
Machine learning

Dimensionality reduction

Hamid Beigy

Sharif University of Technology

December 25, 2021

Table of contents

1. Introduction

2. High-dimensional space

3. Dimensionality reduction methods

4. Feature selection methods

5. Feature extraction

6. Feature extraction methods

7. Reading

1/61

Introduction

Introduction

The complexity of any classifier or regressors depends on the number of input variables or

features. These complexities include

I Time complexity: In most learning algorithms, the time complexity depends on the

number of input dimensions(D) as well as on the size of training set (N). Decreasing D

decreases the time complexity of algorithm for both training and testing phases.

I Space complexity: Decreasing D also decreases the memory amount needed for training

and testing phases.

I Samples complexity: Usually the number of training examples (N) is a function of length

of feature vectors (D). Hence, decreasing the number of features also decreases the

number of training examples.

Usually the number of training pattern must be 10 to 20 times of the number of features.

2/61

Introduction

There are several reasons why we are interested in reducing dimensionality as a separate

preprocessing step.

I Decreasing the time complexity of classifiers or regressors.

I Decreasing the cost of extracting/producing unnecessary features.

I Simpler models are more robust on small data sets. Simpler models have less variance and

thus are less depending on noise and outliers.

I Description of classifier or regressors is simpler / shorter.

I Visualization of data is simpler.

3/61

Peaking phenomenon

I In practice, for a finite N, by increasing the number of features we obtain an initial

improvement in performance, but after a critical value further increase of the number of

features results in an increase of the probability of error. This phenomenon is also known

as the peaking phenomenon.

I If the number of samples increases (N2 � N1), the peaking phenomenon occures for larger

number of features (l2 > l1).

4/61

High-dimensional space

High-dimensional space

I In most applications of data mining/ machine learning, typically the data is very high

dimensional (the number of features can easily be in the hundreds or thousands).

I Understanding the nature of high-dimensional space (hyperspace) is very important,

because hyperspace does not behave like the more familiar geometry in two or three

dimensions.

I Consider the N × D data matrix

S =


x11 x12 . . . x1D
x21 x22 . . . x2D

...
...

. . .
...

xN1 xN2 . . . xND

 .

I Let the minimum and maximum values for each feature xj be given as

min(xj) = min
i
{xij}

max(xj) = max
i
{xij}

I The data hyperspace can be considered as a D-dimensional hyper-rectangle, defined as

RD =
D∏
j=1

[min(xj),max(xj)] .

5/61

High-dimensional space (cont.)

I Hypercube
I Assume the data is centered to have mean : µ = 0.
I Let m denote the largest absolute value in S .

m =
D

max
j=1

N
max
i=1
{|xij |} .

I The data hyperspace can be represented as a hypercube HD(l), centered at 0, with all sides

of length l = 2m.

HD(l) =

{
x = (x1, . . . , xD)T | ∀i xi ∈

[
− l

2
,
l

2

]}
.

I Hypersphere
I Assume the data is centered to have mean : µ = 0.
I Let r denote the largest magnitude among all points in S .

r = max
i
{‖xi‖} .

I The data hyperspace can also be represented as a D-dimensional hyperball centered at 0

with radius r

BD(r) = {x | ‖xi‖ ≤ r}
I The surface of the hyperball is called a hypersphere, and it consists of all the points exactly

at distance r from the center of the hyperball

SD(r) = {x | ‖xi‖ = r}
6/61

High-dimensional space (cont.)

I Consider two features of Irish data set
6.2 High-dimensional Volumes 165

−2

−1

0

1

2

−2 −1 0 1 2

X1: sepal length

X
2
:s

ep
al

w
id

th r

Figure 6.1. Iris data hyperspace: hypercube (solid; with l = 4.12) and hypersphere (dashed; with r = 2.19).

6.2 HIGH-DIMENSIONAL VOLUMES

Hypercube
The volume of a hypercube with edge length l is given as

vol(Hd (l)) = ld

Hypersphere
The volume of a hyperball and its corresponding hypersphere is identical because the
volume measures the total content of the object, including all internal space. Consider
the well known equations for the volume of a hypersphere in lower dimensions

vol(S1(r)) = 2r (6.1)

vol(S2(r)) = πr2 (6.2)

vol(S3(r)) =
4

3
πr3 (6.3)

As per the derivation in Appendix 6.7, the general equation for the volume of a
d-dimensional hypersphere is given as

vol(Sd(r)) = Kdr
d =

(
π

d
2

"
(

d
2
+ 1

)
)

rd (6.4)

7/61

High-dimensional volumes

I The volume of a hypercube with edge length l equals to

vol(HD(l)) = lD .

I The volume of a hyperball and its corresponding hypersphere equals to

vol(SD(r)) =

(
π

D
2

Γ
(
D
2 + 1

)) rD .

where gamma function for α > 0 is defined as

Γ(α) =

∫ ∞
0

xα−1e−xdx

I The surface area of the hypersphere can be obtained by differentiating its volume with

respect to r

area(SD(r)) =
d

dr
vol(SD(r)) =

(
2π

D
2

Γ
(
D
2

)) rD−1.

8/61

Asymptotic Volume

I An interesting observation about the hypersphere volume is that as dimensionality

increases, the volume first increases up to a point, and then starts to decrease, and

ultimately vanishes.

I For the unit hypersphere (r = 1),

lim
D→∞

vol(SD(r)) = lim
D→∞

(
π

D
2

Γ
(
D
2 + 1

)) rD → 0.
168 High-dimensional Data

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50

d

vo
l(

S
d
(1

))

Figure 6.2. Volume of a unit hypersphere.

6.3 HYPERSPHERE INSCRIBED WITHIN HYPERCUBE

We next look at the space enclosed within the largest hypersphere that can be
accommodated within a hypercube (which represents the dataspace). Consider a
hypersphere of radius r inscribed in a hypercube with sides of length 2r . When we
take the ratio of the volume of the hypersphere of radius r to the hypercube with side
length l = 2r , we observe the following trends.

