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Introduction



Introduction

1. In our daily life

1.1 Asking different doctors’ opinions before undergoing a major surgery

1.2 Reading user reviews before purchasing a product.

1.3 There are countless number of examples where we consider the decision of mixture of

experts.

2. Ensemble systems follow exactly the same approach to data analysis.

Problem (Ensemble learning)

I Given training data set S = {(x1, t1), (x2, t2), . . . , (xN , tN)} drawn from common instance space

X , and

I A collection of inductive learning algorithms,

I Return a new classification algorithm for x ∈ X that combines outputs from collection of

classification algorithms

3. Desired Property

Guarantees of performance of combined prediction.
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Why we combine classifiers?

Reasons for using ensemble based systems

1. Statistical reasons

1.1 A set of classifiers with similar training data may have different generalization performance.

1.2 Classifiers with similar performance may perform differently in field (depends on test data).

1.3 In this case, averaging (combining) may reduce the overall risk of decision.

1.4 In this case, averaging (combining) may or may not beat the performance of the best

classifier.

2. Large volumes of data

2.1 Usually training of a classifier with a large volumes of data is not practical.

2.2 A more efficient approach is to

Partition the data into smaller subsets

Training different Classifiers with different partitions of data

Combining their outputs using an intelligent combination rule

3. To little data

3.1 We can use resampling techniques to produce non-overlapping random training data.

3.2 Each of training set can be used to train a classifier.
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Why we combine classifiers? (cont.)

Reasons for using ensemble based systems

1. Data fusion

1.1 Multiple sources of data (sensors, domain experts, etc.)

1.2 Need to combine systematically, for example a neurologist may order several tests

MRI scan, EEG recording, Blood test

1.3 A single classifier cannot be used to classify data from different sources (heterogeneous

features).

2. Divide and conquer

2.1 Regardless of the amount of data, certain problems are difficult for solving by a classifier.

2.2 Complex decision boundaries can be implemented using ensemble Learning.

an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary. 

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers
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Training Data Examples
for Class 1

Observation/Measurement/Feature 1

Training Data 
Examples
for Class 2

Complex Decision
Boundary to Be Learned

OO

Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers. 
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Figure 2. Ensemble of classifiers spanning the decision
space. 

an intelligent combination rule often proves to be a
more efficient approach.

Too Little Data: Ensemble systems can also be used
to address the exact opposite problem of having too lit-
tle data. Availability of an adequate and representative
set of training data is of paramount importance for a
classification algorithm to successfully learn the under-
lying data distribution. In the absence of adequate train-
ing data, resampling techniques can be used for drawing
overlapping random subsets of the available data, each
of which can be used to train a different classifier, creat-
ing the ensemble. Such approaches have also proven to
be very effective.

Divide and Conquer: Regardless of the amount of
available data, certain problems are just too difficult for
a given classifier to solve. More specifically, the decision
boundary that separates data from different classes may
be too complex, or lie outside the space of functions

that can be implemented by the chosen classifier model.
Consider the two dimensional, two-class problem with a
complex decision boundary depicted in Figure 1. A lin-
ear classifier, one that is capable of learning linear
boundaries, cannot learn this complex non-linear
boundary. However, appropriate combination of an
ensemble of such linear classifiers can learn this (or any
other, for that matter) non-linear boundary. 

As an example, let us assume that we have access to
a classifier model that can generate elliptic/circular
shaped boundaries. Such a classifier cannot learn the
boundary shown in Figure 1. Now consider a collection
of circular decision boundaries generated by an ensem-
ble of such classifiers as shown in Figure 2, where each
classifier labels the data as class1 (O) or class 2 (X),
based on whether the instances fall within or outside of
its boundary. A decision based on the majority voting of
a sufficient number of such classifiers can easily learn
this complex non-circular boundary. In a sense, the clas-
sification system follows a divide-and-conquer approach
by dividing the data space into smaller and easier-to-
learn partitions, where each classifier learns only one of
the simpler partitions. The underlying complex decision
boundary can then be approximated by an appropriate
combination of different classifiers.

