately as possible using experimentation.

» Experimentation is to repeatedly tossing the coin. Let us denote the two possible
outcomes of a single toss by 1 (for HEADS) and 0 (for TAILS).

» If you toss the coin m times, then you can record the outcomes as xi, ..., X, where each
x; € {0,1} and P[x; = 1] = 6 independently of all other x;'s.

» What would be a reasonable estimate of 67

> In Frequentist view, by Law of Large Numbers, in a long sequence of independent coin
tosses, the relative frequency of heads will eventually approach the true value of 6 with
high probability. Hence,

> In Bayesian view, 6 is a random variable and has a distribution.
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Random variables

» Consider an experiment in which we flip 10 coins, and we want to know the number of
coins that come up heads.

» Here, the elements of the sample space Q are 10-length sequences of heads and tails.

» However, in practice, we usually do not care about the probability of obtaining any
particular sequence of heads and tails.

> Instead we usually care about real-valued functions of outcomes, such as the number of
heads that appear among our 10 tosses, or the length of the longest run of tails.

» These functions, under some technical conditions, are known as random variables.

» More formally, a random variable X is a function X : Q2 — R. Typically, we will denote
random variables using upper case letters X(w) or more simply X, where w is an event.

» We will denote the value that a random variable X may take on using lower case letter x.
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Random variables

» A random variable can be discrete or continuous.

(D_
3- S 7
21 3
o =
L' p_
e o
a0
g .oTI IT.. = T 5 T | T
c 2 4 & 8 1 0 1 2 3 4 5

X

» A random variable is associated with a probability mass function or probability distribution.
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Discrete random variables

» For a discrete random variable X, p(x) denotes the probability that p(X = x).

> p(x) is called the probability mass function (PMF). This function has the following

properties:

p(x)>0
p(x) <1
> p(x)=1
X
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Continuous random variables

v

For a continuous random variable X, a probability p(X = x) is meaningless.

v

Instead we use p(x) to denote the probability density function (PDF).
p(x) >0

lm&zl

Probability that a continuous random variable X € (x, x + dx) is p(x)dx as dx — 0.

v

b1 X

» Probability that X € (—o0, z) is given by the cumulative distribution function (CDF)
P(z), where
P(z)=p(X <z)= / p(x)dx
dP(z)
p(X) —c dZ Z=X
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Joint probability

» Joint probability p(X, Y') models probability of co-occurrence of two random variables X
and Y.
> Let nj; be the number of times events x; and y; simultaneously occur.
> Let N = Z;ZJ njj.

> Joint probability is

—~ .
pX =, =) = 0.
Yi i }rj > Let ¢ =3 nj, and r; = 3, nj.
» The probability of X irrespective of Y is

Ti
i
p(X =x) = .
> Therefore, we can marginalize or sum over Y, i.e. p(X =x) =, p(X = x, Y = y;).
> For discrete random variables, we have > 3" p(X =x,Y =y) =1.

> For continuous random variables, we have [ [ p(X =x,Y =y)=1.
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Marginalization

v

Consider only instances where the fraction of instances Y = y; when X = x;.

v

This is conditional probability and is written p(Y = y;|X = x;), the probability of Y given
X.

nijj
p(Y = yjlX = x) = 72

i

v

Now consider

nj; nj; G
X=x,Y =y _ v _ v
p(X = x ¥)) .y

N
= p(Y = ylX =x)p(X = xi)

v

If two events are independent, p(X, Y) = p(X)p(Y) and p(X|Y) = p(X)

Sum rule p(X) = >, p(X, Y)
» Product rule p(X,Y) = p(Y|X)p(X)

v
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Expected value

» Expectation, expected value, or mean of a random variable X, denoted by E [X], is the

average value of X in a large number of experiments.

EX] =Y p(x)x
or
E[X] = / p(x)xdx
» The definition of Expectation also applies to functions of random variables (e.g., E [f(x)])

» Linearity of expectation

Eaf(x) + Bg(x)] = ¢ E[f(x)] + BE [g(x)]
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Variance and and Covariance

» Variance (o) measures how much X varies around the expected value and is defined as.
Var(X) = E [(X —E[X])*] =E [X?] -

» Standard deviation : std[X] =/ Var[X] = 0.

» Covariance of two random variables X and Y indicates the relationship between two
random variables X and Y.

Cov(X.Y) = E, (X —EX])T(Y —E[Y])]
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Common probability distributions

We will use these probability distributions extensively to model data as well as parameters

» Some discrete distributions and what they can model:

1.
2.
3.
4.

Bernoulli : Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

Binomial : Bounded non-negative integers, e.g., the number of heads in n coin tosses
Multinomial : One of K(> 2) possibilities, e.g., outcome of a dice roll

Poisson :  Non-negative integers, e.g., the number of words in a document

» Some continuous distributions and what they can model:

1.