In two dimensions, we have

vol(S2(r))

vol(H2(2r))
=

πr2

4r2
=

π

4
= 78.5%

Thus, an inscribed circle occupies π
4

of the volume of its enclosing square, as illustrated
in Figure 6.3a.

In three dimensions, the ratio is given as

vol(S3(r))

vol(H3(2r))
=

4
3
πr3

8r3
=

π

6
= 52.4%

An inscribed sphere takes up only π
6 of the volume of its enclosing cube, as shown in

Figure 6.3b, which is quite a sharp decrease over the 2-dimensional case.
For the general case, as the dimensionality d increases asymptotically, we get

lim
d→∞

vol(Sd(r))

vol(Hd (2r))
= lim

d→∞

πd/2

2d"(d
2
+ 1)
→ 0

This means that as the dimensionality increases, most of the volume of the hypercube
is in the “corners,” whereas the center is essentially empty. The mental picture that

9/61

Hypersphere Inscribed Within Hypercube

I Consider the space enclosed within the largest hypersphere that can be accommodated

within a hypercube.

I Consider a hypersphere of radius r inscribed in a hypercube with sides of length 2r .

I The ratio of the volume of the hypersphere of radius r to the hypercube with side length

l = 2r equals to

vol(S2(r))

vol(H2(2r))
=
πr2

4r2
=
π

4
= 0.785

vol(S3(r))

vol(H3(2r))
=

4
3πr

3

8r3
=
π

6
= 0.524

lim
D→∞

vol(SD(r))

vol(HD(2r))
= lim

D→∞

(
π

D
2

2DΓ
(
D
2 + 1

))→ 0.

10/61

Hypersphere Inscribed within Hypercube

I Hypersphere inscribed inside a hypercube for two and three dimensions.6.4 Volume of Thin Hypersphere Shell 169

−r 0 r

(a)

−r

0

r
(b)

Figure 6.3. Hypersphere inscribed inside a hypercube: in (a) two and (b) three dimensions.

(a) (b) (c) (d)

Figure 6.4. Conceptual view of high-dimensional space: (a) two, (b) three, (c) four, and (d) higher

dimensions. In d dimensions there are 2d “corners” and 2d−1 diagonals. The radius of the inscribed circle

accurately reflects the difference between the volume of the hypercube and the inscribed hypersphere in d

dimensions.

emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.

6.4 VOLUME OF THIN HYPERSPHERE SHELL

Let us now consider the volume of a thin hypersphere shell of width ϵ bounded by an
outer hypersphere of radius r , and an inner hypersphere of radius r − ϵ. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.

Let Sd(r,ϵ) denote the thin hypershell of width ϵ. Its volume is given as

vol(Sd(r,ϵ)) = vol(Sd(r))− vol(Sd (r − ϵ)) = Kdr
d −Kd(r − ϵ)d.

I Conceptual view of high-dimensional space for two, three, four, and higher dimensions.

6.4 Volume of Thin Hypersphere Shell 169

−r 0 r

(a)

−r

0

r
(b)

Figure 6.3. Hypersphere inscribed inside a hypercube: in (a) two and (b) three dimensions.

(a) (b) (c) (d)

Figure 6.4. Conceptual view of high-dimensional space: (a) two, (b) three, (c) four, and (d) higher

dimensions. In d dimensions there are 2d “corners” and 2d−1 diagonals. The radius of the inscribed circle

accurately reflects the difference between the volume of the hypercube and the inscribed hypersphere in d

dimensions.

emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.

6.4 VOLUME OF THIN HYPERSPHERE SHELL

Let us now consider the volume of a thin hypersphere shell of width ϵ bounded by an
outer hypersphere of radius r , and an inner hypersphere of radius r − ϵ. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.

Let Sd(r,ϵ) denote the thin hypershell of width ϵ. Its volume is given as

vol(Sd(r,ϵ)) = vol(Sd(r))− vol(Sd (r − ϵ)) = Kdr
d −Kd(r − ϵ)d.

In d dimensions there are 2d corners and 2d−1 diagonals.
11/61

Volume of Thin Hypersphere Shell

I Consider the volume of a thin hypersphere shell of width ε bounded by an outer

hypersphere of radius r , and an inner hypersphere of radius r − ε .

I Volume of the thin shell equals to the difference between the volumes of the two bounding

hyperspheres.
170 High-dimensional Data

r

r −
ϵ

ϵ

Figure 6.5. Volume of a thin shell (for ϵ > 0).

Let us consider the ratio of the volume of the thin shell to the volume of the outer
sphere:

vol(Sd(r,ϵ))

vol(Sd(r))
=

Kdr
d −Kd(r − ϵ)d

Kdrd
= 1−

(
1−

ϵ

r

)d

Example 6.4. For example, for a circle in two dimensions, with r = 1 and ϵ = 0.01 the
volume of the thin shell is 1−(0.99)2 = 0.0199≃ 2%. As expected, in two-dimensions,
the thin shell encloses only a small fraction of the volume of the original hypersphere.
For three dimensions this fraction becomes 1− (0.99)3 = 0.0297≃ 3%, which is still a
relatively small fraction.

Asymptotic Volume
As d increases, in the limit we obtain

lim
d→∞

vol(Sd(r,ϵ))

vol(Sd(r))
= lim

d→∞
1−

(
1−

ϵ

r

)d

→ 1

That is, almost all of the volume of the hypersphere is contained in the thin shell as
d→∞. This means that in high-dimensional spaces, unlike in lower dimensions, most
of the volume is concentrated around the surface (within ϵ) of the hypersphere, and
the center is essentially void. In other words, if the data is distributed uniformly in
the d-dimensional space, then all of the points essentially lie on the boundary of the
space (which is a d − 1 dimensional object). Combined with the fact that most of the
hypercube volume is in the corners, we can observe that in high dimensions, data tends
to get scattered on the boundary and corners of the space.

I Let SD(r , ε) denote the thin hypershell of width ε. Its volume equals

vol(SD(r , ε)) = vol(SD(r))− vol(SD(r − ε)) = KDr
D − KD(r − ε)D

KD =
π

D
2

Γ
(
D
2 + 1

)
12/61

Volume of Thin Hypersphere Shell (cont.)