Data Fusion: If we have several sets of data obtained
from various sources, where the nature of features are
different (heterogeneous features), a single classifier
cannot be used to learn the information contained in all
of the data. In diagnosing a neurological disorder, for
example, the neurologist may order several tests, such
as an MRI scan, EEG recording, blood tests, etc. Each
test generates data with a different number and type of
features, which cannot be used collectively to train a
single classifier. In such cases, data from each testing
modality can be used to train a different classifier,
whose outputs can then be combined. Applications in
which data from different sources are combined to make
a more informed decision are referred to as data fusion
applications, and ensemble based approaches have suc-
cessfully been used for such applications.

There are many other scenarios in which ensemble
base systems can be very beneficial; however, discussion
on these more specialized scenarios require a deeper
understanding of how, why and when ensemble systems
work. The rest of this paper is therefore organized as fol-
lows. In Section 2, we discuss some of the seminal work
that has paved the way for today’s active research area in
ensemble systems, followed by a discussion on diversity,
a keystone and a fundamental strategy shared by all
ensemble systems. We close Section 2 by pointing out
that all ensemble systems must have two key compo-
nents: an algorithm to generate the individual classifiers
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Training Data Examples
for Class 1

Observation/Measurement/Feature 1
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Examples
for Class 2

Complex Decision
Boundary to Be Learned

OO

Figure 1. Complex decision boundary that cannot be learned
by linear or circular classifiers. 
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Figure 2. Ensemble of classifiers spanning the decision
space. 
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Diversity

1. Strategy of ensemble systems

Creation of many classifiers and combine their outputs in a such a way that combination

improves upon the performance of a single classifier.

2. Requirement

The individual classifiers must make different errors on different inputs.

3. If errors are different then strategic combination of classifiers can reduce total error.

4. Solution

We need classifiers whose decision boundaries are adequately different from others.

Such a set of classifiers is said to be diverse.

5. Classifier diversity can be obtained

I Using different training datasets for training different classifiers.
I Using unstable classifiers.
I Using different training parameters(such as different topologies for NN).
I Using different feature sets (such as random subspace method).

6. Reference

G. Brown, J. Wyatt, R. Harris, and X. Yao, ’’Diversity creation methods : a survey and

categorization”, Information fusion, Vo. 6, pp. 5-20, 2005.

5/21



Classifier diversity using different training sets

filtering of the noise. The overarching principal in ensem-
ble systems is therefore to make each classifier as unique
as possible, particularly with respect to misclassified
instances. Specifically, we need classifiers whose decision
boundaries are adequately different from those of others.
Such a set of classifiers is said to be diverse.

Classifier diversity can be achieved in several ways.
The most popular method is to use different training
datasets to train individual classifiers. Such datasets are
often obtained through resampling techniques, such as
bootstrapping or bagging, where training data subsets
are drawn randomly, usually with replacement, from the
entire training data. This is illustrated in Figure 3, where
random and overlapping training data subsets are select-
ed to train three classifiers, which then form three differ-
ent decision boundaries. These boundaries are combined
to obtain a more accurate classification.

To ensure that individual boundaries are adequately
different, despite using substantially similar training

data, unstable classifiers are used as base models, since
they can generate sufficiently different decision bound-
aries even for small perturbations in their training
parameters. If the training data subsets are drawn with-
out replacement, the procedure is also called jackknife
or k-fold data split: the entire dataset is split into k
blocks, and each classifier is trained only on k-1 of them.
A different subset of k blocks is selected for each classi-
fier as shown in Figure 4.