Al

Uniform: Numbers defined over a fixed range

Beta: Numbers between 0 and 1, e.g., probability of head for a biased coin
Gamma: Positive unbounded real numbers

Dirichlet : Vectors that sum of 1 (fraction of data points in different clusters)
Gaussian: Real-valued numbers or real-valued vectors
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Bernoulli distribution

» Distribution over a binary random variable x € {0,1}, like a coin-toss outcome

» Defined by a probability parameter p € (0,1).

pIX=1=p
piX=0=1-p

» Distribution defined as: Bernoulli(x; p) = p*(1 — p)}~>

0 1 X
» The expected value and the variance of X are equal to

E[X]=p
Var(X) = p(1 - p)
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Binomial distribution

Distribution over number of successes m in a number of trials

Defined by two parameters: total number of trials (N) and probability of each success
p € (0,1).

We can think Binomial as multiple independent Bernoulli trials

Distribution defined as

v

v

v

\ 4

N
Binomial(m; N, p) = <m) pm(1—p)N-m

Binomial distribution withn =15 andp=0.2

025

020 -
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005 -

000

» The expected value and the variance of m are equal to
E [m] = Np
Var(m) = Np(1 - p)
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Multinomial distribution

» Consider a generalization of Bernoulli where the outcome of a random event is one of K
mutually exclusive and exhaustive states, each of which has a probability of occurring g;
K
where >0 qi = 1.
» Suppose that n such trials are made where outcome / occurred n; times with Zfil ni = n.

» The joint distribution of ny, ny, ..., nk is multinomial

K 4"

P(nl,nz,...,nK):n!H#
i1 n,-!
Pl
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Uniform distribution

» Models a continuous random variable X distributed uniformly over a finite interval [a, b].

1
if X;a,b) =
Uniform(X; a, b) A
F(x)
1
—a o
0 a b X

> The expected value and the variance of X are equal to

b+ a
2
(b—a)?
12

E[X] =

Var(X) =
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Normal (Gaussian) distribution

» For 1-dimensional normal or Gaussian distributed variable x with mean p and variance o2,

denoted as N(x; i, 02), we have

N (i p,0%) = — eXp{—(X_W}

oV 2 202

Unit Normal Z = N(D,1)

\

\

/ \

> Mean: E[X] =pu
» Variance: var[X] = o2

> Precision (inverse variance): § = %
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Multivariate Gaussian distribution

» Distribution over a multivariate random variables vector x € RP of real numbers

» Defined by a mean vector ;1 € RP and a D x D covariance matrix X

L )T u)}

1
N(xp,X) = (27T)D|Z|GXP{2

°

o
@

Probability Density
s o
2 R

» The covariance matrix ¥ must be symmetric and positive definite

1. All eigenvalues are positive
2. z' ¥z > 0 for any real vector z.

» Often we parameterize a multivariate Gaussian using the inverse of the covariance matrix,

i.e., the precision matrix A = ¥ 71,
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Bayes theorem

» Bayes theorem
P(X]Y)P(Y)
P(X)
P(X]Y)P(Y)
>y P(X[Y)p(Y)

> p(Y) is called prior of Y. This is information we have before observing anything about the

p(Y|X)

Y that was drawn.

» p(Y|X) is called posterior probability, or simply posterior. This is the distribution of Y
after observing X.

> p(X|Y) is called likelihood of X and is the conditional probability that an event Y has
the associated observation X.

> p(X) is called evidence and is the marginal probability that an observation X is seen.

> In other words

. prior x likelihood
posterior = .

evidence
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Maximum a posteriori estimation

» In many learning scenarios, the learner considers some set )’ and is interested in finding
the most probable Y € ) given observed data X.

» This is called maximum a posteriori estimation (MAP) and can be estimated using Bayes

theorem.
Ymap = argmax p(Y|X)
Yey
P(X]Y)P(Y)
= argmax ——————>
o PX)

= argmax P(X|Y)P(Y)
Yey

» P(X) is dropped because it is constant and independent of Y.
Ymap = argmax P(X|Y)P(Y)
Yey
= argmax {log P(X|Y)+log P(Y)}
yey

= argmin {—log P(X|Y)—logP(Y)}
Yey
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Maximum likelihood estimation

> In some cases, we will assume that every Y € ) is equally probable.
» This is called maximum likelihood estimation.
Yur = argmax P(X]Y)
Yey
= argmax log P(X]Y)
Yey
= argmin {—log P(X|Y)}
Yey
> Let xq, X2,...,xy be random samples drawn from p(X, Y).
» Assuming statistical independence between the different samples,we can form p(X|Y) as
N
f’()(| )’) = /7()(17}(2" .. 7)(A/‘y/) = ]Tl:f)()(n| y/)
n=1

v

This method estimates Y so that p(X|Y) takes its maximum value.

N
YmL = argmax H P(xa| Y)

Yey 1

24/27



Maximum likelihood estimation(cont.)

> A necessary condition that Yj, must satisfy in order to be a maximum is the gradient of
the likelihood function with respect to Y to be zero.

Ty P(xa| )
oY

» Because of the monotonicity of the logarithmic function, we define the log likelihood
function as

=0

N
L(Y)=In]] p(xal V)
n=1
» Equivalently, we have

AL(Y) XN: Aln p(xa| Y)
A4
1 9p(xalY)
= 2y oy O

n=1
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Readings

1. Chapter 2 of Pattern Recognition and Machine Learning Book (Bishop 2006).
2. Chapter 2 of Machine Learning: A probabilistic perspective (Murphy 2012).
3. Chapter 1 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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