I Ratio of the volume of the thin shell to the volume of the outer sphere equals to

vol(SD(r , ε))

vol(SD(r))
=

KDr
D − KD(r − ε)D

KDrD
= 1−

(
1− ε

r

)D
170 High-dimensional Data

r

r −
ϵ

ϵ

Figure 6.5. Volume of a thin shell (for ϵ > 0).

Let us consider the ratio of the volume of the thin shell to the volume of the outer
sphere:

vol(Sd(r,ϵ))

vol(Sd(r))
=

Kdr
d −Kd(r − ϵ)d

Kdrd
= 1−

(
1−

ϵ

r

)d

Example 6.4. For example, for a circle in two dimensions, with r = 1 and ϵ = 0.01 the
volume of the thin shell is 1−(0.99)2 = 0.0199≃ 2%. As expected, in two-dimensions,
the thin shell encloses only a small fraction of the volume of the original hypersphere.
For three dimensions this fraction becomes 1− (0.99)3 = 0.0297≃ 3%, which is still a
relatively small fraction.

Asymptotic Volume
As d increases, in the limit we obtain

lim
d→∞

vol(Sd(r,ϵ))

vol(Sd(r))
= lim

d→∞
1−

(
1−

ϵ

r

)d

→ 1

That is, almost all of the volume of the hypersphere is contained in the thin shell as
d→∞. This means that in high-dimensional spaces, unlike in lower dimensions, most
of the volume is concentrated around the surface (within ϵ) of the hypersphere, and
the center is essentially void. In other words, if the data is distributed uniformly in
the d-dimensional space, then all of the points essentially lie on the boundary of the
space (which is a d − 1 dimensional object). Combined with the fact that most of the
hypercube volume is in the corners, we can observe that in high dimensions, data tends
to get scattered on the boundary and corners of the space.

I For r = 1 and ε = 0.01

vol(S2(1, 0.01)

vol(S2(1))
= 1−

(
1− 0.01

1

)2

' 0.02

vol(S3(1, 0.01)

vol(S3(1))
= 1−

(
1− 0.01

1

)3

' 0.03

vol(S4(1, 0.01)

vol(S4(1))
= 1−

(
1− 0.01

1

)4

' 0.04

vol(S5(1, 0.01)

vol(S5(1))
= 1−

(
1− 0.01

1

)5

' 0.05

I As D increases, in the limit we obtain

lim
D→∞

vol(SD(r , ε))

vol(SD(r))
= lim

D→∞
1−

(
1− ε

r

)D
→ 1.

I Almost all of the volume of the hypersphere is contained in the thin shell as D →∞.
13/61

Volume of Thin Hypersphere Shell (cont.)

I Almost all of the volume of the hypersphere is contained in the thin shell as D →∞.

I This means that in high-dimensional spaces, unlike in lower dimensions, most of the

volume is concentrated around the surface (within ε) of the hypersphere, and the

center is essentially void.

I In other words, if the data is distributed uniformly in the D-dimensional space, then

all of the points essentially lie on the boundary of the space (which is a D − 1

dimensional object).

I Combined with the fact that most of the hypercube volume is in the corners, we can

observe that in high dimensions, data tends to get scattered on the boundary and

corners of the space.

I As a consequence, high-dimensional data can cause problems for data mining and

analysis, although in some cases high-dimensionality can help, for example, for nonlinear

classification.

I It is important to check whether the dimensionality can be reduced while preserving

the essential properties of the full data matrix. This can aid data visualization as

well as data mining.

14/61

Dimensionality reduction methods

Dimensionality reduction methods

I There are two main methods for reducing the dimensionality of inputs

I Feature selection: These methods select d (d < D) dimensions out of D dimensions and

D − d other dimensions are discarded.
I Feature extraction: Find a new set of d (d < D) dimensions that are combinations of the

original dimensions.

15/61

Feature selection methods

Feature selection methods

I Feature selection methods select d (d < D) dimensions out of D dimensions and D − d

other dimensions are discarded.

I Reasons for performing feature selection

I Increasing the predictive accuracy of classifiers or regressors.
I Removing irrelevant features.
I Enhancing learning efficiency (reducing computational and storage requirements).
I Reducing the cost of future data collection (making measurements on only those variables

relevant for discrimination/prediction).
I Reducing complexity of the resulting classifiers/regressors description (providing an improved

understanding of the data and the model).

I Feature selection is not necessarily required as a pre-processing step for

classification/regression algorithms to perform well.

I Several algorithms employ regularization techniques to handle over-fitting or averaging

such as ensemble methods.

16/61

Feature selection methods

I Feature selection methods can be categorized into three categories.

I Filter methods: These methods use the statistical properties of features to filter out poorly

informative features.
I Wrapper methods: These methods evaluate the feature subset within classifier/regressor

algorithms. These methods are classifier/regressors dependent and have better performance

than filter methods.
I Embedded methods:These methods use the search for the optimal subset into

classifier/regression design. These methods are classifier/regressors dependent.

I Two key steps in feature selection process.

I Evaluation: An evaluation measure is a means of assessing a candidate feature subset.
I Subset generation: A subset generation method is a means of generating a subset for

evaluation.

17/61

Feature selection methods (Evaluation measures)

I Large number of features are not informative (irrelevant or redundant).

I Irrelevant features are features that don’t contribute to a classification or regression rule.

I Redundant features are features that are strongly correlated.

I In order to choose a good feature set, we require a means of a measure to contribute to

the separation of classes, either individually or in the context of already selected features.

We need to measure relevancy and redundancy.

I There are two types of measures

I Measures that relay on the general properties of the data.

These assess the relevancy of individual features and are used to eliminate redundancy.

All these measures are independent of the final classifier.

These measures are inexpensive to implement but may not well detect the redundancy.
I Measures that use a classification rule as a part of their evaluation.

In this approach, a classifier is designed using the reduced feature set and a measure of

classifier performance is employed to assess the selected features.

A widely used measure is the error rate.

18/61

Feature selection methods (Evaluation measures)

I The following measures relay on the general properties of the data.