Another approach to achieve diversity is to use dif-
ferent training parameters for different classifiers. For
example, a series of multilayer perceptron (MLP) neural
networks can be trained by using different weight initial-
izations, number of layers/nodes, error goals, etc. Adjust-
ing such parameters allows one to control the instability
of the individual classifiers, and hence contribute to
their diversity. The ability to control the instability of
neural network and decision tree type classifiers make
them suitable candidates to be used in an ensemble

25THIRD QUARTER 2006 IEEE CIRCUITS AND SYSTEMS MAGAZINE 
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Figure 3. Combining classifiers that are trained on different subsets of the training data.
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Diversity measures

1. Pairwise measures (assuming that we have T classifiers)

We can calculate T (T−1)
2 pair-wise diversity measures.

hj is correct hj is incorrect

hi is correct a b

hi is incorrect c d

For a team of T classifiers, the diversity measures (dij) are averaged over all pairs

Dij =
2

T (T − 1)

T−1∑

i=1

T∑

j=1

dij

2. Pairwise diversity measures

2.1 Correlation diversity is measured as the correlation between two classifier outputs.

ρij =
ad − bc√

a + b)(c + d)(a + c)(b + d

When classifiers are uncorrelated, maximum diversity is obtained and ρ = 0.

2.2 Q-Statistic defined as

Qij = (ad − bc)/(ad + bc)

Q is positive when the same instances are correctly classified by both classifiers; and is

negative, otherwise.

Maximum diversity is, once again, obtained for Q = 0.
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Diversity measures

1. Pairwise measures (assuming that we have T classifiers)

We can calculate T (T−1)
2 pair-wise diversity measures, and average them.

hj is correct hj is incorrect

hi is correct a b

hi is incorrect c d

2. Pairwise diversity measures

2.1 Disagreement measure is the probability that the two classifiers will disagree,

Dij = b + c

The diversity increases with the disagreement value.

2.2 Double fault measure is the probability that both classifiers are incorrect,

DFij = d .

The diversity increases with the double fault value.
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Diversity measures

1. Non-pairwise measures (assuming that we have T classifiers)

1.1 Entropy measure makes the assumption that the diversity is highest if half of the classifiers

are correct, and the remaining ones are incorrect.

E =
1

N

N∑
i=1

1

T −
⌈
T
2

⌉ min{ξi , (T − ξi )}

where ξi is the number of classifiers that misclassify instance xi .

Entropy varies between 0 and 1, where 1 indicates highest diversity.

1.2 Kohavi–Wolpert variance

KW =
1

NT 2

N∑
i=1

ξi (T − ξi )

Kohavi–Wolpert variance follows a similar approach to the disagreement measure.

1.3 Measure of difficulty is

θ =
1

T

T∑
t=0

(zt − z̄)

where z =
[
0, 1

T
, 2
T
, . . . , 1

]
and z̄ s mean of z .

z is the fraction of classifiers that misclassify xi .

How Measure of difficulty shows the diversity?
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Diversity measures

I Comparison of different diversity measures

Machine Learning

8

Diversity Measures (2)

! Non-Pairwise measures (assuming that we have T classifiers)

" Entropy Measure : 

# Makes the assumption that the diversity is highest if half of the classifiers are correct and the 
remaining ones are incorrect.

" Kohavi-Wolpert Variance 

" Measure of difficulty

! Comparison of different diversity measures

I Reference

L. I. Kuncheva and C. J. Whitaker, Measures of diversity in classifier ensembles and their

relationship with the ensemble accuracy, Machine Learning, Vol. 51, pp. 181-207, 2003.

10/21



Design of ensemble systems



Design of ensemble systems

I Two key components of an ensemble system

1. Creating an ensemble by creating weak learners.

1.1 Bagging

1.2 Boosting

1.3 Stacked generalization

1.4 Mixture of experts

2. Combination of classifiers’ outputs (trainable vs. fixed rule).

2.1 Majority Voting

2.2 Weighted Majority Voting

2.3 Averaging

2.4 Error correcting codes

I What is weak learners?

