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Introduction



Stages for classifying a pattern

In order to classify a pattern, the following stages must be used.

2/23



Supervised learning



Supervised learning

I In supervised learning, the goal is to find a mapping from inputs X to outputs t given a

labeled set of input-output pairs

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.

S is called training set.

I In the simplest setting, each training input x is a D−dimensional vector of numbers.

I Each component of x is called feature, attribute, or variable and x is called feature vector.

I In general, x could be a complex structure of object, such as an image, a sentence, an

email message, a time series, a molecular shape, a graph.

I When ti ∈ {1, 2, . . . ,C}, the problem is known as classification.

I In some situation, multiple classes are associated to each input x , and the problem is

called multi-label classification.

I When ti ∈ R, the problem is known as regression.
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Classification



Classification

I In classification, the goal is to find a mapping from inputs X to outputs t, where

t ∈ {1, 2, . . . ,C} with C being the number of classes.

I When C = 2, the problem is called binary classification. In this case, we often assume that

t ∈ {−1,+1} or t ∈ {0, 1}.
I When C > 2, the problem is called multi-class classification.

Family car

We want to learn the class of a family car. We have a set of examples of cars, and we have a

group of people that we survey to whom we show these cars. The people look at the cars and

label them; the cars that they believe are family cars are positive examples, and the other

cars are negative examples.
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Family car

I After discussion with experts, each car represented by two features: price (x1) and engine

power (x2). Thus each car is represented by the following 2-dimensional feature vector.

x =

[
x1
x2

]

I Each car (feature vector) is labeled as

h(x) =

{
1 if the car is a family car (positive example)

0 if the car is not a family car (negative example)

I Each car in the training set is represented by an ordered pair (x , t) and the training set

containing

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.

I Each label is generated from a concept c ∈ C, where C is called a concept class.
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Family car (Cont.)

I The training data now can be plotted in the 2-D space (x1, x2), where car i is a data point

and its label is given by ti .
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Classification (Cont.)

I The learning algorithm should find a particular hypotheses h ∈ H to approximate C as

closely as possible.

I The expert defines the hypothesis class H, but he can not say the values for e1, e2, p1, p2.

I We choose H and the aim is to find h ∈ H that is similar to C. This reduces the problem

of learning the class to the easier problem of finding the parameters that define h.

I Hypothesis h makes a prediction for an instance x in the following way.

h(x) =

{
1 if h classifies x as an instance of a positive example

0 if h classifies x as an instance of a negative example
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Family car (Cont.)

I After further discussion with experts and the analysis of the data, we believe that for a

family car, its price and engine power should be in a certain range.

(p1 ≤ x1 ≤ p2)&(e1 ≤ x2 ≤ e2)

I The above equation assumes H to be a rectangle in 2-D space.

I For suitable values e1, e2, p1, p2, the above equation fixes h ∈ H from the set of axis

aligned rectangles.

8/23



Classification (Cont.)

I In real life, we don’t know c(x) and hence cannot evaluate how well h(x) matches c(x).

I We use a small subset of all possible values x as the training set as a representation of

that concept.

I Empirical error (risk)/training error is the proportion of training instances such that

h(x) 6= c(x).

EE (h|S) =
1

N

N∑
i=1

I [h(xi ) 6= c(xi )]

I When EE (h|S) = 0, h is called a consistent hypothesis with dataset S .

I For family car, we can find infinitely many h such that EE (h|S) = 0. But which of them is

better than for prediction of future examples?

I This is the problem of generalization, that is, how well our hypothesis will correctly classify

the future examples that are not part of the training set.
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Classification (Generalization)

I The generalization capability of a hypothesis usually measured by the true error/risk.

ET (h|S) = Prob
x∼D

[h(x) 6= c(x)] (1)
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Classification (Cont.)

Most specific hypothesis (hs)

The tightest/smallest rectangle that includes all positive examples and none of the negative

examples.

Most general hypothesis (hg)

The largest rectangle that includes all positive examples and none of the negative examples.

Version space

Version space is the set of all h ∈ H between hs and hg .
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Classification (Cont.)

I We assume that H includes C, that is there exists h ∈ H such that EE (h|S) = 0.

I Given a hypothesis class H, it may be the cause that we cannot learn C ; that is there is no

h ∈ H for which EE (h|S) = 0.

I Thus in any application, we need to make sure that H is flexible enough , or has enough

capacity to learn C.
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Multiple class classification

How extend two-class classification to multiple class classification?
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Regression



Regression

I In regression, c(x) is a continuous function. Hence the training set is in the form of

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}, tk ∈ R.

I If there is no noise, the task is interpolation and our goal is to find a function f (x) that

passes through these points such that we have

tk = f (xk) ∀k = 1, 2, . . . ,N

I In polynomial interpolation, given N points, we find (N − 1)st degree polynomial to

predict the output for any x .

I If x is outside of the range of the training set, the task is called extrapolation.

I In regression, there is noise added to the output of the unknown function.

tk = f (xk) + ε ∀k = 1, 2, . . . ,N

f (xk) ∈ R is the unknown function and ε is the random noise.
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Regression(cont.)

I In regression, there is noise added to the output of the unknown function.

tk = f (xk) + ε ∀k = 1, 2, . . . ,N

I The explanation for the noise is that there are extra hidden variables that we cannot

observe.

tk = f ∗(xk , zk) + ε ∀k = 1, 2, . . . ,N

zk denotes hidden variables
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Regression(cont.)

I Our goal is to approximate the output by function g(x).

I The empirical error on the training set S is

EE (g |S) =
1

N

N∑
k=1

[tk − g(xk)]2

I The aim is to find g(.) that minimizes the empirical error.

I We assume that a hypothesis class for g(.) with a small set of parameters.
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Model selection



Model selection

I The training data is not sufficient to find the solution, we should make some extra

assumption for learning.

Inductive bias

The inductive bias of a learning algorithm is the set of assumptions that the learner uses to

predict outputs given inputs that it has not encountered.

I One way to introduce the inductive bias is when we assume a hypothesis class.

I Each hypotheses class has certain capacity and can learn only certain functions.

I How to choose the right inductive bias (for example hypotheses class)? This is called

model selection.

I How well a model trained on the training set predicts the right output for new instances is

called generalization.

I For best generalization, we should choose the right model that match the complexity of

the hypothesis with the complexity of the function underlying data.
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Model selection (cont.)

I For best generalization, we should choose the right model that match the complexity of

the hypothesis with the complexity of the function underlying data.

I If the hypothesis is less complex than the function, we have underfitting
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Model selection (cont.)

I If the hypothesis is more complex than the function, we have overfitting

I There are trade-off between three factors

I Complexity of hypotheses class
I Amount of training data
I Generalization error
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Model selection (cont.)

I As the amount of training data increases, the generalization error decreases.

I As the capacity of the models increases, the generalization error decreases first and then

increases.

I We measure generalization ability of a model using a validation set.

I The available data for training is divided to

I Training set
I Validation data
I Test data
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Summary



Summary

I The training set S

I A set of N i.i.d distributed data.
I The ordering of data is not important
I The instances are drawn from the same distribution p(x , t).

I In order to have successful learning, three decisions must take

I Select appropriate model (g(x |θ))
I Select appropriate loss function

EE (θ|S) =
∑
k

L(tk , g(x ; θ))

I Select appropriate optimization procedure

θ∗ = argmin
θ

EE (θ|S)
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Readings

1. Chapter 1 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Chapter 1 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Chapter 1 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?
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