I Feature ranking: Features are ranked by a metric and those that fail to achieve a prescribed

score are eliminated.

Examples of these metrics are: Pearson correlation, mutual information, and information

gain.
I Interclass distance: A measure of distance between classes is defined based on distances

between members of each class.

Example of these metrics is: Euclidean distance.
I Probabilistic distance: This is the computation of a probabilistic distance between

class-conditional probability density functions, i.e. the distance between p(x |C1) and p(x |C2)

(two-classes).

Example of these metrics is: Chhernoff dissimilarity measure.
I Probabilistic dependency: These measures are multi-class criteria that measure the distance

between class-conditional probability density functions and the mixture probability density

function for the data irrespective of the class, i.e. the distance between p(x |Ci) and p(x).

Example of these metrics is: Joshi dissimilarity measure.

19/61

Feature selection methods (Search algorithms)

I Complete search: These methods guarantee to find the optimal subset of features

according to some specified evaluation criteria.

For example exhaustive search and branch and bound methods are complete.

I Best individual N: The simplest method is to assign a score to each feature and then

select N top ranks features.

I Sequential search: In these methods, features are added or removed sequentially. These

methods are not optimal, but are simple to implement and fast to produce results.

1. Sequential forward selection: It is a bottom-up search procedure that adds new features to a

feature set one at a time until the final feature set is reached.

2. Generalized sequential forward selection: In this approach, at each time r > 1, features are

added instead of a single feature.

3. Sequential backward elimination: It is a top-down procedure that deletes a single feature at

a time until the final feature set is reached.

4. Generalized sequential backward elimination : In this approach, at each time r > 1 features

are deleted instead of a single feature.

20/61

Feature extraction

Introduction

I Let S consist of N points over D feature, i.e. it is an N × D matrix

S =


x11 x12 . . . x1D
x21 x22 . . . x2D

...
...

. . .
...

xN1 xN2 . . . xND

 .

I Each point xi = (xi1, xi2, . . . , xiD)T is a vector in D-dimensional space spanned by the D

basis vectors e1, e2, . . . , eD , ei corresponds to i th feature.

I The standard basis is an orthonormal basis for the data space: the basis vectors are

pairwise orthogonal eTi ej = 0, and have unit length ‖ei‖ = 1.

I Given any other set of D orthonormal vectors u1, u2, . . . , uD ,with uTi uj = 0 and ‖ui‖ = 1

(or uTi ui = 1), we can re-express each point x as the linear combination

x = a1u1 + a2u2 + . . .+ aDuD .

I Let a = (a1, a2, . . . , aD)T , then we have x = Ua.

I U is the D × D matrix, whose i th column comprises ui .

I Matrix U is an orthogonal matrix, whose columns, the basis vectors, are orthonormal, that

is, they are pairwise orthogonal and have unit length. This means that U−1 = UT .
21/61

Introduction

I Multiplying both sides of x = Ua by UT , results in

UT x = UTUa

a = UT x

Example

I Let e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T be the standard basis vectors

I Let u1 = (−0.39, 0.089,−0.916)T , u2 = (−0.639,−0.742, 0.200)T , and

u3 = (−0.663, 0.664, 0.346)T be the new basis vectors.

I The new coordinate of the centered point x = (−0.343,−0.754, 0.241)T can be computed as

a = UT x =

 −0.390 0.089 −0.916

0.639 −0.742 0.200

−0.663 0.664 0.346


 −0.343

−0.754

0.241

 =

 −0.154

0.828

−0.190

 .

22/61

Introduction

I There are infinite choices for the set of orthonormal basis vectors, one natural question is

whether there exists an optimal basis, for a suitable notion of optimality.

I We are interested in finding the optimal d-dimensional representation of S , with d � D.

I In other words, given a point x , and assuming that the basis vectors have been sorted in

decreasing order of importance, we can truncate its linear expansion to just d terms, to

obtain

x ′ = a1u1 + a2u2 + . . .+ adud = Udad .

I Since we have ad = UT
d x , restricting it to the first d terms, we get ad = UT

d x .

I Hence, we obtain x ′ = UdU
T
d x = Pdx .

I Projection error equals to ε = x − x ′.

I By substituting, we conclude that x ′ and ε are orthogonal vectors: x ′T ε = 0.

23/61

Introduction (example)

Example

I Let u1 = (−0.39, 0.089,−0.916)T . The new coordinate of the centered point

x = (−0.343,−0.754, 0.241)T using the first basis vector can be computed as

x ′ = a1u1 = −0.154u1 =
(

0.060 −0.014 0.141
)T

I Projection of x on u1 can be obtained directly from

P1 = U1U
T
1 =

 −0.390

0.089

−0.916

(−0.390 0.089 −0.916
)

=

 0.152 −0.035 0.357

−0.035 0.008 −0.082

0.357 −0.082 0.839


I The new coordinate equals to x ′ = P1x =

(
0.060 −0.014 0.141

)T
I Projection error equals to

ε = a2u2 + a3u3 = x − x ′ = P1x =
(
−0.40 −0.74 0.10

)T
I Vectors ε and x ′ are orthogonal

x ′ε =
(

0.060 −0.014 0.141
) −0.40

−0.74

0.10

 = 0

24/61

Introduction

I In feature extraction, we are interested to find a new set of k (k � D) dimensions that

are combinations of the original D dimensions.

I Feature extraction methods may be supervised or unsupervised.

I Examples of feature extraction methods

I Principal component analysis (PCA)
I Factor analysis (FA)s
I Multi-dimensional scaling (MDS)
I ISOMap
I Locally linear embedding
I Linear discriminant analysis (LDA)

25/61

Feature extraction methods

Feature extraction methods

Principal component analysis

Principal component analysis (Best 1-dimensional approximation)

I PCA project D−dimensional input vectors to k−dimensional input vectors via a linear

mapping with minimum loss of information. Dimensions are combinations of the original

D dimensions.

I The problem is to find a matrix W such that the following mapping results in the

minimum loss of information.

Z = W TX

I PCA is unsupervised and tries to maximize the variance.