Definition (Weak learner)

A weak learner does not guarantee to do better than random guessing.
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Design of ensemble systems

In ensemble learning, a rule is needed to combine outputs of classifiers.

1. Classifier selection

1.1 Each classifier is trained to become an expert in some local area of feature space.

1.2 Combination of classifiers is based on the given feature vector.

1.3 Classifier that was trained with the data closest to the vicinity of the feature vector is given

the highest credit.

1.4 One or more local classifiers can be nominated to make the decision.

2. Classifier fusion

2.1 Each classifier is trained over the entire feature space.

2.2 Classifier Combination involves merging the individual weak classifier design to obtain a

single Strong classifier.
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Bagging

I Bootstrap Aggregating (Bagging)

1. Create T bootstrap samples S [1], S [2], . . . , S [T ].

2. Train distinct inducer on each S [t] to produce T classifiers.

3. Classify new instance by classifier vote (majority vote).

I Application of bootstrap sampling

1. Given set S containing N training examples

2. Create S [t] by drawing N examples at random with replacement from S

3. S [t] of size N: expected to leave out 75%− 100% of examples from S . (show it)

I Variations

1. Random forests

Can be created from decision trees, whose certain parameters vary randomly.

I Pasting small votes (for large datasets)

1. RVotes : Creates the data sets randomly

2. IVotes : Creates the data sets based on the importance of instances, easy to hard
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Bagging

Consider the set of k regression models

1. Each model i makes error εi on each example

2. Errors drawn from a zero-mean multivariate normal with variance E[ε2i ] = v and

covariance E[εiεj ] = c

3. Error of average prediction of all ensemble models: 1
k

∑
i εi

4. Expected squared error of ensemble prediction is

E

[
1

k

∑

i

εi

]2

=
1

k
v +

k − 1

k
c

5. If errors are perfectly correlated, c = v , and mean squared error reduces to v , so model

averaging does not help.

6. If errors are perfectly uncorrelated and c = 0, expected squared error of ensemble is only v
k

and Ensemble error decreases linearly with ensemble size
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Boosting

I Schapire proved that a weak learner can be turned into a strong learner that generates a

classifier that can correctly classify all but an arbitrarily small fraction of the instances.

I In boosting, the training data are ordered from easy to hard. Easy samples are classified

first, and hard samples are classified later.

I Boosting algorithm

1. Create the first classifier same as Bagging

2. The second classifier is trained on training data only half of which is correctly classified by

the first one and the other half is misclassified.

3. The third one is trained with data that two first disagree.

I Variations

1. AdaBoost.M1

2. AdaBoost.R

I Reference

Robert E. Schapire, The strength of weak learnability, Machine Learning, Vol. 5, pp.

197-227 (1990).
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AdaBoost
122 Boosting

AdaBoost(S = ((x1 , y1 ), . . . , (xm, ym)))

1 for i ← 1 to m do

2 D1 (i) ← 1
m

3 for t ← 1 to T do

4 ht ← base classifier in H with small error ϵt = Pri∼Dt
[ht(xi) ̸= yi]

5 αt ← 1
2 log 1−ϵt

ϵt

6 Zt ← 2[ϵt(1 − ϵt)]
1
2 ◃ normalization factor

7 for i ← 1 to m do

8 Dt+1 (i) ← Dt(i) exp(−αtyiht(xi))
Zt

9 g ← ∑T
t=1 αtht

10 return h = sgn(g)

Figure 6.1 AdaBoost algorithm for H ⊆ {−1, +1}X .

The key idea behind boosting techniques is to use a weak learning algorithm

to build a strong learner , that is, an accurate PAC-learning algorithm. To do so,

boosting techniques use an ensemble method: they combine different base classifiers

returned by a weak learner to create a more accurate predictor. But which base

classifiers should be used and how should they be combined? The next section

addresses these questions by describing in detail one of the most prevalent and

successful boosting algorithms, AdaBoost.