I The principle component is w1 such that the sample after projection onto w1 is most

spread out so that the difference between the sample points becomes most apparent.

I For uniqueness of the solution, we require ‖w1‖ = 1,

I Let Σ = Cov(X) and consider the principle component w1, we have

z1 = wT
1 x

Var(z1) = E [(wT
1 x − wT

1 µ)2] = E [(wT
1 x − wT

1 µ)(wT
1 x − wT

1 µ)T]

= E [wT
1 (x − µ)(x − µ)Tw1] = wT

1 E [(x − µ)(x − µ)T]w1 = wT
1 Σw1

26/61

Principal component analysis (Best 1-dimensional approximation)

I The mapping problem becomes

w1 = argmax
w

wTΣw subject to wT
1 w1 = 1.

I Writing this as Lagrange problem, we have

maximize
w1

wT
1 Σw1 − α(wT

1 w1 − 1)

I Taking derivative with respect to w1 and setting it equal to 0, we obtain

2Σw1 = 2αw1 ⇒ Σw1 = αw1

I Hence w1 is eigenvector of Σ and α is the corresponding eigenvalue.

I Since we want to maximize Var(z1), we have

Var(z1) = wT
1 Σw1 = αwT

1 w1 = α

I Hence, we choose the eigenvector with the largest eigenvalue, i.e. λ1 = α.

27/61

Principal component analysis (Minimum squared error approach)

I Let εi = xi − x ′i denote the error vector. The MSE equals to

MSE (W) =
1

N

N∑
i=1

‖εi‖2

=
N∑
i=1

‖xi‖2
N
−W TΣW

= Var(S)−W TΣW .

I Since var(S), is a constant for a given dataset S , the vector W that minimizes MSE (W)

is thus the same one that maximizes the second term,

MSE (W) = Var(S)−W TΣW

= Var(S)− λ1

I Example: Let

Σ =

 0.681 −0.039 1.265

−0.039 0.187 −0.320

1.265 −0.320 3.092


The largest eigenvalue of Σ equals to λ = 3.662 and the corresponding eigenvector equals

to w1 = (−0.390, 0.089,−0.916)T

28/61

Principal component analysis (Minimum squared error approach)

I The variance of S equals var(S) = 0.681 + 0.187 + 3.092 = 3.96.

I MSE equals to

MSE (W1) = var(S)− λ1
= 3.96− 3.662 = 0.298

I Principle component7.2 Principal Component Analysis 191

X1

X2

X3

u1

Figure 7.2. Best one-dimensional or line approximation.

We can also directly obtain the total variance as the trace of the covariance matrix:

var(D) = tr(!) = σ 2
1 +σ 2

2 +σ 2
3 = 0.681 + 0.187 + 3.092= 3.96

Thus, using Eq. (7.16), the minimum value of the mean squared error is given as

MSE(u1) = var(D)−λ1 = 3.96− 3.662= 0.298

7.2.2 Best 2-dimensional Approximation

We are now interested in the best two-dimensional approximation to D. As before,
assume that D has already been centered, so that µ = 0. We already computed the
direction with the most variance, namely u1, which is the eigenvector corresponding to
the largest eigenvalue λ1 of !. We now want to find another direction v, which also
maximizes the projected variance, but is orthogonal to u1. According to Eq. (7.9) the
projected variance along v is given as

σ 2
v = vT!v

We further require that v be a unit vector orthogonal to u1, that is,

vTu1 = 0

vTv = 1

29/61

Principal component analysis (Best 2-dimensional approximation)

I The second principal component, w2, should also

I maximize variance
I be unit length
I orthogonal to w1 (z1 and z2 must be uncorrelated)

I The mapping problem for the second principal component becomes

w2 = argmax
w

wTΣw subject to wT
2 w2 = 1 and wT

2 w1 = 0.

I Writing this as Lagrange problem, we have

maximize
w2

wT
2 Σw2 − α(wT

2 w2 − 1)− β(wT
2 w1 − 0)

I Taking derivative with respect to w2 and setting it equal to 0, we obtain

2Σw2 − 2αw2 − βw1 = 0

I Pre-multiply by wT
1 , we obtain

2wT
1 Σw2 − 2αwT

1 w2 − βwT
1 w1 = 0

I Note that wT
1 w2 = 0 and wT

1 Σw2 = (wT
2 Σw1)T = wT

2 Σw1 is a scaler.

30/61

Principal component analysis (Best 2-dimensional approximation)

I Since Σw1 = λ1w1, therefore we have

wT
1 Σw2 = wT

2 Σw1 = λ1w
T
2 w1 = 0

I Then β = 0 and the problem reduces to

Σw2 = αw2

I This implies that w2 should be the eigenvector of Σ with the second largest eigenvalue

λ2 = α.

I Let the projected dataset be denoted by A.

I The total variance for A is given as

var(A) = λ1 + λ2

31/61

Principal component analysis (Minimum squared error approach)

I Let εi = xi − x ′i denote the error vector. The MSE equals to

MSE (W) = Var(S)− var(A).

I The MSE objective is minimized when total projected variance var(A) is maximized

MSE (W) = Var(S)− λ1 − λ2
I Example: Two first Principle components

7.2 Principal Component Analysis 195

X1

X2

X3

u1

u2

(a) Optimal basis

X1

X2

X3

(b) Nonoptimal basis

Figure 7.3. Best two-dimensional approximation.

7.2.3 Best r-dimensional Approximation

We are now interested in the best r-dimensional approximation to D, where 2 < r ≤ d .
Assume that we have already computed the first j − 1 principal components or
eigenvectors, u1,u2, . . . ,uj−1, corresponding to the j − 1 largest eigenvalues of !,
for 1≤ j ≤ r . To compute the j th new basis vector v, we have to ensure that it is
normalized to unit length, that is, vTv = 1, and is orthogonal to all previous components
ui , i.e., uT

i v = 0, for 1≤ i < j . As before, the projected variance along v is given as

σ 2
v = vT!v

Combined with the constraints on v, this leads to the following maximization problem
with Lagrange multipliers:

max
v

J(v) = vT!v−α(vTv− 1)−
j−1∑

i=1

βi(u
T
i v− 0)

Taking the derivative of J(v) with respect to v and setting it to the zero vector gives

2!v− 2αv−
j−1∑

i=1

βiui = 0 (7.24)

32/61

Principal component analysis (Best k-dimensional approximation)

I We are now interested in the best k-dimensional (k � D) approximation to S .

I Assume that we have already computed the first j − 1 principal components or

eigenvectors, w1,w2, . . . ,wj−1, corresponding to the j − 1 largest eigenvalues of Σ

I To compute the j th new basis vector wj , we have to ensure that it is normalized to unit

length, that is, wT
j wj = 1, and is orthogonal to all previous components wi (for i ∈ [1, j)).

I The projected variance along wj is given as wT
j Σwj

I Combined with the constraints on wj , this leads to the following maximization problem

with Lagrange multipliers:

maximize
wj

wT
j Σwj − α(wT

j wj − 1)−
j−1∑
i=1

βi (w
T
i wj − 0)

I Solving this, results in βi = 0 for all i < j .

I To maximize the variance along wj , we use the j th largest eigenvalue of Σ.

33/61

Principal component analysis (Best k-dimensional approximation)

I In summary, to find the best k-dimensional approximation to Σ, we compute the

eigenvalues of Σ.

I Because Σ is positive semidefinite, its eigenvalues must all be non-negative, and we can

thus sort them in decreasing order

λ1 ≥ λ2 ≥ . . . λj−1 ≥ λj ≥ . . . ≥ λD ≥ 0

I We then select the k largest eigenvalues, and their corresponding eigenvectors to form the

best k-dimensional approximation.

I Since Σ is symmetric, for two different eigenvalues, their corresponding eigenvectors are

orthogonal. (Show it)

I If Σ is positive definite (xTΣx > 0 for all non-null vector x), then all its eigenvalues are

positive.

I If Σ is singular, its rank is k (k < D) and λi = 0 for i = k + 1, . . . ,D.

34/61

Principal component analysis (effect of centering data)

I Define

Z = W T (X −m)

I Then k columns of W are the k leading eigenvectors of S (the estimator of Σ).

I m is the sample mean of X .

I Subtracting m from X before projection centers the data on the origin.

I How to normalize variances?

35/61

Principal component analysis (example)

25 randomly chosen 64× 64 pixel images Mean and the first three principal components
12 Chapter 1. Introduction

(a) (b)

Figure 1.10 a) 25 randomly chosen 64 × 64 pixel images from the Olivetti face database. (b) The mean
and the first three principal component basis vectors (eigenfaces). Figure generated by pcaImageDemo.

When used as input to other statistical models, such low dimensional representations often
result in better predictive accuracy, because they focus on the “essence” of the object, filtering
out inessential features. Also, low dimensional representations are useful for enabling fast
nearest neighbor searches and two dimensional projections are very useful for visualizing high
dimensional data.

The most common approach to dimensionality reduction is called principal components
analysis or PCA. This can be thought of as an unsupervised version of (multi-output) linear
regression, where we observe the high-dimensional response y, but not the low-dimensional
“cause” z. Thus the model has the form z → y; we have to “invert the arrow”, and infer the
latent low-dimensional z from the observed high-dimensional y. See Section 12.1 for details.

Dimensionality reduction, and PCA in particular, has been applied in many different areas.
Some examples include the following:

• In biology, it is common to use PCA to interpret gene microarray data, to account for the
fact that each measurement is usually the result of many genes which are correlated in their
behavior by the fact that they belong to different biological pathways.

• In natural language processing, it is common to use a variant of PCA called latent semantic
analysis for document retrieval (see Section 27.2.2).

• In signal processing (e.g., of acoustic or neural signals), it is common to use ICA (which is a
variant of PCA) to separate signals into their different sources (see Section 12.6).

• In computer graphics, it is common to project motion capture data to a low dimensional
space, and use it to create animations. See Section 15.5 for one way to tackle such problems.

36/61

Principal component analysis (selecting k)

I How to select k?

I Since all eigenvalues are positive and |S | =
∏D

i=1 λi is small, then some eigenvalues have

little contribution to the variance and may be discarded.

I Scree graph is the plot of variance as a function of the number of eigenvectors.

37/61

Principal component analysis (selecting k)

I How to select k?

I We select the leading k components that explain more than for example 95% of the

variance.

I The proportion of variance (POV) is

POV =

∑k
i=1 λi∑D
i=1 λi

I By visually analyzing it, we can choose k .

38/61

Principal component analysis (selecting k)

I How to select k?

I Another possibility is to ignore the eigenvectors whose corresponding eigenvalues are less

than the average input variance (why?).

I In the pre-processing phase, it is better to pre-process data such that each dimension has

mean 0 and unit variance(why and when?).

I Question: Can we use the correlation matrix instead of covariance matrix? Drive solution

for PCA.

39/61

Principal component analysis (conclusions)

I PCA is sensitive to outliers. A few points distant from the center have large effect on the

variances and thus eigenvectors.

I Question: How can use the robust estimation methods for calculating parameters in the

presence of outliers?

I A simple method is discarding the isolated data points that are far away.

I Question: When D is large, calculating, sorting, and processing of S may be tedious. Is it

possible to calculate eigenvectors and eigenvalues directly from data without explicitly

calculating the covariance matrix?

40/61

Feature extraction methods

Kernel principal component analysis

Kernel principal component analysis

I PCA can be extended to find nonlinear directions in the data using kernel methods.

I Kernel PCA finds the directions of most variance in the feature space instead of the input

space.

I Linear principal components in the feature space correspond to nonlinear directions in the

input space.

I Using kernel trick, all operations can be carried out in terms of the kernel function in input

space without having to transform the data into feature space.

I Let φ correspond to a mapping from the input space to the feature space.

I Each point in feature space is given as the image of φ(x) of the point x in the input space.