6.2 AdaBoost

We denote by H the hypothesis set out of which the base classifiers are selected.

Figure 6.1 gives the pseudocode of AdaBoost in the case where the base classifiers

are functions mapping from X to {− 1, +1}, thus H ⊆ {− 1, +1}X .

The algorithm takes as input a labeled sample S = ((x1 , y1 ), . . . , (xm, ym)), with

(xi, yi) ∈ X × {− 1, +1} for all i ∈ [1,m], and maintains a distribution over the

indices {1, . . . ,m}. Initially (lines 1-2), the distribution is uniform (D1 ). At each

round of boosting , that is each iteration t ∈ [1, T ] of the loop 3–8, a new base classifier

ht ∈ H is selected that minimizes the error on the training sample weighted by the

Freund, Yoav; Schapire, Robert E.A decision-theoretic generalization of on-line learning and an

application to boosting, Journal of Computer and System Sciences, Vol. 55, pp. 119–139

(1997).
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AdaBoost (example)

6.2 AdaBoost 123

t = 1 t = 2 t = 3

decision 
boundary

updated
weights

(a)

=α1 + α3+ α2

(b)

Figure 6.2 Example of AdaBoost with axis-aligned hyperplanes as base learners.

(a) The top row shows decision boundaries at each boosting round. The bottom row

shows how weights are updated at each round, with incorrectly (resp., correctly)

points given increased (resp., decreased) weights. (b) Visualization of final classifier,

constructed as a linear combination of base learners.

distribution Dt:

ht ∈ argmin
h∈H

Pr
i∼Dt

[ht(xi) ̸= yi] = argmin
h∈H

m∑

i=1

Dt(i)1h(xi) ̸=yi
.

Zt is simply a normalization factor to ensure that the weights Dt+1 (i) sum to one.

The precise reason for the definition of the coefficient αt will become clear later. For

now, observe that if ϵt, the error of the base classifier, is less than 1/2, then 1−ϵt

ϵt
> 1

and αt > 0. Thus, the new distribution Dt+1 is defined from Dt by substantially

increasing the weight on i if point xi is incorrectly classified (yiht(xi) < 0), and, on

the contrary, decreasing it if xi is correctly classified. This has the effect of focusing

more on the points incorrectly classified at the next round of boosting, less on those

correctly classified by ht.
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Stacked Generalization
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Mixture Models

1. Train multiple learners

1.1 Each uses subsample of S

1.2 May be ANN, decision tree, etc.

2. Gating Network usually is NN

Machine Learning

20

Mixture Models

! Intuitive Idea

" Train multiple learners

# Each uses subsample of D

# May be ANN, decision tree, etc.

" Gating Network usually is NN Gating
Network

x

g1

g2

Expert
Network

y1

Expert
Network

y2

ΣΣΣΣ
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Mixture Models

Cascade learners in order of complexity
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Readings

1. Sections 14.1, 14.2 & 14.3 of Pattern Recognition and Machine Learning Book (Bishop

2006).

2. Robi Polikar, Ensemble based system in decision making, IEEE Circuits and Systems

Magazine, Vol. 6, No. 3, pp. 21 - 45 (2006).

3. T. G. Dietterich, Machine Learning Research: four current directions, AI Magazine. 18(4),

97-136 (1997).

4. T. G. Dietterich, Ensemble Methods in Machine Learning, Lecture Notes in Computer

Science, Vol. 1857, pp 1-15 (2000).

5. Ron Meir, Gunnar Ratsch, An introduction to Boosting and Leveraging, Lecture Notes in

Computer Science, Vol. 2600, pp 118-183 (2003).

6. David Opitz, Richard Maclin, Popular Ensemble Methods: An Empirical Study, journal of

artificial intelligence research, pp. 169-198 (1999).

7. L.I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms, Second edition.

New York, NY: Wiley Interscience, 2014.
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