I In feature space, we can find the first kernel principal component W1 (W T
1 W1 = 1) by

solving

ΣφW1 = λ1W1

I Covariance matrix Σφ in feature space is equal to

Σφ =
1

N

N∑
i=1

φ(xi)φ(xi)
T

I We assume that the points are centered.

41/61

Kernel principal component analysis (cont.)

I Plugging Σφ into ΣφW1 = λ1W1, we obtain

(
1

N

N∑
i=1

φ(xi)φ(xi)
T

)
W1 = λ1W1

1

N

N∑
i=1

φ(xi)
(
φ(xi)

TW1

)
= λ1W1

N∑
i=1

(
φ(xi)

TW1

Nλ1

)
φ(xi) = W1

N∑
i=1

ciφ(xi) = W1

I ci = φ(xi)
TW1

Nλ1
is a scalar value

42/61

Kernel principal component analysis (cont.)

I Now substitute
∑N

i=1 ciφ(xi) = W1 in ΣφW1 = λ1W1, we obtain

(
1

N

N∑
i=1

φ(xi)φ(xi)
T

)(
N∑
i=1

ciφ(xi)

)
= λ1

N∑
i=1

ciφ(xi)

1

N

N∑
i=1

N∑
j=1

cjφ(xi)φ(xi)
Tφ(xj) = λ1

N∑
i=1

ciφ(xi)

N∑
i=1

φ(xi)
N∑
j=1

cjφ(xi)
Tφ(xj)

 = Nλ1

N∑
i=1

ciφ(xi)

I Replacing φ(xi)
Tφ(xj) by K (xi , xj)

N∑
i=1

φ(xi)
N∑
j=1

cjK (xi , xj)

 = Nλ1

N∑
i=1

ciφ(xi)

43/61

Kernel principal component analysis (cont.)

I Multiplying with φ(xk)T , we obtain

N∑
i=1

φ(xk)Tφ(xi)
N∑
j=1

cjK (xi , xj)

 = Nλ1

N∑
i=1

ciφ(xk)Tφ(xi)

N∑
i=1

K (xk , xi)
N∑
j=1

cjK (xi , xj)

 = Nλ1

N∑
i=1

ciK (xk , xj)

I By some algebraic simplificatin, we obtain (do it)

K 2C = Nλ1KC

I Multiplying by K−1, we obtain

KC = Nλ1C

KC = η1C

I Weight vector C is the eigenvector corresponding to the largest eigenvalue η1 of the kernel

matrix K .
44/61

Kernel principal component analysis (cont.)

I Replacing
∑N

i=1 ciφ(xi) = W1 in constraint W T
1 W1 = 1, we obtain

N∑
i=1

N∑
j=1

cjcjφ(xi)
Tφ(xj) = 1

CTKC = 1

I Using KC = η1C , we obtain

CT (η1C) = 1

η1C
TC = 1

||C ||2 =
1

η1

I Since C is an eigenvector of K , it will have unit norm.

I To ensure that W1 is a unit vector, multiply C by
√

1
η1

45/61

Kernel principal component analysis (cont.)

I In general, we do not map input space to the feature space via φ, hence we cannot

compute W1 using

N∑
i=1

ciφ(xi) = W1

I We can project any point φ(x) on to principal direction W1

W T
1 φ(x) =

N∑
i=1

ciφ(xi)
Tφ(x) =

N∑
i=1

ciK (xi , x)

I When x = xi is one of the input points, we have

ai = W T
1 φ(xi) = KT

i C

where Ki is the column vector corresponding to the I th row of K and ai is the vector in

the reduced dimension.

I If we sort the eigenvalues of K in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, we can obtain

the j th principal component.

I This shows that all computation are carried out using only kernel operations.

46/61

Feature extraction methods

Factor analysis

Factor analysis

I In PCA, from the original dimensions xi (for i = 1, . . . ,D), we form a new set of variables

zi that are linear combinations of xi

Z = W T (X − µ)

I In factor analysis (FA), we assume that there is a set of unobservable, latent factors zj (for

j = 1, . . . , k), which when acting in combination generate x .

I Thus the direction is opposite that of PCA.

I The goal is to characterize the dependency among the observed variables by means of a

smaller number of factors.

I Suppose there is a group of variables that have high correlation among themselves and low

correlation with all the other variables. Then there may be a single underlying factor that

gave rise to these variables.

I FA, like PCA, is a one-group procedure and is unsupervised. The aim is to model the data

in a smaller dimensional space without loss of information.

I In FA, this is measured as the correlation between variables.

47/61

Factor analysis (cont.)

There are two uses of factor analysis:

I It can be used for knowledge extraction when we find the loadings and try to express the

variables using fewer factors.

I It can also be used for dimensionality reduction when k < D.

48/61

Factor analysis (cont.)

1. Sample x drawn from some unknown probability density p(x) with E [x] = µ and

Cov(x) = Σ.

2. We assume that µ = 0 and we can always add µ after projection.

3. In FA, each input dimension, xi can be written as a weighted sum of k < D factors, zj
plus the residual term.

xi = vi1z1 + vi2z2 + . . .+ vikzk + εi

4. This can be written in vector-matrix form as

X = VZ + εi

V is the D × k matrix of weights, called factor loadings.

5. Factors are unit normals (E [zj] = 0, Var(zj) = 1) and uncorrelated (Cov(zi , zj) = 0,

i 6= j).

6. To explain what is not explained by factors, there is an added source (εi) for each input.

7. It is assumed that

I Noise are zero-mean (E [εi] = 0) with unknown variance Var(εi) = ψi .
I Noise are uncorrelated among themselves (Cov(εi , εi) = 0, i 6= j).
I Thus, Σε = E

[
εεT
]

= diag [ψ1, ψ2, . . . , ψD].
I Noise are also uncorrelated with the factors, (Cov(εi , zj) = 0, ∀i , j).

49/61

Factor analysis (cont.)

1. We have

Σx = E
[
XXT

]
= V E

[
ZZT

]
V T + Σε

2. Since factors are uncorrelated unit normals, hence E
[
ZZT

]
= I

Σx = VV T + Σε

3. If we have V , then

Z = WX

4. Post multiplying by XT and taking expectations and using E
[
ZZT

]
= I , we get

E
[
ZXT

]
= E

[
Z
[
(VZ)T + εT

]]
= E

[
ZZTV T

]
+ E

[
ZεT

]
= V T

5. Also

E
[
ZXT

]
= W E

[
XXT

]
= WΣx

6. Hence, V T = WΣx

W = V TΣ−1x

7. By combining the above equations, we obtain

z = V TΣ−1x x

50/61

Feature extraction methods

Multidimensional Scaling

Multidimensional Scaling

I MDS is an approach mapping the original high dimensional space to a lower dimensional

space preserving pairwise distances.
I Goal of Multidimensional scaling (MDS): Given pairwise dissimilarities, reconstruct a map

that preserves distances.

Example of MDS…

14

51/61

Multidimensional Scaling (cont.)

I MDS is an approach mapping the original high dimensional space to a lower dimensional

space preserving pairwise distances.

I MDS addresses the problem of constructing a configuration of N points in Euclidean space

by using information about the distances between the N patterns.

I Given a collection of not necessarily Euclidean distances dij between pairs of points

{x1, . . . , xN}.
I Let D be an N × N distance matrix for the input space.

I Given a matrix D, MDS attempts to find N points z1, . . . , zN in k dimensions, such that if

d̂ij denotes the Euclidean distance between zi and zj , then D̂ is similar to D.

I MDS minimizes

min
z

N∑
i=1

N∑
j=1

(
dij − d̂ij

)2

52/61

Multidimensional Scaling (cont.)

I Now, the objective function of MDS can be reduced to

min
z

N∑
i=1

N∑
j=1

(
xTi xj − zTi zj

)2
I MDS algorithm

1. Build a Gram matrix of inner products G = XXT

2. Find the top k eigenvectors of G : ψ1, . . . , ψk with the top k eigenvalues λ1 . . . , λk .

Let Λ = diag(λ1 . . . , λk).

3. Calculate

Z = Λ
1
2 diag(λ1 . . . , λk)T

I When Euclidean distance is used, MDS and PCA produce the same results.

I But, the distances need not be based on Euclidean distances and can represent many

types of dissimilarities between objects.

53/61

Feature extraction methods

Locally Linear Embedding

Locally Linear Embedding

I Locally linear embedding (LLE) recovers global nonlinear structure from locally linear fits.

I The idea is that each point can be approximated as a weighted sum of its neighbors.

I The neighbors either defined using a given number of neighbors (n) or distance threshold

(ε).

I Let x r be an example in the input space and its neighbors be x s(r). We find weights in such

a way that minimize the following objective function.

E [W |x] =
N∑

r=1

∥∥∥∥∥x r −∑
s

wrsx
s
(r)

∥∥∥∥∥
2

I The idea in LLE is that the reconstruction weights wrs reflect the intrinsic geometric

properties of the data is also valid for the new space.

I The first step of LLE is to find wrs in such a way that minimize the above objective

function subject to
∑

s wrs = 1.

54/61

Locally Linear Embedding (cont.)

I The second step of LLE is to keep wrs fixed and construct the new coordinates Y in such

a way that minimize the following objective function.

E [Y |W] =
N∑
r=1

∥∥∥∥∥y r −
∑
s

wrsy
s
(r)

∥∥∥∥∥
2

in such a way that Cov(Y) = I and E [Y] = 0.

function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.

R E P O R T S

22 DECEMBER 2000 VOL 290 SCIENCE www.sciencemag.org2324

S. T. Roweis and L. K. Saul, Nonlinear

Dimensionality Reduction by Locally

Linear Embedding, Science, Vol. 290, No.

22, pp. 2323-2326, Dec. 2000.

55/61

Feature extraction methods

Isomap

Isomap

I Isomap is a technique similar to LLE for providing a low dimensional representation of a

high dimensional data set.

I Isomap differs in how it assesses similarity between objects and in how the low dimensional

mapping is constructed.

I Isomap is a nonlinear generalization of classical MDS.

I The main idea is to perform MDS, not in the input space, but in the geodesic space of the

nonlinear data manifold.

I The geodesic distances represent the shortest paths along the curved surface of the

manifold measured as if the surface were flat.

I The geodesic distances can be computed with e.g. the Floyd Warshall algorithm.

I Isomap then applies MDS to the geodesic distances.

56/61

Isomap algorithm

I We start with data points in high dimensional space, lying near some manifold

I For each data point i we find the points j on manifold within some Euclidean distance

d(i , j) ≤ ε.
I We construct a graph on the manifold with an edge between i and j if d(i , j) ≤ ε.
I We find the shortest path dG (i , j) between points i and j on the graph.

I Finally, we apply classical MDS to the distances dG (i , j).

57/61

Isomap (geodesic distance)

Learning Manifolds
• Consider data that lives on a low-dimensional ‘manifold’.
• Example is the ‘Swiss roll’:

http://www.biomedcentral.com/content/pdf/1471-2105-13-S7-S3.pdf

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2321

Reference:

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford, A Global Geometric Framework for

Nonlinear Dimensionality Reduction, Science, Vol. 290, No. 22, pp. 2319-2323, Dec. 2000
58/61

Feature extraction methods

Linear discriminant analysis

Linear discriminant analysis

I Linear discriminant analysis (LDA) is a supervised method for dimensionality reduction for

classification problems.

I This method has been discussed in classification.

59/61

Reading

Readings

1. Section 12.1 of Pattern Recognition and Machine Learning Book (bishop2006).

2. Chapter 12 & 14.4 of Machine Learning: A probabilistic perspective (mur2012).

3. Chapter 20 of Probabilistic Machine Learning: An introduction (mur2022).

60/61

References i

Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill.

61/61

Questions?

cba

61/61

	Introduction
	High-dimensional space
	Dimensionality reduction methods
	Feature selection methods
	Feature extraction
	Feature extraction methods
	Principal component analysis
	Kernel principal component analysis
	Factor analysis
	Multidimensional Scaling
	Locally Linear Embedding
	Isomap
	Linear discriminant analysis

	Reading

